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Abstract

The solving of extensive algebraic problems with computers is difficult
owing to the large amount of storage and computing time needed. This paper
describes a method that obviates these difficulties in many cases by using
appropriate operators instead of extensive polynomials.

This calculation is prompted by the question whether a class of algebraic
equilibria in plasma physics governed by MHD theory is stable. Great

accuracy is called for in treating this problem.

We describe the calculation of a three-dimensional integral containing

Fourier, Taylor and trigonometric series.




Introduction

The ability to perform extensive algebraic calculations has been made
possible by introducing techniques for handling strings by computer. The

structure of program systems for operations on polynomials has been

discussed by, for example, Knuth [ 1: . For this purpose there are

several well-known program systems, each restricted to certain classes

of problems.

Details of the REDUCE 2 program system used by the authors to solve the
problem described in this paper are given in [:2:|, [ 3:l.In general,

no satisfactory information is available on the computing time and storage
required, these being decisive in solving such problems.

This paper represents a continuation of the MHD stability calculations

of Tasso [‘ﬁ:|, [ 5:[, for which the large amount of storage space required
made it necessary to partition the algebraic expressions. In the treatment
of the general class of equilibria mentioned in [ 5_| the partitioning

was expected to be such that the amount of storage and computing time

would have been ten times larger than in [55].

3
Here we have to calculate a three-dimensional integral éW = /fd x £( % ),
the integrand of which is a complicated function containing essentially

trigonometric functions and polynomials which can be integrated analytically.

An important feature of these problems is that the algebraic output extends

over many pages. This implies a numerical evaluation of the algebraic formulae.

For such problems the question where to set the partition between




algebraic and numerical calculations is important. For example, some
operations on polynomials should be saved in the algebraic processing
and done numerically in the output. This might help in the case where
the required numerical accuracy implies that some series have to be
truncated at a very high order. In this way the results of symbolic
manipulation are algebraic formulae together with an operation

prescription for the numerical program.

In Section 1 an introduction to the physics underlying our task is

given and the algebraic problems are formulated.

Section 2 shows a way of minimizing storage and computing time by
using appropriate operators. Though we are not presenting a general
method or even an algorithm, we hope to provide some new ideas that are

not restricted solely to our special case.

Section 3 shows the saving in storage and computing time.




1. Problem

The problem treated here arises in plasma physics. For details the

reader is referred to | 6 |, | 5 |. The plasma is described by magneto-
hydrodynamic (MHD) theory.

We are given a class of axisymmetric toroidal plasma equilibria. According
to the energy principle [ 7:i, which we write in covariant form, stabi-
lity or instability can be deduced from the sign of the minimum energy

variation &W due to perturbations around the equilibrium

1.1, oW = % jc(”.: { T QL‘Q# + jiéclaq qQ° qul

Plasma -
Velume

5
We consider an incompressible plasma, this is vV.-§=0 .

Repeated indices in the lower and upper positions are summed from

1 to 3. Bi, Ji are the contravariant components of the magnetic field

and current density in equilibrium, and Q‘l the magnetic field perturbation
caused by the displacement j i of the plasma; é;r7,E;P7denote the
covariant and contravariant components of the unit tensor, gij the

covariant components of the metric tensor and g = det (g..). Furthermore,
mp g 8

with DP = %P one has from Q = V x (3 XE)
. cp s ot
1.2. R' = e O (eqse &7 B )

Here it is only the energy variation of the plasma that is treated. It is

1 2

. - ] - . 3 ..
convenlent [ S_] to introduce curvilinear coordinates X , X, X  which take

into account axisymmetry and which contain the flux surfaces as one coordinate.




2 : : y .
Xl /R is the inverse aspect ratio and is assumed to.be less then

2 3

1/2. X7, X7 € [b,Zi] are angles the long and short ways round the torus,

respectively. The situation is outlined in Fig. 1.

Fig. 1
VX
4
) X = const .
| gt
X
: «—— R e K| 2
We decompose £ into Fourier series with respect to both angles X, X
. Xt . xs
L ¢ a el LM
SL = Z j""ﬂk(X)e e
kym
Because of axisymmetry we can treat OW for each k separately. In
addition,we multiply gi by a polynomial Kf=K.(X], X3) and consider the
. , ) kX amX')
real or imaginary part of the exponential functions e .
The description of the \jb = f‘(n~.XZxﬂ X}) is abbreviated as
follows:
1 3
1.3 E‘ = \ﬂ.x * M, X
. B
with ke IV "‘n}é[NwM-n] ! E=AT ;o Mo M, e 2 )
L
. B '
1.4 K, = de (BT en X)
€=o

with do=4 ) d,= ot
bS8, = 45 (0) X, o,
$a= fmi (X) Ko siug,

L 2 -
j, is calculated from V.- i = D;(J? j‘ ) /;r:}" = 0 on the assumption that

31 jl + 0 i.e. k # 0.

2

+ - . .
A and ZL denote the set of ordinary numbers and integers respectively.

3




1 2

fm 5 fi are chosen such as to minimize éW. We discuss for
z z

s 1

£oX):
z

1.6.1 Polynomials in X'

1:6.2 Representation by Bessel functions of integer order.

In the former case the Xl-integration is performed analytically, in the

latter case numerically.

After some operations the coordinates chosen allow analytic
integration of &W with respect to X2, X3, and with 1.6.1 even with

respect to Xl. With the definitions 1.2 to 1.6 obtain

M.

a

M
1.7 SW =% E&

m=M, ma =M,

4x-j4x‘fhdx’ T g 06+ & E g @53?1

0(__-.‘;“

The equilibrium is characterized as follows:

Bl= 0 B’= Ié%—l B'= ¢,T
1.8
1 2 2 3 ~
J=0 J = c2(1+c3/r ) J = c“r/T
2 1.2_1/2
with T =[c5 + c6(X ) ] / c; €mare constants +)
1 ~ 2
1.9 r = (R2+ 2 Xl cos XB) /2 r = (r ‘Y)‘h
1
Y = const. so that O = —%zé? < 1/2
1.10 = = = = 0 = r2
1V 81 T By T B3 T By ’ €22 :

The gij are of the form gij = gij (sinXS, cosX3, r,%); for example

+
) 1R denotes the set of real numbers.




2. Symbolic manipulation

We have to evaluate 6W from eq. 1.7. The integration with respect to X3
yields elliptic integrals due to r and T and powers of these but the
integration with respect to X] cannot be solved by symbolic manipulation.
In order to avoid these elliptic integrals, we expand r and T into Taylor
series. With the given restrictions on X]‘D/R2 and ¢ this expansion is
always possible. First we notice that we have to handle Fourier series with
a variable number of terms in the double sum with respect to m, m, in 1.7.
Secondly, the necessary Taylor expansion involves the following difficulties:
There is no general truncation criterion because of the large number and
wide range of parameters to be investigated. Owing to the high accuracy
required and with Zxéﬂk%ﬂclose to unity we have to truncate beyond the 3 e

term in some cases. This greatly exeeds the storage capacity.

Furthermore, the splitting into partial expressions should be avoided since
it does not make full use of algebraic simplification such as cancellation

and factorization.

The necessary optimization with respect to storage and computing time may



be discussed from another point of view. The evaluation of &W 1is
completely determined by the equilibrium, by the ansatz for the test
functions ~3i and by the details of solution, e.g. the Taylor expansion
of special terms or the sequence of integrations. We have therefore all
information necessary for solution. However, inserting the algebraic
values of all variables in &W yields expressions of such extent that
evaluation is practically impossible even by computer. It is concluded
that our information is represented in a disadvantageous form. We have
to look for a compact, but sufficient representation. This problem of
symbolic manipulation may be characterized as the search for the optimal
representation of a given item of information. Some polynomials like
Taylor series are completely described by an initial term together with
a recursive formula.

The desired optimization is achieved by representing every operation in

the most compact form. This is described by the following rule:

2.1 rule An operation is applied to a variable in such a way that instead
of the algebraic value of the variable that information is inserted
and manipulated which gives a result of minimal extent.

This is illustrated by the following examples.

1) 812" 0 The algebraic value is inserted because it is of minimal extent and

shortens the expressions.

g33=g33(xl, X3) The variable name is kept at the beginning.

2) We do not perform the differentiations of the polynomial Ko of

eq. 1.4 explicitly but define:

2.2- DKS: QL"f)Kil){ A ?}l{i . K
ax1 Rt, $414 ) ’axz ) -c\)‘(; - I?l S+l

il
o
o
=
]
1
ha
>
W
5

for O0€£s£2
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K ,, denotes the s th differentation of K_ with respect to the
argument U = -%— o X’
L
£
K5= g | Z(s) d( W

t=s

In eq. 2.2. Ks+ is kept as variable name. With rule 2.1 as a

1
side relation we find the following flow-chart:
1) Compute Qi and then the integrand of 1.7
2) Perform the integration with respect to X2
3) Prepare the integration with respect to X3
a) Take into account the variable range of m, m,
b) Expand, if necessary, into Taylor series
¢) Include Ko and its derivatives
4) Perform the integration with respect to X3
5)a) For numerical integration with respect to Xl rearrange
the result
b) For analytical integration with respect to x! expand T

and integrate

6) Output of symbolic manipulation.

Some details are given in Appendix A - D.

Step 1) We define the differentiation of r (or ?) and T with r,} and

2.4

2.5

T as variables:

v _ e X 2y _ 0 3_‘1‘ . e X
& - DX oX3 T
(X’ 5T BT
DT r X e =0 =0 ¢, = const.

o i ox* %’




’L -
We eliminate 31 with V-8 =0 , and with decomposition A2 we
compute the Q; from eq. 1.2 and then, with gij # 0 as variables, the

integrand of  &W.

Step 2) Since Xz occurs only in P, (eq. 1.4), we decompose 3: ; Q;

with respect to sin P, and cos Dz . The X2 - integration yields
(Al - A3):

Yy
2.6 SW = T—;Iif_f cl?f! ..Z,_G {&m (m.-nl)xl 5 B ol o T X" ]

My £y,

Step 3a) The double sum resulting from the Fourier series is taken into
account by the index z of j; and Qi in the form of two different
variables m; , m, throughout the definitions in Section 1. We expand
cos p,X3 and sin F,XB with p==.-~  and distinguish between even and

odd w with an index p (Bl - B4).

B - g

(o]

AI B]- Yg sin X3

We define: A
o

We rearrange and get:

Xo w M,-M, n(P) - 5
e te 3 ) Th = I(Z
Sw=L [ar [ T X "] o A,
247 2 - _ tpk T A T
5 5 tzo,1 H=o K=1(r) s
MM, L,

At this point it is quite sufficient to compute only the Ayby symbolic
manipulation. According to rule 2.1 we have found a representation of &W

containing an algorithm for expanding sin and cos with multiple argument.
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Step 3b) Now we give the gij # O their algebraic values according to
eq. 1.11. The At can be represented as a double sum:
At= Zz Ftéq; 3';44 with 1i,j e & and

o almost all i,j < o.

]

The necessary Taylor expansion of the 1) is abbreviated by a

summation operator P [ C1 = Ch)
2.8 A, = Poiox! M LZ {3*51
14

This is a representation with information about the function to be

expanded together with an algorithm of the expansion.

SN as remainder of the Taylor series and N = N(i,jlare determined in
such a way that |SNl< e for any given € > O. It is now possible to
manipulate the Taylor expansion symbolically in a simple manner. At
the same time the unique application of the operator P with variable
N in the numerical solution of the problem is formulated. It is thus
possible to decide when to truncate the series and hence the zero of

8W can be approximated with an arbitrary degree of accuracy.

Step 3c) With Ky defined by 2.3 only expressions of the form

2
?S = KS ‘ ‘:?3 = ke L<-‘| I (5),1‘ = \<¢ ‘Kq ]‘ (gs. = K,, k-]_
appear in Ao, A With 0<%T%5 the general representation is polynomial:
2L
2: 9 x* 3) € : i
2.9 Y. = 7LTeFJL<J3X ) , where the X are uniquely determined.
£=0 RL

Step 4) It is found that the Ftiacan be reduced for all t,i,j in the

following way:

Ft“& = z_ z Z F’t[a'g?rr (.l:DgX.‘J ‘:H'N\G-xl &?,.':,
£ v T




With w= e+ vy LR - L + LLp) regarding all powers of ¢ X

2
and 1?1= -R_ we get (DI, D2)

Xb M,~Mg R (P) s w
p)
f dx* EZ“Z > d';M z P s Lv)z > Yoo (B X)6.
©0,4 pro K= t(F) i n=p £=0
T er ki
9T W R, pt‘* A
mt‘-”c
With the operator
»IPJ
2.10 Sy lw) = LI Z PYitemx? m[ Z y (th’]f )__c,.,
u-m) r L =5 P T -

this result can be simplified to yield

4

M,-M,
2.11 A'SW = 7" j d X Z Z S}(‘(L") ptc.}'gq"t? (.'“'u"‘"tl Xq)
9 t=01 p=o

It is sufficient to determine the Ffia}“‘ by symbolic manipulation - only
for even p since those with odd R vanish according to D2 - and then

interpret the operator Sx« (w ) later on.

Step 5) We separate the function f; (X]) from the expressions. They occur

in bilinear terms with nine combinations:

9,12 CP,' = {3:0('}-1‘1:()(’) L3 =423 fi:D,]g;
M =423

F’t{,'gwr't Z ﬁtqurm] ‘#’

M=




a) The separation 2.12 shortens the expressions and is convenient

for numerical evaluation. It is advisable to rearrange the operator Sx, (w

2: 13 Sx.(u] = Z z Z 22£ "330"1' -m;l') QSCX)

‘ . T V)
2.14 The (St)':;f?'f = (R"J)‘/z RJ Zt[p) t,uw 2 tga\. ‘,x (ZIL(@X)
K= 0

can be

regarded as elements of a fifth rank tensor. Because most of its elements
are zero, we introduce a label np by I : (i,],ps0,T) > n;e w

In this manner the problem of Kernmer [ 7:| has been solved.

b) The function ﬁﬁ are now polynomials with respect to x! with given

constants. The expressions ptiiETT7 are reduced according to powers kT

of 'I‘l";"r/2 , kT € Z: ; to be expanded into Taylor series and

then according to powers of Xl. Introducing an operator é(a;) now at points
= O,Xi containing the constants of the news Taylor expansion and of the

1. " . ;
X integration, we continue as in 5a.

Step 6) The output of the symbolic manipulation contains algebraic

expressions, operators O(nI) labeled by an index n_ and the 5-tuples

I
(i,jsp,0,7 ) together with the respective labels n..
The algebraic results are general with respect to the number and choise

of Fourier components of ji , to truncation of Taylor expansions and

to polynomial Ko’ i.e. for every allowed value of the input data for ¢W.
The numerical evaluation of these expressions for any set of parameters is

straight forward with the given definitions and algorithms for the operators

O(nI)-
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3. Computing time

In the following table we present the effects of the optimization shown

above. It is difficult to give the exact storage space required since

only versions of REDUCE 2 with 480K, 720 K or 1440 K were

available at the time.

Column 1: problem treated in [5:], [4:[ :

Column 2: our problem according to step 5a with fourth rank tensor, not
including index Tt

Column 3: like column 2, but with array n_ instead of fifth rank tensor

I

including index T

In all three cases the Xl-integration is done numerically with 1024 points

in the interval [b,x;:

. Columns 2 and 3 include the normalization integral

1 2 3
Symbolic manipulation Storage 1440 K 480 K 720 K
with REDUCE 2 Cc_)mp.time‘) 92 783 263
min.
Numerical calculation Storage 720 K 180 K 120 K
with FORTRAN Comp. time?)| 36 36 20%)
sec.

1) For the entire symbolic manipulation

2) For the numerical evaluation of the result with one set of parameters




3) Owing to the type of problem involved the time required for columns 2

and 3 was estimated to be ten times that for columm 1

4) Owing to the type of problem involved the time requirement for 2 and

3 was estimated to be two times that for 1.

Summagz

We describe the three-dimensional analytic integration of a functional

8W which occurs in plasma physics. Since the zeros of 8W are of special
interest, this implies a high degree of accuracy at any stage of the cal-
culation.

The calculation of the integrand and the performing of the integrations,
which are possible after Taylor expansion of certain functions, can be

done by computer using the language REDUCE.

At first glance this procedure seemes to be limited by the large amount
of computing time and storage needed. But introducing appropriate
operators instead of inserting polynomials, trigonometric series and
Taylor series we shift the large extent of the algebraic expressions to
unique operating rules in the last step of the program, the numerical
part. We thus get a compact description of the problem. Here we have made
use of the fact that the numerical evaluation of the algebraic formulae
is necessary because of their large extent. By suitable partitioning into
algebraic and numerical calculations we can optimize the storage and

computing time.
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The truncation of Taylor series or polynomials is given by the
final numerical result, so that we reach an arbitrarily high
accuracy for every set of allowed input data, this being limited

only by the numerical accuracy of the computer.

We believe that this compact manipulation need not be restricted

to the special problem or to the language REDUCE used here.

ABEendix

A) XZ - integration

We have the integrals

v oo
$- 9
e “O
9 A
9
“o vD
"o
——
&L
>
n
l

T ooy pmy-m ) X°
Al and

: : 3
J dwm 0, cep c[XL = T 3‘”‘(“"4"“‘&))(

t L

We therefore decompose 53 and Q 2

S
i
0

gb,c 5':': .
2 [SX'p] 33 + : el 93
L g

0, = @," g, * Q] s

In order to get H = m, ~m, with w0 we define
B, = § 3 L0077 0% + @7 q%) o (roy) (61 @74 0 0]

4 EL.P? J?[j:;‘szf +§:;C- QPiz *EL:S QP,S N §:,c QﬂCJ

y !

gFA

-4
2



o 8= [y L0707 - 67 @) - (ral(er ey - ggi)} 4
e ALEOY g g g ) 8

with A = 2 - & where § denotes the Kronecker delta.
m) mp m) mp

B) Trigonometric expansion

We expand cos WK X3 and sin HX3 with 70 according to trigono-

metric relations:

R(P) ) .
3 _ .{_O(P] 3 (P 2}4_-2“ 3
B])cos S X~ = cos Em i“r\w o X
D)
Lee) 3 w 9 -2
B?.)sin |t X3 = sin XB. cos ‘ X Z "(4,«« cn 't ”X’
k:f(P)
33) K even A, () =0 e (P) = '% tte)=t =01
L, =1
34)_&292 Ado(P) =+ NGO ﬂz—‘— tCP) =0
A.cp)=0

. (# :
It is easy to decribe the o(”w by an algorithm,

C Taylor expansion
We expand I, around the point chos}'{3 = 0 with
2 e g
= - W = X
’Jo\ R“* 1 Rz I l?l‘&' < 4
Cl Ll 3
. ¢ y . a v
;tfz - (R!"J.)/l R3 E t"#" (J,X %X) + Sﬂ/
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2] v-2 vea

4 v w0 B

c2 tijo = | tij\) = 2—\'-:1 [ !|=|° (L'- !g) + W(\;) 911 (..2!) v“-v.‘(q-ZT) —
vea

e T (-ev) | vro
T<co

- . ‘ .
Since the series for (1+x) with real « and X converges absolutely

for | x | < 1; the Taylor series for ~+'+? converges absolutely, too.

We define a summation operator containing two variables

‘/ . ”t‘.!ﬂ
=(r% )/t pd y v
L and get
C4 Tt = Pf'toX’ (v) + S”
3. i
D X -integration
v
Dl j 2o Fx emx dx = 27 Cuv [8:[ with
[+]
(- 1" G-a) 1
; 3 s 5 ke 1, A v e Z)ﬂ/,
D2 ‘4 = ) 1V
kv L (a3
otherwise
0
?
From this it is easy to evaluate the coefficients iiiﬂ. ti&"; -3
v
numerically.
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