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ABSTRACT. MHD equilibria for belt-pinches with arbitrary half-

axis ratios % are studied by analytic methods. A straight pinch
with sharp pressure profile, an axial surface current on a per-
fectly conducting plasma and a closed, perfectly conducting wall
are assumed. The calculation is made in coordinate systems where

plasma surface and wall are coordinate surfaces.

First an exact equilibrium for a model with a semi-infinite

plasma slab between parallel walls is derived by conformal map-

ping ( %-% ») ., The plasma thickness is egqual to one half of

the wall distance. This means that a radial compression ratio

ny > 2 cannot be achieved. In contrast to elliptic plasma

cross sections the crossing point of the magnetic field here

does not approach the plasma with increasing %;,This result

is ascribed to the almost semi-circular shape of the plasma

enq. Then for finite % analytic solutions of the equilibrium are

derived. The plasma surface and the wall are transformed to

Cartesian coordinates by conformal mapping. A class of mapping

functions ( = cosh—1 (n tanhz) is found that yields nearly

exact equilibria. m is a constant that determines %. The
"natural" orthogonal coordinates of the belt-pinch are pre-
sented in a parametric form. The magnetic induction on the
flux surfaces is calculated in these coordinates. With this
method the computation time is only a few seconds. Large

a

e~ values are only obtained for surprisingly small 5 (<1.2).



One finds My = 2.2 already at % = 2. Ky Can be slightly
increased by a doublet-shaped wall. The semi-infinite slab
:esult is the asymptotic value of the hp VS % curve for

-% -+ o, The small deviation of the results from exact solutions
(for larger %), is reduced by applying the method of conformal
mapping of nearly circular domains onto exactly circular
domains. It is thus shown that a change of plasma shape influen-
ces the distribution of flux lines continuously and only by

a very smali amount.




1. INTRODUCTION

Non-circular cross sections of pinch plasmas are ex-
perimentally achieved by a conducting wall (flux surface) or by
conductors with a preécribed current distribution. It is
obvious that the plasma cross section will be almost circular
if the wall is far away. Therefore, a non-circular blaéma cross
section with a large half-axis ratio can be'pfoduced by a
conducting'Wall only if the distance béﬁween plasma and wall
is not large compared with the plasma thickness. In our opinion
tﬁe equilibria due to a conducting wall are of great practical
importance, since in this case strong wall stabilization of
long wavelength MHD modes can be expected. The reason is that
here the instability indﬁces large image currents in a low-

inductance wall because of the small plasma-wall distance.

In connection with the belt-pinch programme at Garching
this paper uses an analytic method to study non-circular MHD
equilibria of arbitrary half-axis ratios %-, where a is the
large and b is the small half-axis (see Fig.l). The principal
aim of the paper is to find analytic solutions for the equi-
librium plasma shape tha£ is exclusively produced by the pre-
sence of a closed wall with a self-consistent current distri-
bution. The calculation is done in a.;atural';obrdinate system
where all flux surfaces including the plasma surface and the
wall are coordinate surfaces. It can provide a basis for a con-

venient stability analysis in a surface current model that in-

cludes the strong wall stabilization to be expected for this case.




Another aim of this study is to determine the maximum com-
pression ratios that are possible in the direction of the
small half-axis (nb radial compression ratio). For a given
fotal plasma current the radial compression should be largest

with a surface current distribution.

For simplicity an axially ﬁomogeneous, straight pinch
is treated. The model further assumes a rectangular plasma
pressure profile, axial surface currents on a perfectly con-
ducting plasma,‘a vacuum field region and a closed, perfectly
cohddﬂjng'wall. All surfaces of constant poloidal flux are sur-
faces of the "natural" coordinate system that is appropriate for
_the-belt—pihch géométry.vThe-2— dimensional problem is solved
by ﬁeans of conformal mapping, i.e. by transforming all flux
sur faces including the plasma surface and.the wall to Cartesian

coordinates.

2. ~EXACT ANALYTIC SOLUTION OF MHD EQUILIBRIUM OF A SEMI-INFINITE

PLASMA SLAB

In this,  section an exact solution of the MHD equilibrium
of a semi-infinite plasma slab between infinite parallel walls
(see Fig.2) is analytically derived. It represents the limiting
case of infinite half-axis ratio ( % » o ), At the same time the
analytic method of solution is demonstrated. A free boundary
problem of an elliptic differential equation (Laplace’s equation)
has to be solved which is analoqus to the so-called Helmholtz
flow [1]. The mapping function énd its inverse are determined by
a Schwarz-Christoffel transformation [2] from the coordinate sy-

stem in Fig.2 (z-plane, z = x + iy) onto the Cartesian coordinate



system ( ( - plane, (¢ =Y + i ¥)

_ 1 . |
z= <[ cosh (i B ¢) ] (1)
€ = %— cosh™1 (e%%) (2)
ip
where a = %E' B = '§ . d is half the wall distance and Bo
o

is the asymptotic magnetic induction and also the field on
the equilibrium surface. The curves of constant Y.and X ‘
correspond to the lines of constant poloidal flux and to the
lines of constaht magnetic potential, respectivély.vBy
separating real and imaginary parts of Eq.(l) a parametric

representation of the curves in the z-plane is cbtained :

x=%m (cosh® B x . cos® B v + sinh? gy . sin? g ¥) (3)
y=-28 tanl (tanh By . tan p ¥ ) (@)

Figure 2 shows curves with constant v, i.é. flux lines

(20 equidistant Y-values). The orthogonal -curves ¥ = const

were not drawn. The negative x-axis is the ¥ = O curve. VvV = 0O
yields a brangh cut on the positive x-axis, and Vv = Yw = * 3%—
the infinite walls. The dotted curve marks the exact equi-
librium surface (¥ = Wé). At first the branch cut and the walls
shall carry the axial current. Then the plasma surface is

placed on Vv = ?e and the surface current on the plasma re-

places the current on the branch cut.




' , ' d
The magnetic induction is given by B = | E% |. From
Eq. (2) it follows that
.4 1 a e%? ) B,
— e = - 1
dz %ﬁ (eZaz_l) /2 @ - e 2az)1/2
Substituting Eq. (1) yields
ac . Bo

dz = T ' Tanh(ipQ)
and B in curvilinear orthogonal coordinates reads

sinhzﬁ X + coszﬁ v )1/2

B-—-Bo( (5)

sinhzﬁ X + sinzp v
It is.obvious that on the equilibrium surface ¥ = Y  the

magnetic induction (Bo) must not depend on ¥. This is true for

i1l 1 . d
: Ye = 2 - 2 Y According to Eq.(4) y = - E'for X = m'and

L e This means that a plasma bounded by V = We is in an
exact equilibrium and has an asymptotic thickness equal to
one half of the wall distance:

2b =d - (e)

The poloidal flux within the plasma is zero, since a sur-
face current plasma is field-free in the interior..Therefore,
in the vacuum field reéion between plasma and wall ¥ has to be
substituted by ¥ - Ye. The magnetic induction on the negative
x-axis decays very rapidly according to

B

(e-Zax_l)l/Z

B (x;y=0)= (7)

2 ' y 4 "
for e oI‘Xl>> 1 B decays exponentially. For the magnetic induction



or the current density j on the walls one obtains

B (x; y=d) i(x; y = 4)
B 3 ‘
(o] (o]

The most significant results of this calculation are:

1) An exact equilibrium exists for a plasma with a very
elongated shape between two pérailel walls,

2) -The plasma end has an almost semi-circular shape, and the
‘crossing point of the magnetic field does not approach the
plasma surface for large half-axis ratios.

3) A radial compression ratio ny 2 cannot be achieved even

for a surface current distribution.

For an elliptic plasma cross secqion it is evident thét with
increasing %-theAcurvaturefat the plasma ends grows, and con-
sequently B decreases more and more rapidly with the distance
from the plasma. This means that the crossin§ point of the mag-
netic field (B = 0) comes too close to the‘plasma»for large %’.
In this respect "racetrackK-like cross sections that are discussed

in this paper are superior.

3. ANALYTIC SOLUTIONS OF MHD EQUILIBRIA FOR ARBITRARY HALF -

AXIS RATIOS

The problem now consists in finding a free boundary solution
of the Laplace equation which is analogous to the so-called
Riabouchinsky flow [1]. We now look for a class of conformal
mapping functions that transformé "natural" coordinates of the

belt-pinch geometry for various % to Cartesian coordinates. It




is solved by means of intermediary mapping by functions with
well-known mapping properties. Configurations with an axial
current on a branch cut like that in the z-plane of Fig.3
should from intuitive arguments have a marginal curve that
separates an interiér region with Bl > B2 (see Fig.l) from an
exterior region with B,y < B, and that can, in principle, be

an equilibrium surface. By the way, it can be shown by the
above analysis that elliptic coordinates cannot be used to
describe belt-pinch equilibria in "natural" coordinates because

an equilibrium surface with finite ¥ does not exist (We - ),

A large number of conformal mapping functions are tested
by the method demonstrated in the preceding éection. A succes-
sive intermediary mapping (see.Fig.3) of Cartesian coordinates

(C = v + i %) onto elliptic coordinates (zl = Xy + i yl) by

cosh ¢ and then onto "belt-pinch coordinates" (z = x + i ¥)
1

2y
by z = tanh~ ( %-zl), with n = coth ¢, yields nearly exact
equilibfia. The parameter c denotes half of the length of a
branch cut in the z-plane and determines the various g'values
of the equilibrium solutions (see Fig.4). By substitution one

obtains the following class of mapping functions (constant

factors in front have been set equal to 1) and its inverse:

z = tanhf-l ( % cosh € ) ‘ (9)

1

¢ = cosh =~ (7 tanh z ) ' (10)

Again the Vv = const curves correspond to the lines of



constant poloidal flux. The coordinate lines in the z=-plane
are calculated by separating real and imaginary parts of
Eg. (9) . The following equations represent natural orthogonal

coordinates of the belt-pinch in a parametric form:

: 2 2
(n=x, 2=y, %) +(2ny,)
x= 3m { e | L)
B (('ﬂ"xl) + y]_]
2ny
S § -1 1
y= 3. tan ( 3 5 2 ) (12)
nNa= xl -yl

where X = cosh ¥ * cos y and Y, = sinh Vv - sin y are derived
from z, = coch ¢ = %Xy * i Yy. In Fig.5 one half of the curves

of constant ¥, i.e. flux lines, are shown for various . The

2
: b
flux lines are plotted in steps of 0.1 Voe The orthogonal
curves were not drawn. For ¥ = O the branch cut - c < x < ¢
and for ¥ < O the other flﬁx surfaces are obtained. The dotted
or dashed curves (¥ = We) mark the equilibrium solutions. It
is obvious from these plots that % (for Y = We) grows when c¢
is increased, Diffefentiating Eq.(lo) and substituting Eq. (9)
-yields

ac Iy PR (<% cosh g)z

d ="

sinh (

" . {
In . natural coordinates one obtains

B2 ~ 5 . 5 [ lz(sinhzw + sinzx)2
sinh“V + sin“y n

= 201 = ii) (sinh®v + cos?y - cosh?y . sinZy)+(n- ﬁ’zj (13)



The problem is now to determine for each half-axis ratio
the v-value that yields the smallest y-variation of B, It is
solved analytically and numerically by very short jobs with
computing times of ohly a few seconds. The current on the
branch cut can now be replaced by a surface current on a
plasma which is bounded by Vv = ?e. The wall as the other
boundary of the vacuum field region can be placed on any flux

sur face (Y v < We). Yo denotes the equilibrium solution

L <
crit
and is the marginal curve which separates the B, > B, region

from the Bl < B2 region that were mentioned above. V des-

crit
cribes the outermost flux surface that exists in the first

plane of the Riemann surface. By calculating B1 and Bz from

Eq. (13) and by setting Bl = B2 one obtains for VY > wérit

vo= - 30 (4 0% -3 (14)

A detailed numerical study has shown that Ve indeed
describes a flux surface that differs only very little from
the flux surface with the smallest ¥ - variation of B. The

outermost flux surface ¥ =V is derived from the condition

crit-
X =» o for y = O:

y = = tn (n + Yn2-1) (15)

erit
The maximum radial compression ratio %y is obtained if

the wall is placed on the outermost flux surface Y = wcrit'
ny is determined by calculating the y-value that belongs to

Vv o= Vv . =
y - and x 0



__ 1, -
ycrit 2 tan

1 (2n ¥n3-1) (16)

and dividing it by b.

In Fig.5 the positions of y have been marked. The

crit
c-dependence of % in Fig.4 was derived analytically by inserting

Egq. (14) into

x(?=We:-x=O)

a
—1 L4 — b
y (¥ Yoi X 5)

Thus one obtains the correct c~value for the numerical

calculations that corresponds to a desired half-axis ratio.

In Fig. 6 the maximum radial compression ratio Ky is

plotted versus %; One sees that large xb—values are only ob-
tained for surprisingly small % (€ 1.2) even with a surface

current distribution. The dashed line is an extrapolation of.
the np-curve for %-s 3. For this % -range the walls on ¥ = V¥
are still nearly parallel lines. Indeed the dashed line agrees

crit

very well with the asymptotic wvalue Ny = 2, that was derived
above for the limiting case % - o and for parallel infinite walls.
It is surprising, however, that already at % = 2 the maximum
radial compression ratio is only 2.2. The growth of N for §-> 3

is ascribed to an increase of the doublet-shaped deformation

of the wall.

In practical situations of an experiment the ratio of
the coil cross section area to the plasma cross section area

% ab is known and the question is what half-axis ratio will
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ideally be reached by the plasma after contraction. There-
fore in Fig.7 % ob is plotted versus % for a given coil height
to width ratio of 5.5, which holds for the Belt-Pinch II ex-
periment. The Mt values have been determined from the plots
of flux surfaces after placing the wall on the correct flux
sur face. Obviously for large % ab the plasma contracts to a
cylinder with nearly circular cross section. Even for Kap © 15

a half-axis ratio of only 2 is obtained.

A comparison of the Y = Ye curves in Fig.5 with el-
lipses of the same ratio % shows that the plasma shape becomes
more and more "racetrack"-like (semi-circles at the ends)
with incréasing %-. This is in agreement with the results of
section 2 and also with experimental findings. Compared

with elliptic cross sections these configurations are advan-

- tageous because the separatrix does not approaéh’ the plasma

with increasing % (compare section 2). The reason is that for
the "racetrack"-like shape the curvature radius at the ends
is about equal to the small half-axis b and is therefore

independent on % for a fixed b-value.

The poloidal flux between plasma and wall is given by

Weriel = IYel =1 1, (17)

where L is the inductance of the system and Ip is the total cur-

rent on the plasma surface. From Eg. (17) the %'—dependence

of the inductance is determined by assuming a fixed plasma

current. The result is shown in Fig.8. Here L is the induc-



w1 =

tance for §-= 4, since all fluxes have been normalized to the
flux for §-= 4, It is seen that L decreases only slightly for

half-axis ratios larger than 2.

In the method used an exact shape.éf the wall is not pres-
cribed. Rather a mapping function is determined first that yields
a desired equilibrium shape of the plasma and'then'thé shape
of the wall on one of the flux surfaces is calculated. This
procedure is the opposite of that used in a numerical treat-
ment of the problem [31, where the shape of the wall (rectangular
bok) is prescribed. Moreover,ﬁhe model assumes a volume current
distribution. The tendency towards a larger radial compression
ratio with a current distribution, which is more peaked at the
plasma surface, was fouﬁd [37, but the surface current case

could not be treated.

It can be shown that the function in square brackets in
Eq. (13) may be written as

1 . 4 1 £ 2 1 A
<;§ sin'y + 2[(2 - ;3) sinh”™ ¥ + 1 —';5] sin® y

2 2

+ [ la sinh™ Vv - 2 (1 - LE)] sinth gualni e %)
m n

On a special flux surface (¥ = YO) this function is
proportional to the denominator of Eq.(13) if the sin4x -
term is neglected. This means that B does not depend on ¥y
for ¥ = Yo' Therefore the term tanhzc ¢ sin4x describes the
deviation from the exact equilibrium surface. Obviously, this

. . . a . .
deviation grows if ¢ and consequently L is increased.
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The maximum error of B(y) on the equilibrium surface

¥ = We is defined as

Bmax B Bmin
§ = (18)

+ .
Bmax Bmln

A detailed numerical calculation of the y-variation of
B for the half-axis ratios of Fig.5 yields the results in
Table I. As one would expect the large curvature regions of
Yy = We exhibit much steeper gradients of B perpendicular

to theAsurface ¥y = Ye' than those with small curvature.

TABLE I.

MAXIMUM ERRORS § FOR THE %’~ VALUES OF FIG. 5

1.2 8 2.0 3.0 4.0 6.0 :

Ul

2 7.85x10_2%

i
|

4 3

- - -2 -
8.8x10 3.76x10 1.87x10 3.88x10

These numerical results agree well with the above calcu-

a

lation. The maximum error grows if = is increased.

The deviation from exact solutions has been reduced by
applying the method of conformal mapping of nearly circular
domains onto exactly circular domains [4,5]. This procedure
can also be regarded as a further generalization of the class

of mapping functions in Egs.(9) and (10). Instead of directly



iy =

mapping Cartesian coordinates onto elliptic coordinates (see

Fig. 3), first an intermediary mapping onto polar coordinates
(w-plane) is performed, where the flux surfaces are circles in
the interior of the unit circle (¥ < 0). The exact solution
deviates very little from the flux surface and is therefore a
nearly circular curve. Then the method of conformal‘mapping

of a nearly circular domain (wl-plane) onto an exactly circular
domain (w-plane) is applied.FIt is described in Appendix A.
Appropriately choosing the Fourier coefficients that determine
the deviation from the unit circle yields a more precise equi-
librium solution in all regions of the plasma surface (for all vy).
A set of Fourier coefficiénts for this analysis can be deter-
mined by qurier analyzing the knoﬁn y-variation of B on ¥ = We.
For the case % = 4, for example, the §-value has been continuous-
ly reduced from 3.88% to 2% by optimizing only three coefficients
(g == c =0.006 and d = - 0.008, see Appendix A, Eq.(A5)). It

has been shown that the distribution of flux lines is changed on-
ly Qery little and continuously when the shape of the plasma
surface approaches the exact equilibrium. The accuracy of the flux
line plots in Fig.5 is sufficient for experimental purposes.

It is found for a fixed position of the vertex points that for

all other x the |y|-value is slightly increased.

"In Appendix B the vacuum magnetic field energy Wm is varied.
It is shown by a simple model calculation for large % that Wm
has a minimum at a plasma thickness equal to one half of the wall

distance (compare Eqg. (6)).
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4., SUMMARY AND CONCLUSIONS

MHD equilibria for belt-pinches with arbitrary half-
axis ratios % have been studied by analytic methods. A straight
pinch with sharp pressure profile, axial surface currents on a
perfectly conducting plasma and a vacuum field between the
plasma and a closed, perfectly conducting wall are assumed.
The calculation has been carried out in a"natural'coordinate

system where plasma surface and wall are coordinate surfaces.

First an exact equilibrium for a simple model with a semi-
infinite plasma slab between parallel and infinite walls has
been derived by means of conformal mapping ( %-4 ®), It is found
at a plasma thickness equal to one half of the wall distance.
This means that a radial compression ratio “y > 2 cannot be
achieved even for a surface current distribution that, for a

given total plasma current , yields the largest compression.

Then for finite % analytic solutions for the equilibrium
.plasma shape have been derived which can provide a basis for

a stability analysis including strong wall stabilization effects.
The plasma surface and the wall are transformed to Cartesian
coordinates by conformal mapping. A class of mapping functions

¢ = cosh-1 (n . tanh z) has been found that yields nearly exact
equilibria., n is a constant that determines the various %. The
"natural orthogonal coordinates of the belt-pinch have been given

in a parametric form. The magnetic induction on the flux sur-

faces has been calculated in these coordinates. In contrast to
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numerical investigations of the problem the computingvtime

with the method developed in this paper is negligible (a few
seconds) . Compared with elliptic cross sections these “race-
track"~like configurations are advantageous because the separatrix
does not approach the plasma with increasing %. Large Hy

values are only obtained for surprisingly small % £ 2 dod)

even with the surface current distribution. Already at

§-==2 ni)does not exceed 2.2. The radial compression ratio can

be increased slightly by a doublet-shaped wall. The semi-

infinite slab result ( % » © ) is indeed the asymptotic value

of the extrapolated ﬁb vs % curve.

The small deviation of the results from exact solutions
(for larger %-) has been reduced by applying the method of con-
formally mapping nearly circular domains onto exactly circular
domains. It has been shown that the distribution of flux
lines is changed only very little and continuously when the

shape of the plasma surface approaches the exact equilibrium.
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APPENDIX A: CONFORMAL MAPPING OF A NEARLY CIRCULAR DOMAIN

A nearly circular curve (see Fig.A.l) reads in polar

coordinates

r | l+e¢p (%) : (A 1)

where € is a small positive parameter and ¢ p (%) describes
the deviation from a unit circle. If the function p (yx) is

expanded into a Fourier series

18

p (X) = a_ +

- cos n ¥ + bn sin n ¥y) (A 2)

\ (an
p

n

the associated function that conformally maps the nearly cir-
cular domain in the wl-plane onto the interior of the unit

circle in the w-plane (see Fig. A.l) reads

m
3 : ns 2

W= Wy + e Wy [ao + E: (an - i bn) Wy ] (A 3)

n =1
Its inverse is

m ,

; g n .

wl=w-ew[ao+2 (an-lbn)w] (A 4)

n=1

Owing to the symmetry of the problem an ansatz
pix) = a, + a, cos 4 x + b4 sin 4 ¥ (A 5)

is made. With the abbreviations e a, =9, € 3, =¢ and
- € b4 = d one then obtains the following generalization of

the class of mapping functions given in Egs.(9) and (10):
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Z = tanh ';‘-Zl ) (A 6)
. _ 1 Ye 1l - _ .‘ 4
with 2y =3 (e Wy + ewe - ) and Wy =W {1 - [g + (¢ + id)w ]}.
1l

The inverse function reads

. ‘ 4 .
¢ =" {wl + Wy [g+ (c+ id)w, ]} (A 7)
with Wy, = e-'we (zl + lez - 1) and zy =M tanh z.'

Using these generalized conformal mapping functions
cocordinates and fields have been calculated as in section 3.
With g = ¢ = d = 0, the results of section 3 have been re-

produced.,




APPENDIX B: MINIMUM OF VACUUM FIELD ENERGY FOR LARGE HALI-AXIS

RATIO

By a rough model calculation it is shown for large %
that the vacuum magnetic field energy Wm has a minimum at a
plasma thickness equal to one half of the wall distance
(compare Eg.(6)). This result is obtained with a fixed total
current on the plasma surface Ip and a fixed, but within certain
limits arbitrary, plasma cross sectional area F such as is met
in realistic experimental situations. The geometry of the model
is shown in Fig. B.l. The vacuum magnetic field energy per unit

length of the axial direction reads

- 142 1 4,21 '
wos LI = 5 V°F (B 1)
where L is the inductance of the system and | is the poloidal flux
between plasma and wall. The flux § = L Ip is a constant since
plasma and wall are perfect conductors. A variation of the plasma
shape causes a variation of L and wm such that a maximum of L
corresponds to a minimum of Wm‘ For large %-or, to be more pre-
cise, for s << 2 ¢ the inductance per unit length of the system

can be approximated by the inductance of two parallél plate

transmission lines with plate distance s in parallel

1 S

= & -5 B 2

L 2 Po 20 ( )
For s << 2 ¢ the magnetic field energy at the top and bottom

may be neglected without introducing a significant error. Indeed

it has been shown in section 2 that the magnetic induction de-

creases very rapidly with the distance from the plasma ends.



Substituting s = d -~ h and F ~ 4¢h in Eq.(B 2) gives
Po
L = 5 (d - h) h (B i3)

Differentiating with respect to h at a fixed F yields

dL _ Yo
h F (d - 2 h) (B 4)
ar. a’r
From —=/— = 0 and —=— < 0 it follows that
dh 2
dh
2 W="g (B 5)

is the position of maximum L and minimum Wm'

Note that Eg. (B 5) results from Eq. (B 4) for fixed, but

within certain limits arbitrary, F - values,




(1]

(2]
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FIGURE CAPTIONS

)

Fig. Definition of half-axes a and b.

N

Fig. Flux lines of semi-infinite plasma slab between parallel
walls. The dotted curve is the exact equilibrium and plasma

sur face,

Fig. 3 Conformal mapping of Cartesian coordinates onto "belt-pinch
coordinates". I

Fig. 4 Half-axis ratio % versus branch cut parameter c.

Fig. 5 Upper half plot of flux lines for various %. The dotted
or dashed curves are the equilibrium Y = e
(a) E 1.2, (b) g .6 (c) b 240, . (d) 5 3.0,
(e) b = 4.0, (£) B-= 6.0

Fig. 6 Maximum radial compression ratio ", versus %.

Fig. 7 Ratié of coil cross section area to plasma cross section
area x , versus % for a coil height-to width ratio of 5.5.

Fig. 8 Inductance L versus % normalized to Loe the inductance for

]—';‘-:4.

Fig.Al Conformal mapping of a nearly circular domain.

Fig.Bi Variation of magnetic field energy W, Cross section of
plasma and wall,
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