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Abstract .

The stability of axially symmetric equilibria with respect to rigid
displacements is studied by means of the energy principle. For
horizontal displacements and flipping the vacuum term is neglected,
thus yielding sufficient stability criteria. For vertical displacements
the vacuum term is kept, thus yielding a necessary and sufficient
condition. The resulting stability criteria are applied to simple

algebraic equilibria and numerical results are presented.

"This work was performed under the terms of the agreement on association

between the Max-Planck-Institut fiir Plasmaphysik and EURATOM".




General considerations and stability criteria,

Because of the negative effect of impurities in recent tokamak research
there is a trend towards confinement without the use of material
limiters. With regard to MHD stability, in purely magnetically confined
plasmas perturbations become possible which move the whole plasma
column quasi-rigidly towards the wall. In this paper, the energy
principle [ 1] is used to study the stability of axisymmetric configurations
with respect to rigid perturbatiqns. Consistently with the use of the
energy-principle it is assumed that any conductors in the vacuum region
surrounding the plasma are either superconducting or completely
permeable (i.e. non-existent) for the perturbational fields.

Real physical perturbations must satisfy two boundary conditions at the

plasma-vacuum interface, namely

—ypdiv§ + bfadfx8)+ FVE] = (1)
150‘ E};BU' +if Ver-]
le(ré i '!_L'f B__v— (2)

For rigid perturbations, f is a given function and thus the

perturbational vacuum field J-g_-u- = CLH‘{ J.A is completely
determined by (2). Condition (1) cannot be additionally fulfilled
and thus rigid perturbations are no physically possible motions but may

only be used as test functions. However, thls implies using a form of

the energy pr1nc1p1e where J\h/ splits into plasma and vacuum




contributions [ 1. According to [ 2] the form
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may be taken. (The surface integral in the expression for é.tJ%L has
been omitted by mistake in [:2:]). In (3) it is assumed that in

equilibrium there are no surface currents. As a consequence, we have

B =By ®)

——

at the plasmaboundary. Furthermore, the equilibrium condition

t

pr = Vpez) = 37E 2

has been used. For the most general rigid perturbation
f = forwxx  foccont w=conf ©

we have

and
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Thus, after partial integration and with use of (4) it is seen that

2
(; \ﬂ/ reduces to

(7)
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Using Cartesian coordinates x, ¥ ,z and cylindrical coordinates

R, ©, z , the most general non-trivial rigid perturbation of axially

symmetric configurations may be written

i
1
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where €x je_,_va, - -+ are unit vectors parallel to the X, 131.—-- -axis

and X 1is the position vector.

In axisymmetric equilibrium B may be represented by a flux functicn

'Ll.)(R|'z=)
B = V6 xVy +AG) V6 ©

At the plasma-vacuum interface we have 1,(!‘—' const and therefore with
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Combining equations (8) and (10) we obtain after little calculation

an
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In the following, we shall assume that the configurations under
consideration are symmetric with respect to the % = (0 plane,
i.e.
_ e (12)
W(R'f Z) - ?(R'lz')
Then, the integral with chz in front has an antisymmetric integrand Q)

and vanishes,.

We shall now turn to the vacuum contribution in equ. (7).

JA_ ' must satisfy A Jﬂ = ( in the vacuum region and equation (2) at

the boundaries. Since the right-hand side of (2) is a linear function
o }l T f and W , for CSBU‘ =O(M(JAthe following decompo-

sition is possible:
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If lrf' "7’ - are now Fourier-analyzed with respect to 69 s it
follows from (2) and (8) that _‘G}’ 5-.1 and 47, are linear functions of
M O andecor O » Whereas '_()__'f is independent of © . Thus using the
orthogonality relations of angular functions, we have

gtv\/v = ’%Jt\/\/‘; 5 %f(f*_% f—)Y_é',? +w,§-‘0)"~0[7
Vae

(14)
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It is seen from (7), (11) and (14) that the vertical displacement
separates completely from the other rigid perturbations. These, in

turn, separate from each other, which, however, will not be proven

here since we shall not need this fact below.

i
Collecting the terms with j in (11) and (14) yields a necessary and

sufficient stability condition for vertical displacements

4_6_' €y d,f 7 0 (15)
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For the remaining perturbations we shall be satisfied with a sufficient
stability condition by omitting the positive vacuum contribution. From

(11) we obtain the sufficient criteria




95 R}a > 0 (16)
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If (16) or (17) is fulfilled, stability with respect to horizontal
displacements or flipping is achieved. If (15) - (17) are satisfied,

stability will respect to any arbitrary rigid perturbation is

o)

achieved. In the following, we shall investigate the criteria (15) - (17)

for a class a very simple analytic axisymmetric equilibria.

Equilibrium

The flux function l'u defined in (9) obeys the equation

RS T - -Rpp-ady

For /lo'-_-_ '1’.2‘ = consf and Ah'a 3, = constsolovev' has given the following 0

exact solution [3]:
s T R

Besides W" and ?, 'chontains the integration constants C and ?20
, z - f i
as parameters. ntegration o e relation =
p Integrat f the relation A/'=9, yields an

integration constant A o
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A last parameter of equilibrium is given by the value ’Q)*of the flux
function at the plasma-vacuum boundary. Consistently with our
assumption that in equilibrium no surface currents are present, we

must have 10(y¥]= 0 and, therefore,

PU) = poly-pe) 21

In the following, we shall pass over to other parameters and to
dimensionless quantities in a similar manner to Lortz and Niihrenberg
[4] » thus reducing the number of free parameters. If { 1is the

value of the rotational transform on the magnetic axis at R = R

0,

z =0, if e 1is the ratio %- of the vertical axis b and the
horizontal axis a of the elliptical flux surfaces in the

neighbourhood of the magnetic axis and if Bp is defined by

V(@)

P - fow § PLR) ok
S V) §
¥ \(6379 x Vi) o T

then from (19) ~ (20) the following relationsare obtained

(22)
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._J(/P»f-c) ?: ! (23)
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Ro 4.

L o0l (24)
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Instead of | we shall also use the safety factor
(25)
q = q / L
L)
Finally, with the definition
A -  Rofaty
for the aspect ratio A, where 2,{1(’4;") is the diameter of the flux
surface q;:'l{,“ at % = 0 , we obtain
T
A ¢ (A*-1)
¥ _ R e 26
We shall now change our notation for all dimensioned quantities thus, 0

Al ~
that &= R My e 4 '?l etc., in order to introduce dimensionless

quantities R.,'l.’/ etc. by

~

R - R|R, z = 3/R. 27)



With this normalization and using equations (22) - (24), we obtain

from (19) and (20) the relations

T N

Y = %['Q+(4—@)R‘]z"+%(ﬁa—4) (28)

- 6}1‘ (29)
A' V/{—E‘-Ll{/

where
& = (1+e)(1-fip) G0

Acoording to (26), the normalized boundary value of ‘l,u is given by

A-4
¥ UL M (31)
S At

Since ﬁr must be non—negative, it follows from (30) that

G e 1eer (32)

Furthermore, since A should be real, we obtain the condition

9 7 ﬁ'JQCAL%) VR

from (25), (29) and (31).
The flux function given by (28) has stagnation points at 21‘0' 2=0

and at 11:“@[(&"‘)’ z =1 €/[ﬁ((§-1)] . Since these could

at best lie on the plasma boundary, the following limitations for the

aspect ratio are obtained:
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A > Vzv(&—" )l'& -1- V(@t-—l@)']' for G <Q°" 3%)
/q 7 f?i ‘ for () f:(ﬁ < 1
A ie-nfe-1 l@-2q)] e & 52

Roughly speaking, Q is a shape parameter which characterises the
triangular deformation of the magnetic flux surfaces. If @ has a
value between 0.2 and 0.5, the cross-sections look rather ellipse-like,

depending somewhat on A. More precisely, if

G = 2A* -3 (35)
$A -3

the top point of the plasma boundary lies vertically above the middle
between the outermost and innermost points. If @ is larger or
smaller, a triangular deformation appears. Plots of different plasma
shapes are shown in Fig. 1 (see also ref. E3:]). For later purposes,
we finally give an expression for the volume enclosed by the flux
surface ‘l{;“‘: |
1f Q% 1 , we have

Viy*) - ‘*—{ E(::&)de' [ E&") -y K(4")] (36)

where

¢ = V1 - #(-a@as0/A

LY = \[(4”2()/(41»()

and K (A£) and E (AR ) are the complete elliptic integrals of the
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first and second kinds.

%rQ=7,the
Viy*) = 2m'e (A™-1)/A* e

By analytic continuation it is always possible, in principle, to find a
vacuum field which matches the plasma boundary given by (28) and (31).
However, we shall not need any detailed information about the equilibrium
vacuum field since for flipping and horizontal displacements the vacuum
term is neglected and for vertical displacements we shall only consider
the case that the vacuum field coils or other external conductors are

completely permeable to the perturbational field.

Horizontal displacement and flipping.

We shall first evaluate the sufficient criteria (16) and (17). From

(5) and (9) we obtain (omitting the ~s for dimensioned quantities)

T

4 _pr A 8
,R:. ('l)(’z 'f{’%ﬁ I_PQ% 7-}42 y’a%) - _ﬁ-S (38)

/‘?;':3_ (‘1{':,. Yrr + %QM + Yo 1{’2&) %

*

PR

i

*
P
Inserting this in (16) and (17) and introducing dimensionless

quantities with (22) - (26) and (28) - (30), we obtain for horizontal

displacements the criterion

o w(gr-Qyt) A 70 &)
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where

b G e Y

B = = § (L 37) (42)
Analogously, from (17) for flipping the criterion
Q. x (43)
B4 ¥ l+ ( ? E— 1,)*7 ) Bl 7 0

is obtained with

(Ry. —2yr) '
B, = \95 K{U?,;Pg [R("‘Ptl{luf"qf—%f—w‘ll*ﬁ‘{“ _(44)

(Yo Yap - % = y’p_ﬂba&)]oﬂ(

and

8, = §(’2%“2%22 AL 45)
Ryl

From (40) and (43) it is possible to derive critical values of 7

such that both criteria are fulfilled if ? 7 ?ol" (The existence of

such 7“ is to be expected from the fact that horizontal displacements

and flipping are special kink modes). For this purpose we first show

that both Ay and Bz are positive. With R = V‘;’//[V?z{ and

using Gauss's theorem for two dimensions we have

R R S AT L L
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and

|

Ba

1"
— ‘o
£ e
—
&
'
O

From this and from the fact that according to (31) and (33) the

bracket near A is positive it follows that (37) is satisfied

if either A,. 7 0 orif

# 2 B
lal 7\ ¢ o
When A,

(46) coming from stability matches: continuously the condition (33)

coming from equilibrium.

Analogously, (40) is satisfied if either B,, 7 0 or if

77 \/ 53_ ¥ - .li:_ =
e ¥ 4R, ?{'
with analogous continuation of (47) for B, changing sign

It 1s rather simple to calculate the limiting values of 74\' and ?{:
for large aspect ratio A by expanding 'lfi in the neighbourhood of the
magnetic axis.

To lowest order we obtain from (28) with X =R - |

'l{:z%% + ex”

At the plasma boundary ‘?, = Y" we have

(46)

goes from negative to positive values, the bounding condition

(47)
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0

{1

dy = Yu dl + Y, d2

and therefore

@ | % d ]

Using the symmetry of '(f) with respect to the 2=0 plane, we obtain

from (41) to lowest order
oy /e
A, = - 8et %‘L@CX == Fr i (48)
~ 1y¥e

Analogously, from (42), (44) and (45) the following results are obtained:

A, =2ryr Ba=-Y%ry~ ’ B = mwyr (49)

Thus, it follows from (31) and (46) - (49)

lim ?L = 4/[1*

A— o
(50)

]
AN

lim ?'F

A—>oe

the limiting values being independent of Q and e.

For finite values of A the limits ?&_ and ?'F also depend on
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e and Q besides on A . However, using (28) and (31) it follows
from (41) and (42) that Al and A2 are linear functions of e so
that according to (46) CTA' becomes independent of e . In Fig. 2
and Fig. 3 numerical results are presented for qlu and (?F .

In Fig. 3 the different abscissa intervals of the curves

are due to the conditions (34) connected with the appearence of

separatrices.

It is seen that both ?1.and ?F become smaller with decreasing A,

i.e. toroidal effects act as stabilizing factors. For almost all
parameter values we have ?A,‘: (7‘( . With respect to flipping,
cross—sections with vertically elongated shape ( € > 4 ) are
more favorable than those with horizontally elongated shape (e < 1);
triangular deformation is more stabilizing for QA <« o than
for B2 b A :

Furthermore, in the whole parameter regime ?‘u and qF are
below the wvalue ? = 4 (Kruskal - Shafranow limit), which must at least
be kept in order to obtain stability with respect to other kink modes,
and thus no additional precautions need be undertaken. For the same
reason if would not pay off to take into account the neglected vacuum

term in order to obtain more favorable stability boundaries.

' : : +

Vertical displacement

For the moment all quantities used this section are to be under-
stood in dimensioned quantities until defined otherwise.

¥
Since for vertical displacements the plasma contribution to J-LV/

+)

Vertical displacements have simultaneously been investigated at
Institut fiir Plasmaphysik in Garching by Lackner (paper to be
published in Nuclear Fusion) using a somewhat different method and

applying it to numerical equilibria,
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given in (15) is generally negative ( ’LI,,__.P"'E < ), the vacuum
contribution cannot be neglected as for the other rigid displacements.
According to (39) the plasma contribution and, as we shall see
below, also the vacuum contribution do not depend on the main field
represented byA.Thus, instability with respect to vertical
displacements may not be stabilized by an increase of the main field
and must therefore be considered as particularly dangerous. In

order to calculate the vacuum contribution in (15), the tangential
components of the perturbational vacuum field are needed at the

plasma boundary.g. These are to be calculated from the equation
Ada = o

and from the boundary condition (2), which is essentially
equivalent to prescribingthe normal components of g_l_’_)n—.The problem
thus posed is appreciably facilitated by the fact that gBumust be
axisymmetric for vertical displacements and is thus purely poloidal
because of the boundary conditions at infinity ( 85_?0). We may

therefore make the ansatz

- 3 ' 51
8, = [ [a(eoxm)+ wu | o
where n = V?f»/l Vl{«{ and 1{& is the flux function of the

equilibrium-vacuum field (M will later be needed only at the plasma

boundary where it is defined by (28) ).
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If({_A_ is a solution of the boundary value problem posed above,

#
then according to KressLS‘lggmat the plasma boundary obeys the

integral equation
wt = - A4, n x'[lyg*x { J*VFi; X [?}'y.eg*{J OL:;’ I
Jv% Ded el } ]

w* = (nxdB)xm

(52)

where

+ = {(x-%)"
- -=f &

Daw 1477"%! e (y*1%1)

L

Additional terms due to induced currents would have to be added in
(52) if the vacuum field coils or other external conductors were not _

completely permeable to C{_B__u;

It is shown in ES] that the integral equation (52) for &)* has a

. . . . ... . . *
unique solution provided a side condition is imposed on () . For

this we may take the condition that the flux of g__g_rpenetrating

the circular area So around R = 0, which is cut out of theZ= 0

plane by the plasma boundary should be zero:

\f
o

(53)

[ £3.-48,
Se
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Since for vertical displacements f = Jei we have

&
q
%
x
It
|
I'--n

Yy, =-S5 (V6xTy): ¥V
B Vg, NW(VOX‘ v): Ve,

|
<
-

it follows from (52) that also JB_U" does not depend on_/\, .

; A 5 :
Using (51)’ v-': = -()_(--\_{')/1}’ d,S = Q,A,G{}Mand multiplying
(52) by e¢ X n , we obtain after some rearrangement an integral

equation for 13,
13 - %JK(C,&'}&'O&J+51FIL(L,C')5'0(€’ (54)

ZT(“

Kie ') "f e {L Q-Wa +[P.yza+(2 2)’9%](,07(9 9)],,(9 (55)
mr

L) = ;,V [Rys - (2-2)p ~Rye con (6- 6)] 46’ o

¢ = llel ['4/&1{*%1 .q’ll'q’ti:] Gl

Since the integrals in (54) are extended over the plasma boundary

'q,([zl 3_) = ’q,‘\" , any point Q, ¢t on the boundary corresponds to a
: . ) ” . . /

certain integration interval L . The functions K ( @,IE ) and

{ ; i
L(é, & ) are to. be understood in this sense. Both may be ex-—
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pressed in terms of the complete elliptic integrals of the first and

second kinds

%2 Tt
ECE)r f V4 -Lté"%l(f ) (k) - ”4 —Alawicfﬁ- .
With
r 4R
& (R+R')% (e-2')* (58)
and
T b %: VRJ(R.I (59)
we have
T~ = Tovlf‘"'butu’)t?)‘z’ ’ (f = Q..é‘! (60)
With the relations
Lody = E(4 |
Jf re oY 1o (1-4%)
and
(i
S = i (2- &Y 2 (1-4 ) K(k ‘
Df -rl OI.(f ’f’oth,L(/’“&L) l(l ‘k' )E(&) J’( )L(( )]
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we obtain from (55) and (56)

N o yp' 9! 1 :
A ey fV’rf-n!(A—Jet)[ R e Hk)*l’tﬂ‘f”(ﬂ)‘v‘f}

(61)
 [a-e) k) -20-4)UCE)]
) U o _
L(et) = Tyl (1) {[R% (2% )ye | E(&)
(62)
R've /9 4t = _t {
Q”L [(-#EG)-2(-6)k8)] |

Our criterion (15) may now also be expressed in terms of "3 .
With € o(.g' = ?,h: Q,o(_@ o(.&/lv(” and using the 6 - independence of

6,‘( = ﬂ} (CQ‘K“_}) +wn ( (13) and (31) ), we obtain by means of
" (9) and (39)

teuu(‘l‘ ;§{ f?ill‘fft(l ["lf’l—lfﬂ.ﬂ. + q}:—g& + If‘ﬁ.q’ﬂ.?:] 413-3 ‘q’%olz 7 0O (63)

In this section so far dimensioned quantities have been used. If with (27)

)
and )

= 3
s ~
T = VR B/
dimensionless quantities are again introduced,the relations (54) - (63) hold

without changes also in dimensionless quantities.

It is now possible to replace the side condition (53) which must be imposed
on (54) by a much simpler condition. For this purpose we split ’g, into a
contribution which is symmetric and into one which antisymmetric in its

dependence of % :

"t = %s + Y~

(64)
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{

It follows from (57) - (59) and (61) - (62) that g;l/\(?,,@')'fg; A
is symmetric and that Sﬁ K(a @') 46"‘" a{f‘ and
(P I_(eté') d' L : are antisymmetric.Therefore, (54)splits

into the two equations
_ A1 el (65)
LR 5 L

A f f ! _/_f__ 1, /
Yo = A BREC) g dl! + LG L) )

Since %m(k,%m); U, only the symmetric part of 'g enters the side
condition (53). On the other hand, since 'l]b% is antisymmetric

according to (28), it is only the antisymmetric part ofﬂa which enters our
criterion (63). The ambiguity of the solutions of the inhomogeneous
integral equation (66) for ’Ha_ is removed if the antisymmetry of the

solution is required as a side condition. For numerical calculations

this has been done in the form
§ 43“' olﬂ_ 7 = 0 (67)

which replaces the former side condition (53).

According to (58) we have k =1 for R = R and 2=2' and hence
] !
K (6, 4 ) as well as L(f, ¢ ) become singular for {=¢".

For numerical calculations it is of advantage to remove this

singularity following Martensen [6] and [7] . It is shown there that

1
S

= e =1 Py
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With this (66) may be transformed into
- !
QK yo- Kyl [ =

f;gﬁ [Lee,t)s' - L(ete)d] AL

(68)

; , ! : : ;
Obviously at 4(, = the singular contributions cancel.

The integral equation (68) has been solved numerically together with

the side condition (67) by discretisation and simply taking

equidistant points on the plasma boundary. The resulting ’ya, was

inserted in (63). Numerical results obtained for the equilibria considered \

in Section 3 are presented in Figs. 4-6.

In Fig. 4 lﬁm,f{-/ViSshown as a function of e for several A

andc for configurations with almost elliptical g¢ross—section ( Q = 0,25 ,

see Fig. 1). The volume V‘ enclosed by the plasma boundary has been
calculated from (36) or (37). If e becomes larger than a certain eg,

(e.g. @or =~ 1.2 for A = 3. This value is in quite good agreement with
values _obtai.ned by Okabayashi et al [8] by a rather different approach), the
plasma becomes unstable (fued—/-vf. OJ). The smaller A, the larger is

the stable e intervalj toroidal effects again acting as stabilizing )
factors. For A=» go a comparison with straight cylindrical plasmas is
possible: circular cross-sections ( € = 1) are marginal, as is

expected for reasons of symmetry, while standing ellipses (€ >1 ) are

unstable in agreement with the results of Rutherford [8] .

In Fig. 5 the critical values of e are shown as functions of the
shape parameter Q for different A. (Again the different Q intervals of the

curves are due to the conditions (34) ). Roughly speaking, triangular
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deformation is always stabilizing, and, if A 1is small enough,
by it a considerable vertical elongation of the equilibrium—plasma
shape becomes possible. This may be seen in Fig. 6 which shows

three different possible plasma shapes corresponding to the points

1, 2 and 3 in Fig. 5.

In case the stability condition € £ €ecr is violated, the growth-
rate of the expected instability becomes of interest. It may be
estimated in the following way. (In the following ~s will be used

to indicate dimensioned quantities).

As was mentioned in section 1, rigid displacements are not physical

but may only be used as test functions. However, according to El:]

there always exist physical perturbations differing only slightly
}SL

from these test functions and yielding the same value of- \r\/

Suppose it is possible to decompose into eigenmodes one of the

physical perturbations corresponding to vertical displacements:

Fa'd g (")
fjﬁ_z &~ f = 2 %«
= k <
L ~ ~
where ?; ;: }k g L_.( l‘()
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%
Fa
is an average of the (Jy . Since even in unstable

~1 ~
situations some of the tJy may be positive, tUmay only be considered as

an optimistic estimate for the growth mtes observed.

From (11), (14), (21), (23), (24), (26), (27), (51) and (63) we obtain

~ ~ ~
after eliminating T),., g, and C

e x AY 1’0\"’ . Cvect
+] 78] = ™ ey A
L fp (Mee) (A1) RV

Here, Ar)o is the pressure on the magnetic axis.

O~ ~
Assuming quasineutrality and T,=~T, , we finally obtain with £ = ‘V;t"n y

(LAY
~ o~
=

and 15'., = L AR T, ;

~ b T A" 'b'-r‘; ' evuf“
w b — (69)

Bo(Arer) (A —q) m: Ro v

For a typical situation the growth rate has been calculated (see. Fig.4,

U

point marked by a small circle): for A= 3, e =2, Q = 0.25 (/51,= 0.95), )

~ - ~
kT0 = lkeV and Ro = 1,5+ 102 cm we obtain the growth rate [ﬁfz 3640 %&t

Conclusions
Provided the condition (1 Z 1 1is observed(which is necessary

in any case because of other instabilities), then with regard to

rigid displacements precautions must be taken only against the

A ’I
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vertical displacement instability. This is done by keeping the
vertical elongation of the equilibrium plasma shape small enough.
The optimum values for the elongation e 1lie between 1 and 2
for realiétic configurations. Small aspect ratio and strong
triangular deformation are both favourable. However, the results
obtained in this paper may possibly be deteriorated-by other
instabilities. For example,for sheared vertical displacements

f = S(K) €2 as for rigid vgrtical displacements JLI\/
i; independent of the main field.

Since the latter are special cases of the first, more stringent
conditions for the stabilization of these are to be expected.

Calculations for this are in progress.

The author is indebted to E. Martensen for bringing his attention to

the paper of Kress ES]
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qp and g, as functions of Q for A = 3.
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