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Abstract:

A theory is presented for the rotation of the ion
sound spectrum with respect to the drift velocity
as observed in perpendicular shocks. The results
of 2D simulation confirm the main points of the
theory and represent a direct verification of per-

turbed orbit theory of strong turbulence.

Recently detailed measurements of the spectrum of ion sound
turbulence in perpendicular shocks have been reported 1’2’3.
The main experimental results are: 1) The spectral electric
energy density W(k) = lE(kX2/8TC does not seem to agree with
the so called Kadomtsev spectrum; 2) there is a pronounced
asymmetry in the angular distribution of the spectrum with re-

1’2. Previously T2 the

spect to the direction of the current
energy spectrum had been measured only in the small range bet-
ween k %Dﬁ 0.7 and kAD 2 1, and the experimental points had
been interpolated by the Kadomtsev function (ov/k) In(1/k D),

choosing for the cut-off D = A the electron Debye length.

D »
However the Kadomtsev theory is derived in the range k %D'« 1
and becomes rather 111 defined in the vicinity of the arbitra-
ry cut-off length D. In Ref. 3 the measurements have been ex-

tended to the long wave length range k:ﬁD ~ 0.1, using 002 laser




scattering. In this range the fluctuation energy is found

to be several orders of magnitude smaller than the Kadomtsev
prediction. Also the observed cut-off at large ijD is not
as sharp as predicted by the Kadomtsev spectruml. The se
resultshad been anticipated by numerical simulations of the
cross-field current driven instability 6’7’8. In all nume-

rical runs it has been found that W(k) is peaked at k Ay~ 1

and that during the nonlinear development of the instability the
spectrum is further shifted toward higher values of k AD. Eva-
luating many simulation runs a theoretical picture has been
drawn in Refs. 7 and 8. 6rowth of long wave length modes is in-
hibited by linear Landau damping due to a high energy ion tail
which extends beyond Cq and thus preferentially damps modes
with large phase velocities, vphﬁi Cg for k %D<K 1. The shift
of the spectrum toward larger values of k AD is caused by the
increase of AD due to electron heating’the upper limit of

k %D being determined by Landau damping at the bulk of the ion

distribution.

Also the second effect, the asymmetry of the spectrum had been
anticipated by numerical simulations6. It had been found that

the spectrum w(g) is rotated in the plane perpendicular to B
opposite the sense of electron gyration. In the present letter

we give a theoretical explanation of this effect by investigating
the electron interaction with ion-sound turbulence in a perpen-

9

dicular magnetic field. Dum and Dupree” have shown that turbu-
lence leads to a frequency shift and broadening of the wave par-
ticle resonance and that these effects are related to friction
and diffusion, respectively, experienced by a test particle in

the turbulent plasma. Diffusion across the magnetic fleld smears



out the gyroresonances when the turbulence level exceeds *°
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where ﬁ% and Cnpe are the electron cyclotron and plasma fre-
quency, respectively. It has been shown11 that at this level,
which 1is very lgw if Lﬂ% < W, @ transition from the beam
cyclotron to the unmagnetized ion sound instability occurs. The
friction force on a test particle is only compensated in the
mean by the applied electric field EO which maintains the cur-
rent J =-n lel u,cf. Fig. 1. Electrons of low speed, which
predominantly drive the instability, experience more friction
and thus drift in the -x direction. (High speed electrons drift
in the opposite direction.) The effective drift velocity for

the instability u* is thus rotated opposite the sense of elec-
tron gyration and the angle of rotation should scale as

tg 6 ainﬁ%,where »* 1s the effective collision frequency. This
dependence on v*and &% is verified by appropriate 2D simulations
of the 1on sound instability. Computer simulation of a system

of test electrons in a given ion sound spectrum is used to veri-
fy that electron diffusion (stochastic heating) can be described

by the unmagnetized quasilinear diffusion term for fluctuation

levels exceeding the level given by Eq. (1).

We consider the situation given in most experiments on resistive
shocks: abe §>&% >-y*, where 1!* is the effective electron
collision frequency produced by ion-sound turbulence with

k 0> 1, ?e = ve/ﬁg. The plasma 1s homogeneous, i.e. effects




of density gradients are neglected, and the ions are taken un-

magnetized, since relevant times are \t<'&a'l.

We use the diffusion equation for the electrons to determine
the average electron distribution fe and the statistical cha-
racteristics of the test particle orbits. In the frame where
the mean electron velocity vanishes (the ions drift in the

y direction with velocity u , cf. Fig. 1) the diffusion equa-

tion for fe takes the form

-a_-—fe- N (SB . v) . ,bfe = <Be> . afe . __2___ . D(e).lf_‘_e_ (2)
2t - 2V nmg, 2V 2V = 2V
where the components of the frictional force <_3e>- are
o <3 * ¥ ¥ ? . u,ﬁ
<jRe ) =-n m,u, ¥ =n mej/dv fe(y) Ve D (3)

u' 1s the effective drift velocity and ‘g% = (0,0, lel B/me).

To simplify the algebra we only consider modes in the plane per-
pendicular to B , which corresponds directly to the previous
and present numerical simulations. Thus fe may be integrated
over v, ; in the following we use the notation v = (Vx’vy)’

The average distribution fe(x) can be expanded in the small

*
parameter v/SBe 5

£(x) = T (v) + T (v,9) v =yl (4)

where to zeroth order fe is the solution of the angle averaged

*
diffusion equation. To first order in ))/ﬁae the contour lines




of fe(g) are shifted circles,

5 . 1 e
fo@) = f (W) 2 (v) -vy* vs 5= (5)
where v = W + vy(w).
The shift ¥ , which to lowest order depends only on w = |w]| ,

can be expressed in terms of the friction force by considering
a ring distribution ?é(w') ¢ 6(w' - w) and forming the first
moment of Eq. (2). We thus obtain

R, - <R> &
vo(w) = - —= —=- x = (6)
D n mg 5?2
e
?
where R_ = ge(w) is the average of ==.D over the ring di-
stribution, cf. Eq. (3).
We now derive the dispersion relation &£=1 + ee + 81 =0

and compute the growth rate for a mode in a plasma with a mag-
netic field and a given spectrum of ion-sound turbulence. In the

perturbed orbit theory of Dum and Dupree9 EJ is given by

2
-iw 2f,
8J(K,Ca)) = —k—ém— d! K '3_!1 NJ(‘_"K:“): (7)
where -
N(y|k,0) = [ar e2®T¢y|em ke x(T) ) (8)
0

is the ensemble average propagator for a test particle with ini-

tial velocity v . The perturbed particle orbit consists of a
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gyration about KD(w) with speed w and diffusive motion which
results in resonance broadening A @ . Evaluating Eq. (8) as

done in Ref. 9 one obtains

(0]
Ny[k,w) = [T 0+ 149- oyt (9)
0

(K2 ) (Hom)(B-y) gt n

k w
x 2. J (== )Jd
n,m n S%a " e

N
where @ and ﬁy are the angles of w and k respectively.

Transforming in Eq. (7) from v to w coordinates, the a inte-
gration can be performed and the dlelectric constant may then
pe evaluated as in Ref. 11. Since condition (1) is always sa-
tisfied for the cases of interest here, the gyroresonances are

wiped out by resonance broadening and we obtain

W o 3?6 X
€ (k) = P WEFw a-k vplw) -k « W (10)
Wave growth is determined by
O 2—;
Im € (k,w) = -T—L aw k - S(w-k - v - k « W)
e k2 g ped Bﬂ - =D = =
2 oo =
of, ©- k - vp(w)
R /dw e L (11)
Kk 5 2w k w
2 00 = *
) 2f . w- k v
- -on2g faw & —D |
k i 2w k w

introducing the effective drift velocilty XD* .

” |
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To further evaluate Eq. (11) we need an expression

for the differential friction Be(w), since it determines XD(w)

by Eq. (6).

The gyroresonances which appear in the diffusion coefficient are
smeared out by the same argument as indicated in the derivation

of Eq. (10), and we obtain
R (w) =2 —9(2)3 for w = u . (13)

The constant ¢ 1s determined by the mean friction coefficient
(Be> through the condition that in the electron frame the total
drift vanishes:

- 0y

o == [e@)’ - (B x 2= 0. (14)

We now insert the selfsimilar solution of the angle averaged

quasi-linear equation te
5 - )?
f,(w) = Ae Yo o, (15)
which yields
*
% v T(1/5).F{7/5)
vy = —= |u @] - S E0) ¢ (16)
B saf[ ( (4/5)° )

Thus the total effective drift as seen from the ions is

VI? = E? and the maximum growth rate is rotated out of

&
+




the u'direction by an angle ©:

* ¥
Va Y TQa/5)T(1/5)
e = = d £
s TR oy )
*
~ &¥ . (17)
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Inserting numbers from a typical computer run );&565 0.5 W/n T,»
W/n T2 1.4 x 107%, &2 /0 = 0.0k, we obtain 6% 20°  in ex-
cellent agreement with the numerically obtained value, Fig. 2.
In addition to the .simulations reported in Ref. 6 further compu-
ter runs of the self consistent electron -ion systems have been
performed to investigate the 5% dependence of the rotation angle
Eq. (17). Increasing S%/h% from 0.04 to 0.1 does not noticeably
change }f(as stated earlier, ion sound turbulence is rather in-
dependent of the magnetic field as long as.§%<z abe)’ but © is
reduced to 10° , again in agreement with Eq. (17). The con-
tour lines of the electron distribution are shifted circles as

predicted by Eq. (5). Furthermore, as predicted, the experiments1
show the rotation angle to be independent of the magnitude of k .
In order to verify that electron diffusion can be described by

the unmagnetized quasilinear diffusion tensor, a 2D stochastic
acceleration model has been run, where a set of test electrons

were moving in an prescribed isotropic spectrum W(k), w=k vph’

vph'= constant. Quasilinear theory predicts that the distribu-
tion function relaxes to the selfsimilar form (15) and that the
electron heating rate is given by the relation '

a1 /2 o 3/2
R - S e
2t

zy1/2 2 241
g(%)/ Uy @ Vop ()W i3 (18)

where < 1/k > =[/db_c w(k) /k] /W, W= _/dl_g w(k) , and «, 1is
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a form factor depending on the shape of the distribution function8

3

d, = 1 for a Maxwellian and &, = 0.285 for Eq. (15).

The numerical results agree well with these predictions; they are
virtually independent of the shape of the spectrum W(k), the magne-
tic field B (ﬁ%/wpe = 0 - 0.1) and diffusion times are inversely

2 . 6°1072). we

proportional to the field energy W (W/n To = 2-10°
find that after a short time a selfsimilar distribution fe is esta-
blished, f_oc exp {-(v/ve)x} with 4.7 % x £ 4,9 , only insignifi-
cantly smaller than the theoretical value 5 (in previous self-consi-
stent electron-ion simulations a somewhat smaller value of x has
been found8; this effect 1s probably due to the nonnegligible elec-
tron collision rate, which is much smaller in the stochastic acce-
leration model). Simulations and theory agree even better with re-
gard to the heating rate. Fig. > shows the electron temperature as

a function of time for a typical simulation run. The numerical

curve starts with the inclination corresponding to the initial

Maxwellian, but soon becomes practically identical with the theore-

tical asymptotic solution.

To summarize, the numerical simulations verify the main points of
the theory: the prediction for the rotation of the spectrum with
respect to the drift velocity and that electron diffusion can be

described by the unmagnetized quasi-linear diffusion tensor, even
for rather high levels of ion sound turbulence. The results repre-
sent a direct verification of orbit perturbation theory first in-
troduced by Dupree. The theory 1is easily extended to the 3-D case
and the basic conclusions still hold. Details of the theory will

be published in a forthcoming paperlj.
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Fig. 2 Angular distribution of the spectrum W(©)/W
m/M = 100, u/veo = 1 Tio/Teo = 0.02
= / =
a.)gae/cupe 0.04 b.)SBe..aJpe 0.1.
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