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Abstract

Counting through correspondence, it is shown that the to-
tal number N, of wave pairs for a given frequency w in a non-
relativistic, magnetized, homogeneous Vlasov plasma is countably
infinite and is given by N = 3n+ 2, where n is the number of
cyclotron harmonics. For reason of simplicity, the counting is
performed for waves propagating perpendicular to the static ma-
gnetic field. The branches of the extraordinary and the ordinary
modes lying immediately below the cyclotron harmonic frequencies
found by Dnestrovskij and Kostomarov are identified respectively
as "magnetostatic" and "zero field" waves in the limit of large

propagation constant.



1. Introduction

The hot plasma dispersion relation can be written as

as2 + bs + ¢ = o0 (1)

where s = n2 = cki/wzis the square of the refractive index in

X

the direction perpendicular to the magnetic field. The coefficients
a, b, and ¢ are functions of plasma parameters, the longitudinal
refractive index n,, and involve six tensor components, each of
which can be expressed as a convergent infinite series expansion

in ascending powers of s. To each root s of (1) belongs a pair

of oppositely directed waves with refractive indices tnx. The to-

tal number of roots is evidently infinite (see Appendix 2).

In a set of two papers, remarkable both in breadth and originality,
Dnestrovskij and Kostomarov (1961, 1962) profess to identify all
the real roots of the dispersion relation for the waves propaga-
ting perpendicular to the static magnetic field in a non-rela-
tivistic, homogeneous Vlasov plaéma. They conclude that for a
given w, since there are only a finite number of real roots, the
number of complex (including pure imaginary) roots is infinitely
great. The other significant contribution of these papers in-
volves the discovery of propagating waves just below the cyclotron-
harmonic frequencies both for the ordinary and the extraordinary
modes. These analytical findings are backed up by accurately com-
puted dispersion curves without invoking the electrostatic

approximation.



In this paper, it will be shown that the set of real solutions
of (1) found by Dnestrovskij and Kostomarov may constitu-
te the totality of waves in a Vlasov plasma. The counting
operation is simpler if performed on waves propagating perpen-
dicular to the static magnetic field, for in this case the disper-

sion relation can be factored into the ordinary and the extra-

ordinary modes.

In the following analysis, the symmetric formulation of the
Maxwell’s equations in terms of the dielectric and diamagnetic
tensors developed by Derfler and Omura (1967), will be employed.
This procedure will lead us to the straightforward recognition
of the new modes discovered by Dnestrovskij and Kostomarov

as being either of a "magnetostatic" or of a "zero field" cha-

racter in the limit n_— o

2. The dispersion relation

Assuming an exp i (kxx + kzz-mt) dependence of the field
quantities, the Maxwell’s equations using the symmetric formu-

lation in-terms-of the dielectric and diamagnetic tensors become
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For an isotropic Maxwellian particle velocity distribution,
the dielectric and diamagnetic tensor components are given by

(Omura 1967)
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Il = mp/m, Q = mc/m, V = v/c, v is the particle thermal ve-
licity, I is the identity tensor, j denotes the particle type
‘(unless an ambignity exists, this subscript will be dropped),
s. = L1 is the sign of the charge carried by the particle, In(k)

J
is the modified Bessel function in the notation of Watson (1922)

and Zn = Z(-ﬁh) is the plasma dispersion function defined as

s
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This tensor formulation has been previously used (Puri et al.
1973) for obtaining the generalized cyclotron-harmonic modes and
was shown to be essentially identical to the more common Stepanov

(1958) tensor.

Substituting (6) and (7) in (2) - (3) and upon subsequent

elimination of E and H yields the dispersion relation (1), where

a = Exx/b"xx ’ (20)
b = n” { «
- z 'XX/ ZZ * zz / Xx.) -
(21)
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For propagation perpendicular to the static magnetic field,

n, = o,and (1) can be cast into a product of two symmetric factors

s e
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giving rise to the two uacoupled branches
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and
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commonly referred to as the ordinary and the extraordinary branches,
respectively. Further simplification of (24) - (25) is effected

by replacingJ/& by X ., which then become

s (1= %) = e , (26)

and

S {1"' ’XZZ) exx = € + & . (27)




3. The asymptotic solutions (s — = )

In the limit s - == , the extraordinary mode (27) possesses
the two solutions

= = 0O 3 (28)

and

1-X = o0 . (29)

The first of these is the familiar electrostatic mode studied in
detail by Gross (1951). The otherwise excellent treatment of
Gross contained two erroreous conclusions, one regarding the
damping of the wave when the wavelength approaches the Debye
shielding distance and the other with respect to the occurance
of forbidden propagation gaps just below the cyclotron-harmonic
frequencies. The first of these errors was rectified in the mathe-
matically impeccable analysis of Bernstein (1958). The second
error was corrected by Dnestrovskij and Kostomarov (1961, 1962)
who found propagating waves immediately below the cyclotron-har-
monic frequencies. The remainder of this section is addressed to

the discussion of these propagating modes.

One such mode is given by the asymptotic solution (29). In the
limit s —» = , this is a magnetostatic mode. The reason that
Dnestrovskij and Kostomarov failed to recognize the magnetostatic
nature of this mode is directly attributable to the fact that
they worked with the Stepanov (1958) tensor formulation in which

the diamagnetic contribution remains concealed. Since this wave
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exists in the extraordinary branch, we shall henceforth refer

to it as the "extraordinary magnetostatic mode".

A similar asymptotic solution occurs in the ordinary branch

(26),

e
1 = K i 2Z = o, (30)

It will be presently seen that unlike the extraordinary branch,
thr RHS of (26) does not tend to a finite limit as s —»20 and must
be included in the asymptotic solution. Since no component of

€ or zi becomes zero in this case, all the field components must

vanish, We shall refer to this wave as the "ordinary zero field

mode" .

In order to obtain the asymptotic soluti ns in an explicit

form, we rewirte the tensor components (8) - (14) for the case
n_ = o as
Z
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where r‘n =1 + n“Q“ and A, =1 - n"Q". Substituting (31) - (36)
in the asymptotic solutions (28) - (30) gives, respectively
3
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where $Q = 1 - n0. Thus the extraordinary electrostatic (37)

and magnetostatic (38) modes have propagating roots just above

and below the cyclotron harmonics, respectively. The ordinary
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zero-field mode (39) too has propagating solutions just below the
cyclotron harmonics. By direct substitution of (37) and (38), in
turn, in (27) it may be readily confirmed that the right-hand-si-
de of (27) indeed remains finite as mentioned earlier in this
section, thereby providing the aposteriori justification for ob-

taining the asymptotic solutions (28) and (29).

4. Real roots of the dispersion relation

Adopting the technique developed by Dnestrovskij and Kostomarov
(1961) we proceed to identify the real roots of (1) in a three

component plasma.

a) Ordinary mode

Writing (26) as

L (),

-A o0
s, JL, ., V)=~ - (A
D (s, ,V)=1-s-ZTle [, )+2'§ IR (40)

(] N

n
one may readily verify that

bR

D(O,TL,'Q—:V-)= 1—-?]_[ ) (41)
4

Llim D (s, ]'T_J,-Q-,V') < 0o, (42)

S — =0

Vi plg I8, V) >0,
S—> -0 (43)



From (41) - (43) we find at least one positive real root for Il<l
and a negative real root for IL » 1. This, of course, is the
ordinary cold-plasma mode. Furthermore (41) - (43) admit of an
additional even number of positive (or negative) roots. Existence
of the ordinary magnetostatic mode (39) then requires the presence
of at least two positive roots lying immediately below the
harmoniecs. The other positive root approaches a cut-off solution
for &0 —» 0. The two roots remain propagating in a narrow re-
gion near the harmonics, merge together (Fig.l) and thereafter
must split into a complex conjugate pair. Further discussion re-
garding this point will be postponed to § 6 with the observation
that the warm-plasma effects contribute at least two real roots

at each of the cyclotron-harmonic frequencies.

b) Extraordinary mode

Writing (27) as

D (s, T, 0,V) = [st-%,) e, - cesreln] 6., A, »  (48)

[

one obtains for the cold-plasma limit V—o,

s £ < z * (45)
D (s, I, n,0) = s (1- JLLH)(1- Q) - CL-J1C1)(1— L )2

where 0 Quh' ch, and ch are the two hybrid and cut-off fre-

1h*
quencies (see Puri et al., 1973), respectively. From (45)
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Thus, there is always one real root of the cold-plasma dispersion

relation with three well known propagating branches (Fig.2).

In-

clusion of warm-plasma effects does not materially alter the 1li-

miting values of D for s — 0 Or s —» =

. Hence an additional even

set of positive or negative roots are permissible as in the case
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of the ordinary mode. The presence of the electrostatic mode
(37) and the extraordinary magnetostatic mode (38) would demand
the existence of at least two positive roots near the cyclotron-
harmonic frequencies (Fig.3). It must be borne in mind

that the roots lying above and below the harmonics posses
different limits for |¢ 0|l — o, would not continue analytically
across the harmonics and, therefore, must be regarded as in-

dependent modes.

By all appearances,the warm-plasma effects contribute four
real roots near each of the harmonics for the extraordinary mode
and two for the ordinary mode. There is, in addition, one cold-
plasma mode each for the ordinary and the extraordinary branch,
respectively. Whether, there exist more such real roots and the
precise relationship between the real roots identified here with
the infinitely many complex roots will be discussed in the

following sections.

5. Counting by correspondence

Expanding (31) - (36) in powers of ., one obtains
R
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These series expansions are exact in the context of a Vlasov
plasma and converge for all ). Observe that each suceeding power
of % in the expansion involves precisely one more harmonic of

the cyclotron frequency in the summations (55) - (59).

In the cold-plasma limit » —> o, the two pairs of waves, one
ordinary and the other extraordinary are recovered on substitu-

ting (49) - (59) in (26) and (27), respectively.

Inclusion of each additional term in the series expansions of

€ and X increases the polynomial order of the ordinary branch

(26) by one and of the extraordinary branch (27) by two while
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involving one more harmonic of the cyclotron frequencies of each
of the particle species. Thus the totality of wave pairs in a

Vlasov plasma is given by

N = 3n+ 2, (60)

where n is the number of cyclotron harmonics. In deriving (60) it
has been tacitly assumed that the number of roots of the poly-

nomial expansions is given by the degree of the polynomial.

The same result (60) is obtained if (26) and (27) are expressed

in the form

s(e” -~ e~ Xxx) = e ezz' (6l)
and
s(e." - e}"X ) e" (= = (el'e -+ ie)'e- ) (e"e - ie)'e ),
zz XX XX Xy XX Xy
(62)

Note that, although, the reduction to the form (61) and (62) is
possible only for a plasma with a single hot specie, the di-
gression serves to show that the errant factor el, capable of
distorting the order of the polynomial without any net addition
to its roots, plays no significant role in the mechanics of

"correspondence counting".
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6. Discussion

In section 4 it was shown that the hot-plasma effects give
rise to six real roots near each of the harmonic frequencies.
Of these six roots, the three cut-off solutions are joined to-
gether from one harmonic to the other (see Figs. 1 and 2,
Dnestrovskij and Kostomarov, 1961, 1962) while the three asympto-
tic solutions apparently originate at the harmonics themselves.
Such an assertion, though difficult to prove rigorously, acquires
a degree of plausibility from the analysis of section 5 where
it was indeed shown that three new roots of the dispersion re-
lation correspond to each of the cyclotron harmonic frequencies.
Since (60) is independent of the particle species, it would be
further necessary to assume that the asymptotic solutions of all
the species are as well joined at the corresponding harmonics!
We remind that the result (60) is valid independently of the

accuracy of the conjectures of this paragraph.

The question immediately arises regarding the nature of the
infinity of complex solutions. The paradox may be averted by
asserting that the complex solutions, when followed on the fre-
quency axis w, will ultimately merge with one of the real so-
lutions. Such behaviour is not altogether strange for it is well
known that the electrostatic cyclotron-harmonic modes split into
complex conjugate pairs above the propagation band. Singularities
encountered while following the roots across the harmonics can be
avoided through analytic continuation e.g. by the addition of an

imaginary part to v during the crossing.
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With some additional effort, it is possible to show that the
result (6o0) is valid even for the case nz;£ o. This can be
readily appreciated by noting in (8) - (14) that the series ex-
pansions of =3 and :_?5__ can be carried out in a manner identical
to (49) - (59), with the observation that Zn which is a function
of (1-nQ) requires no further unfolding for the arguments reguired

here.

The ability to identify the roots may find applications be-
yond the pleasures of academic curiousity. In certain limiting
conditions when the characteristic gradient length in an inhomo-
geneous plasma is well in excess of the cyclotron radii, it is
possible to use the local dielectric tensors for solving boundary
value problems. It then becomes imperative to decide which, if

any, of the complex roots carry a significance ?
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Appendix A

The dispersion relation (40) for the ordinary branch near the

mth cyclotron harmonic of the kth specie becomes

-Ak (A1)

T e * Ip(A)

1= MmO

-'A o ,
=1- s -z'e [IO(M*‘?—E Tn(X) :( ,
} 1
k 2 'Ah
where the prime over the summation denotes the exclusion of the

term on the left.

The modified Bessel function Im(kk) has an infinite number of
complex zeros whose location is unaffected by the remaining ex-
pressions multiplying it on the LHS of (Al). By making (l—ka)
small enough it is possible to make the LHS dominate the RHS in
an arbitrarily close vicinity of these zeros. Hence (Al) must

have an infinity of roots in the complex plane.

In a similar manner it can be shown that the extraordinary mode,

too, possesses an infinite number of solutions.
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Figure Captions

Fig. 1
Fig. 2
Fig. 3

Qualitative dispersion curves for the ordinary ion (a)
and electron (b) modes. The solutions lying immediately
above harmonics have been found as a result of the pre-

sent analysis which takes into account the full dielec-

tric tensor.

Cold-plasma dispersion for the extraordinary mode.

Qualitative dispersion curves for the extraordinary ion

(a) and electron (b) modes.
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