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Abstract = The MHD equilibria of axially symmetric, current-
carrying low- f8 plasmas with non-circular cross-section are
investigated, The appropriate boundary conditions are imposed

by solving a self-consistent free=boundary problem in the approxim-
ation of a thin, vertically elongated, otherwise arbitrary cross-
section, The plasma boundary determines the external currents or
vice versa,

1+ INTRODUCTION

Axisymmetric equilibria with a vertically elongated cross-
section have raised considerable interest owing to their property
that the maximum current density permitted by the Kruskal-=Shafranov
1limit is higher than in the case of a circular cross-=section, thus
allowing a stronger ohmic heating,

The study of the MHD equilibria of magnetized plasmas is
greatly simplified by symmetry, i.e. by the fact that one coordinate
is ignorable, In this case the problem reduces to a well known
scalar equation for the magnetic flux function § (Ref. 1) in the
cylindrical varibles (r, g, z), The function § describes the magnetic
surfaces and the constaat plasma-pressure sufaces through the equation
¥ = const, The most general symmetry is helical: this reduces to
axial or plane symmetry in the limit of wvanishing or infinite
helical period length respectively,

The general equation for ¥ is non-linear and has to be solved
numerically, It is possible, however, to solve that equation analyt-
ically if the functions I(§) and P(§) (respectively current flux

and pressure) are so chosen as to make the equation for § linear,




See Ref,2, 3, 4 for axial symmetry, Ref, 5, 9 for the helical
case, The liéﬁggfgigarates: ¥ is Fourier expanded in the variable
© = g - az in the aelical case, or in z in the axisymmetric case,
Each Fourier component is multiplied by an eigenfunction of the
radius r, and by a coefficient, These coefficients are to be
determined by the boundary conditions,

If the discharge takes place on a time scale shorter than that
required for the magnetic field to diffuse through the wall, the
latter is a magnetic surface, Bhis is not true if the discharge lasis
longer, The former problem has been investigated analytically in the
axisymmetric case in Ref., 2, 3, 4, numerically in Ref, 6, and the
latter (free=boundary) problem numerically in Ref, 7, 8.

We study here the free-boundary problem analytically in axial
symmetry using the same method as in Ref, 9, 10 (where the helical
case was considered). The free boundary is assumed to be approximately
a r = const, cylinder, which gives in axial symmetry a thin, vertic-—
ally elongated cross-section (see Fig, 1). Formally expanding to
first order for a small deformation yields a separate system of linear
equations for the coefficients of each Fourier component (in z) of
¥ (i.ee of the field) and of the external currents, The latter are
assumed to flow on other r=const, cylinders (r=R,, r=R,, see Fige 1)
Our solution is valid for a thin, arbitrary cross=section, and for an
arbitrary superposition (3.4) of Fourier components of the field,
smaller than the main field, This superposition is important for
stability (see Ref, 11). The phase of each component is arbitrary,
The phases are omitted for simplicity, but they can be independently
shifted wish no need of any other change,

The external currents are the known terms in(zgs 322%§ions faor
the coefficients (one system for each Fourier component), Knowledge of
the coefficients in the solution for ¥ (3.4), i.e. of the plasma
boundary, yields directly the outside currents, This allows us to

jmpose a plasma boundary and see what currents are needed to obtain



B

ite. If, instead, the external currents are known, the linear systems
of equations can be solved to derive ¥ and the plasma boundary from
the outside currents, It is therefore possible to see how plasma
boundaries and external current distributions are related to one
another, and how varying ome affects the other, The currents can be
expected to be strongly affected by a small change of the boundary,

Since ,3 is low, we make the zero-pressure approximation, which
leads to the force=free equation

YxB = sB (141)

where 8 can be assumed to be a constant for the reasons stated in
Sece 1 of Ref, 9, The same free=boundary method can be used also for
the non-force-free case (see Ref, 2, 3). The current density, i.e. s,
is finite, Our units are c.g.5. non=rationalized e,meu, Our current
unit equals 10/4m amps, The aspect ratio is arbitrary,

In Sec, 2 we write the vacuum field, in Sec, 3 we solve for the
force=free field (1.1), in Sec, 4 we impose the boundary cenditions and
determine the coefficients,

2, AXISYMMETRIC FIELDS

We use a cylindrical coordinate system (r, g, z), where the z=-
axis is our axis of symmetry (see Fig. 1)« All quantities depend on
the radius r and on z, and are independent of the azimuth g,

We take a length L in the z direction as the half wave=length
of our Fourier expansion in z and denote q = 1/L, This corresponds
to a periodic solufion in the z direction, but the analysis is
perfectly analogous if we use Fourier integrals instead of series,

From B = YxA, where A is the vector potential, we define the
magnetic=field flux function ¥, which describes the magnetic surfaces
(§ = const,):

¥ =g ' )




From the definition of § it follows that
d¢/or = rB_, dy/dz = -rB . (2.2)
From YxB = _._I_ we define the plasma-current flux function
I(y) -_-rBﬁ. (2.3)
We distinguish the following regions (see Fig.,1l): (1) 0<r< R,
(2) R, <r<R™, plasma region R"<r<R', (3) R'< r<R, (4) R <r.
The vacuum field in regions 1, 2, 3, 4 is given by YxB=0, Hence
B=Y& and, since Y+B-0, V2§=0. The solution is

=)
I

;= % i Y I,(nyr) sin npe

n

E-sz + %BQR/r + % °2n y_ Io(nqr) gin nnz +

+% eén Y Ko(n.qr) sin nnz

E} - e B+ %Boﬁ/r + % o Y I,(nyr) sin npz +

+% e, ¥ K,(ngr) sin nnz

24 A:_; c&n Y Kc(nqr) sin nyz
where the sums start with n=1.
There is no net z-current in the plasma, so B, is the same in
B, and B, A net p-current in the plasma causes B, & B!.
The external currents are represented by surface curremts on the

cylinders r=R  and r=R_:

1
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Any axisymmetric current distribution can be obtained by introducing

phases in these formulae.



Peaked currents at z = +L/2 can simulate the top and bottom
boundaries, which are missing in our model. Without these currents
the surfaces (3.4) would not be closed, since the Fourier components

of the solution (soe Sec. 4) are proportional to those of the external

currents,

The boundary conditions on r=R_  are

Bir = Byt Blﬁ = 32;5 ) I P iﬁ

and analogously on r=R_, The results ares

1
i =-B 54! =Bls i, = RB,/R,3 i} = _RBO/Rl

1n 2n i°n R“ Kl(m‘R")
on ™, Baem P Il(mTR°)

oy, = iy, By Ky (nmR,))

cZ;n » clin E i'ln R1 Il(n:qﬂl)

where we have used I} = Il’ K} = K
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1’ and their Wronskian,

In region 2 we have

¥, =B, r2/2 + T % 40 Il(n.qr) cos nnz +
- % oén Kl(m'r) cos nyz (2.4)

and '3 is analogous. This does not give closed surfaces, of course,

since there is no current,(vzrh;.c)sh is necessary for equilibrium in axial

symmetry. In this case I=RB_Ais a constant. We shall need (2.4) in Sec. 4.
Only in total vacuum (no plasma current) B, = 23, and B_ = B;,

¢, =0, gc! = c! ., In this case the coefficients are fully determined.

2n 3n" 2n in

Otherwise, ¢, and ¢! are determined in Sec. 4.
2n 3n




3. FORCE-FREE AXISYMMETRIC FIELDS

We solve now for the field in the plasma and current region
(R_<:r<:Rf, see Fig., 1). Using the same technique as in Sec. 3} of
Ref. 9, we solve Eq. (1.1) through

Vot ke 0 g5y
where B = lxlx(izf) 5 slx(_ng). We set f = Zn f s where fn(r, z) =
gn(r) cos nyz. The equation for the g's is

g+ gr‘l/r + (82_n2q2)gn = 0, (3.2)

For n=0 the solution is g, = J (sr) or g, = Y (sr). For n>0,
since we can expect |nyl> |s|, we have g, = I, (kr), or g, = K, (kr),
where k2 = nzqz - 82.

For a force-free field (l.1), YxB = sB = sYxA and, for constant
sy B = sA + Jh. Hence, for s40, from (2.1) and (2.3) we have

; g rBﬁ = o, + srAﬁ = ¢, + sf. {3s3)

We can therefore write the solution for the plasma region in the

form
I=c, +8}= chl(sr) - c'rYl(sr) +
+ 8T Zn [cn Il(k:r) -cr't Kl(kr)] cos nnz. (333)

This gives § and the surfaces in the plasma region, and the field
components through (2.2), (2.3). As 850, (3.4) reduces to the vacuum
expression (2.4).

The coefficients in the RHB of (3.4) are to be determined by the
boundary conditions.

The rotational transform 2y¥ is defined as the angle by which a
magnetic line rotates arownd the magnetic axis (r=R, z=0, see Fig, 1)
as it runs once around the long way (/\g=2m). Since, however, all our
quantities are expressed in terms of r and z, and r can in principle
be known as a function of z on the magnetic surfaces, it is convenient

to have an expression for € in terms of an integral in z. Along a

field line the following equalities hold:
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d1/B = dr/Br - rdﬁ/Bﬁ - dz/Bz.
L i = B
et us define Ag f ﬁdz/rBz, where the integral is calculated
once around the short way along a field line. If /\g = 2m, then & « 1,
Otherwise we add M such magnetic line segments until we approximate

MA$ = 2nN, M = N£ (with M, N large integers). This yields M/N = 2n/Ag = <.

4. THE BOUNDARY CONDITIONS

There are two fixed boundaries (r-Ro, r=R1) and two free boundaries
(r=R~, r=R*) where field-matching conditions are to be imposed (see Fige 1).
The conditions on the fixed boundaries have been worked out in Sec., 2,
On the free boundaries we require that the force-free field (3.4) in the
(low-/3)p1asma region (R°< r<R*) match with the vacuum field (2.4)
outside the plasma (in regions 2 and 3). This is equivalent to requiring
that I and Y§ be continuous (2.2), (2.3), (3.3). Following the same method
as in Sec. 4 of Ref. 9, we describe the boundary by r(z) = R~ + Srl(z),
where € <<1, and analogously for R', This implies y(ry2z) = p(r) + 8a(r, z),
and r, = -q/p'e By formally expanding in €, the boundary comditions are
translated into the following conditions, for both R~ and R*: to order 1,
I and p* have to be continuocus, and, to order €, also q and q[log(q/p')]’,
where the prime means d/dr. To each §?3§¥A?§Er equations, two for each
of the two boundaries (r=R”, r=R’'). The equations are linear in the
coefficients of (2.4), (3.4), and the known terms are the vacuum field
components, i.e., the external currents.

Since only the difference B"r-Bv is determined by the plasma current,
to order 1 the equations can be reduced to threes

el - 'Y

RB_/R
od* - o'y’ = RB_/R"
0J -o'YT = (B' =B) =0

v v

where J%& - Jl(sni), o Yl(s&i), J = J,(sH) = J,(sR7), Y = Y,(sR")-Y,(sR7).




The solution is
¢ = RB, (Y'/R™ - Y7/R")/A
c'= RB, (3*/r" - 3/RY)/A
B! - B = -RB, [(J"Y - J¥")/RT - (37Y - ) /R/A

whereA-JI-JY.

To order €, equating the Fourier components, we have for each n

- - ' Cd 2 e ' 3
cn I1 cn Kl c2n I c2n K
+ + + +
I - ¢! 1 =
cn 1 on Kl + c3n K c}n I

nan" -_cnm}x.

o Y o! (xh) + o n.ql(' - o, my ot

where 1-;- » Il(kR-*-), K-'i'- u Kl(kﬁ—), = - Il(nqni), K= = xl(m‘ni),
1'% - 1 (ngpt), K'F = K3 (anp),
(F) - I (kr) ¢/ar log-[Il(lcr)/[cJ'(ar)-c'Yo(sr)_]} (r=R%),
(#) = K (k) a/ar log {K (l)/ [0, (sr)-0'Y, ()] | (r-RY).

The coefficients ¢! , ¢

on have already been calculated in Sec. 2,

3n

whereas c on? cin are determined here, The solution is

c = {c3n[nqx"x'1' «AED)TT)/RY -+ cén[(x“)x*' - n.ql{'+K;]/R_} /A
ct = { cén[(1+)l{+ - n.qK""II]/R- + o3n[n:qI'-I; - (I—)I-J/R+} Y7AN
= (e} { [(I+)K+ - m,,lc-+ i [ K"'x" - (x‘)x‘] +
[(K )K* - ngxt* ][(I K™ - npK*7T ”
oy LI = IR/
o3 = (e {[an'-I— =y} [an'+K; o (K")I*] &
+ [T - X "][nqx ot ot )1]}
e [(IDK - (OHII]/RT/AY




where A’ = [(I'F)K+ - an'+I;] [m}I'-K- - (K_)I-] +
+ [nr}K'+K; - ("' [an'-I; = [T )
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List of symbols used:

® | E> o

-+ M o M d x o© =

beta

partial derivative
capital delta

del (Y grads Y- divs ¥x
epsilon

eta

theta

iota bar

ri

sum (capital sigma)
phi

capital phi

pei

curl)

10



N
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