Computation of accelerating electrodes
for a relativistic high-current electron
beam tube

W. Dommaschk

IPP 0/12 May 1973




MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Computation of accelerating electrodes
for a relativistic high-current electron
beam tube

W. Dommaschk

IPP 0/12 May 1973

Die nachstehende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft siber die
Zusammenarbeit anf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP 0/12 W. Dommaschk Computation of accelerating
electrodes for a relativistic
high-current electron beam
tube

Abstract

For an axisymmetric high-current electron beam source with
plane field emission cathode accelerating field structures
around stationary beams of high quality are computed. For this
purpose a sufficlently self-consistent mathematical model for
the beam is given first. The potential is then continued into
the region outside the beam. As in Pierce systems, the sur-
faces of corresponding accelerating electrodes are determined
by equipotential surfaces. The indicated beam model includes
self-magnetic fields. It is determined by a system of analytic
differential equations which is numerically integrated, except
near the cathode, where power series expansions were obtained
with the aid of the formula manipulating capabilility of the
computer. The continuation of the potential was made numerical-
ly stable by a method due to Garabedian by extending the com-
putation into a fictitious complex domain.
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1. Introduction

In the development of electron ring accelerators sultable
electron sources are required. What is needed is a nearly
parallel electron beam a few cm in diameter whose emittance
and spherical aberration should be small. The beam energy and
current are of the order of a few MeV and several hundred
amperes respectively. In our case a source with quasi-station-
ary electric acceleration and without external magnetic focus-
ing was needed. It had to be operated by a Marx generator.
Commercial field emission tubes offered for this purpose fell
far short of meeting the beam quality requirements. Investiga-
tions were therefore conducted [2, s 4] which finally lead
to the concept of a new electron source.

This paper concerns the electron optical design of a source
with a quasi-plane field emission cathode using pure electric
acceleration and beam forming. Among the different approaches
for solving this problem as described, for example, in [1_],

a direct numerical procedure is used which is, in principle, a
generalization of the classical Pierce method for axially
symmetric beams with a curved boundary. First a solution for
the beam region is given which is consistent with Poissons's
equation and the equation of motion for the electrons. Further-
more, it can be extended for complex values of the coordinates.
This last feature is essential for the potential continuation
method described in sec. 3. This solution states Cauchy initial
conditions along the curved beam border which have to be satis-
fied together with the Laplace equation by the potential out-
side the beam. As 1s well known, in the real space Cauchy
initial conditions where both the value and the normal deriva-
tive of the potential are prescribed lead to numerically un-
stable results since the Laplace equation is elliptic. After

a sultable coordinate transformation a numerically stable
solution according to Garabedian [8] can, however, be obtained.




The Cauchy conditions and the Laplace equation as written in
the transformed coordinates are thereby extended along a
fletitious imaginary direction of one coordinate. As is shown

in sec. 3, the problem can be restated in this case as an
initial-value problem for a hyperbolic partial differential
equation which admits numerically stable solutions. This
method was successfully applied by Harker [EQ] in the case of
a non-relativistic hollow electron beam. In our case this
method yielded reasonable potential distributions in the re-
gion of interest around the beam. One of the computed potential
configurations was realized by corresponding accelerating elec-
trodes 1in an actual electron beam source which then proved su-
perior to commercial tubes [5, 6]1). Experimental details are
given in [6] .

2. Solution for the beam

For the beam region a system of differential equations shall

be given which determines the shape of the beam border and the
potential distribution in this region. We assume steady-state
condltions, rotational symmetry, zero emittance of the beam,

no external magnetic field and an equipotential field emission
cathode where the initial energy of the electrons is zero.

This implies that the particle veloecity and the current density
in the beam have no azimuthal component. Two further assumptions
concern the self-consistency. The beam equations to be given
are self-consistent in a practical or numerical sense rather
than in a strictly mathematical sense. First it is assumed that

1)

Earlier calculations were done in real variables which lead
to numerical instabilities. A comparison with the new result
from stable calculations (see footnote 3 and Fig.2a) shows ?
agreement with the stable solution up to a few cm from the :
beam edge.



the beam border is an electron path. Together with the fore-
going assumptions this assumption is admissible in any case
for a beam of finite length if the slope of all particle paths
is sufficiently small. Secondly, the radial variation of the
space charge density in the beam 1s assumed to be a linear
function of the radial potential difference whose coefficients
depend on the axlal position. As can be seen below, this
assumption 1s admissible in any case if the slope of the par-
ticle paths, the relative radial potential difference in the
beam and the relative radial current density variation are
sufficiently small relative to unity. This also implies
sufficiently homogeneous emission at the cathode. These self-
consistency assumptions are largely Jjustified by the results.
The maximum slope of the beam border 1s in most cases less

than 100 mrad. The maximum relative radial variation of the
space charge density with the potential amounts to a few per
cent only. The maximum angular deviation in the slope of the
beam border from the virtual focus point of a paraxial electron
path was found to be less than 5 mrad in all cases. This should
also indicate a small current density variation over the beam
cross section. Even if this were not the case, this would have
little influence on the potential and the normal electric field
at the beam border which finally determine the potential distri-
bution outside the beam. This is so because these quantities
are mainly determined by the given constant value of the total
beam current rather than by the special shape of the internal
current density distribution.

The paths of the electrons are determined by the equation of
motion:

a(mgp ¥ )/at = ce(E+TxB) (1)

where t 1s the time, Y the relativistic mass ratio,V the velo-
city vector, e » O the electron charge, m, the rest mass, E the
electric field vector and??the vector of the magnetiec induction.
From the steady-state assumption we have:




>

E = -9U (2)
>

where U is the potential. Since WE =6/ Eo, where® 1s the

space charge density and 80 the vacuum dielectric constant,
U obeys Poissons's equation:

AU = -8/E, (3)

where the space charge density 1s related to the current den-
sity vector ? by

5
T- €6 (4)

We introduce the axial and radial coordinates z and § respec-
tively, where z = O at the cathode. The potential is normalized
according to(P= U/Uo, where U0 = moc2/e and ¢ is the velocity
of light. If 8 = R(z) describes the shape of the beam border,
we use the following representation for the normalized poten-
tial P, which shall be valid in the range 0% R & R(z):

P(z,8) = ¢(z) + mz,S)l where: (5)
N
Hz9) =2 Yo (2)(8,(8) - B(o)) (52)

Here the integer N is to be given. The problem is to determine
the unknown funections R(z), q5(z), ?g(z), Bn(S') for n=1,2,..,N.
If these are given, the Cauchy conditions for the subsequent
potential continuation can be determined from them (see sec. 3).
In eqgs. (5), (5a) is the normalized potential at the beam

axis ( § = 0) and ¥, which is zero at the axis, is the norma-
lized radial potential difference. From the normalized poten-
tial the relativistic mass ratio X‘and velocity ratiO/S are
given by:

Il

1+ @ and (6)

¥ )
p(cc?) = (P2 +PNYZ01 4 )
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Because of the foregoing assumptions the magnetic induction
has only an azimuthal component B. If I » O denotes the total
electron beam current, which 1s a constant, it follows from
the Stokes theorem:

B(8§) = -Ip /278§ for § 2R(z) (7)

where M, is the vacuum permeability. In accordance with the
first self-consistency assumption the radial component of

eq. (1) ylelds a differential equation for R(z) if z is intro-
duced instead of t in this equation. We use the normalized
beam current K = I/ﬁ'Uoc Eo’ where ¢ = (E(J%Q'I/Q, and get:

a(B YR [V TR ") /az

where R' = dR/dz and ‘J‘,/S and 'a'f/'b z are to be evaluated at
8 = R(z) from the above expressions. The equations which de-
termine the unknown functions in eqgs. (5), (5a) have to be ob-
tained from Polssons's equation. For this purpose a suitable
expression for the space charge density must first be given.
From eq. (4) we get6'=l3f/|$] and jz/[3L= Vz/l#' » where j_
and v, are the axial components of and v respectively. If

8 = r(z) is an electron path somewhere in the beam and r' =
dr/dz, we have[?]/vz = (1+1r"2)1/2

(0¢/38)-Vir'®R - x/2r  (8)

and get:

& =3, 1r2M2/8 ¢ (9)

B \}'«‘f or 1-,3 €€1 a first-order Taylor expansion of l//3 with
respect toﬂrcan be made in this expression. In accordance with
the assumptions, r' and the relative change of JZ = JZ(Z,SJ
with respect to @ should be small relative to unity. In this
case the numerator of eq. (9) can be replaced by its approxi-
mate average ¢ jz(1+r'2)1/2) N8y > (1+ < r'2> /2) over the
beam cross section. The average of Jz is obviously given by
<y = -I/fRz(z). Since under our conditions all electron paths
are nearly similar to each other, we assume r'ss rR'/R to get

the average of r’2, which is(r'2>as R'2/2 in this case. The




resulting expression for 6 can now be inserted into eq. (3),
which yields for the normalized potential P :

A9 (z.8) = F (2) - F,(2) (2, 8) wnere (10)
Fo(z) = K(14R'?(2)/4)/R%(2)8 (P (2)) (10a)
Fi(z) = K/R2(2)8 (P (2) 2(§ (2)) (10b)

After inserting the explicit expressions eqg.(5) and eq.(5a)
for(f and‘dpinto eq.(10), this equation must be satisfied for
independent and arbitrary values of z and‘g . This is the case
if the functions in the expression for‘f are determined by:

" = Folz) - '%2 b £ (11)
\rn

-(F(2)+A2)Y _, for n = 1,2,...,N (12)

Bn(g) = Jo(il,ng )/R_ﬁ, forn =1,2,...,N where (13)
Co
B (§) - B_(0) = <g/a)2k2<g A /2)% A e+1)1)2 (14)
=0
B, (3) = (8 /2)-F, (32 /2)%/ (e (1410)1) (15) |
=0

Here primes denote differentiation with respect to zZ or§; Aﬁ for
n=1,2,..., N are separation constants; i = v:T'and Jo 1s

the zero-order Bessel function. Together with eq.(8) and relat-
ed equations these equations determine a solution for the beam
region. Simultaneous integration yields the potential inside
the beam together with the form of the beam border R(z). Since
analytic integration is hopeless except near the cathode (see
below), it must be done numerically. By selecting a proper set
of "eigenvalues" Aﬁ the corresponding "eigenfunctions" ‘Pn(z)
and the radius dependent part of the potential can be made to
meet certain boundary conditions and focusing properties. The
number of eigenfunctions to be used is arbitrary, though a
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reasonable continuation of the potential seems more likely to
be obtained with a small number. In the examples (see Appendix)
tube configurations with a first grid in front of the cathode
and sometimes a second grid in the anode aperture were inves-
tigated. In these cases all‘yn in eqs.(5a,11,12) were put:to
zero between the cathode and the first grid and only\P1 was
maintained between the first grid and the anode.

Solutions not using the first grid can also be obtained, at
least in prineiple. In this case more than one eigenfunction
must be used to achieve approximately a radially constant
electric field at the cathode. The case that all eigenfunctions
are deleted or zero seems impracticable without a first grid
and with the usual currents because of the magnetic contraction.
As follows from egs.(5), (5a), the conditions‘dp= O,‘Svp/9321= 0
must be satisfied at the cathode (z=0) to achieve a constant
field there. If N2 1 is the number of eigenfunctions these con-
ditions are satisfied up to and including the power g2N-2‘1n
eqs.(5a) and (14), provided that the initial values of the
eigenfunctions are given or related by:

P,(0)
g Yr'l(o)l.ﬁm

and if the contribution from higher powers of € to 9P/?z at

zZ = o can be neglected. From eqs.(12) the power series expansion
ofq&.near z = 0 can be seen to have the form clz+0223/2+...,
where ¢,s¢, are constants. Thus tp;(o) is finite and eqgs.(16),
(17) can be satisfied. In any case the node distance of the
lowest order eigenfunction must not fall short of the tube
length L. Thus A,< NW/L 1s obtained from egs,(12). This indi-
cates a fast convergence of the series eq.(14) for low order
eigenvalues 1if the cathode radius is small relative to L. A
small number of eigenfunctions might therefore be sufficient to
yield constant field conditions at the cathode by egs.(16),(17).
Of course, a careful examination of all possible errors would

be necessary.

0, n=1,2,3,...,N (16)

0, m=0,1,2,...,N=2 ¥




At the cathode the differential equations (8), (11) and (12),
which determine the solution inside the beam, all become
singular because/g approaches zero. It is therefore necessary
to do the first integration step by using a power series ex-
pansion before the numerical integration can be started. A
corresponding solution which holds near z = O was obtained by
means of the REDUCE 2 formula manipulating capability of the
computer. In the actual calculations the length of the first
step was chosen to be small relative to the beam radius. But
the series could just as well be used to estimate the beam
parameters up to the first grid in most cases. According to
the assumed conditions in this part the potential is radially
constant. Since R'2 is small and practically zero during the
first step, this quantity is neglected relative to unity in
this case. Therefore, the power series solution has to be
found from the equations:

a(8 r')z')/az
Y - xR y? (19)

where K = K/R2(O), R(0O) is the beam radius at the cathode (z=0)
and QZ = R(z)/R(0) 1s the relative beam radius. The constant K
is given in conjunction with eq.(8). With the proper initial
conditions ¢(0)=O, ¢'(O)>O, ')2(0):1, Q'(O)=O it can be seen
from egs.(18), (19) that the series for both P and 9 begin to
proceed with half integer powers of z. Thereby the lowest

power 1n.qﬁis z, and the lowest power in % -1 is z3/2. We intro-
duce p = ?1/421/2, P = (2?’(0))1/2/'}?1/4 and write:

“K/2 0 (18)

¢ -2+ PZ}P + Bt 40l (20)

n

1 + Q3P3 + Qupu ¥ R Eni (21)



By using p instead of z as independent variable in egs.(18),
(19) these equations become formally independent of K. We
further insert f,/s from eq.(6) with (f=¢ and egs.(20),(21)
into these equations and carry out the differentiations with
respect to p. By rearranging the resulting equations all deno-
minators and square roots can be removed. By ecuating equal

powers of p the coefficients Pk’ Qk can be successively com-
puted to give:

M
Py = -2/3p
P, = (9p° + 80)/90p" (22)
Pg = 8(98° - 80)405p'°
P, = ~(135p'® + 6624p° - 98560)/30240p1>
Q} = ‘1/3p
4
Qy = 1/35
0 = (3p8 - 80)/120p’ (23)
Qg = (9p° + 640)/405p'C
Q, = -(405p'0 + 2208p8 + 492800)/120960p1>

© 6 00006090 00 ¢ 0

A practical evaluation shows that the series are semi-convergent.
They will diverge for larger values of z or p because of the
nearby singularities at'q = 0 and ¢ = =-2. For our purpose their
minimum term is however small enough.

If power series solutions for cases without a first grid are
desired, the full set of equations (8), (11) and (12) must be
solved with the only simplification that qia can be neglected
relative to unity. As compared with the above series, the
larger number of parameters would then lead to much more com-
plicated expressions.




The spherical aberration corresponds to an error 8‘ in the
slope of the beam boundary:

8¢ = R' - RIR/Ry (24)

where R_ 1s the radius of a "paraxial" electron beam. Since R'
is small, 8*15 the angular deviation of a tangent to the beam
boundary from the axial intersection point of a tangent to the
paraxial beam at the same axial position. The paraxial beam
equation follows from eq.(8) in the case that the beam radius
and the slope of the beam boundary go to zero. The constant K
is thereby changed to K = K?%(O)/R(O) since K contains the
total beam current. The paraxial radial electric field follows
from eq.(1@), which is written as A(r =K ﬁ (¢)R§ in the par-
axial region. Its paraxial solution is ¢ = ¢ + (32/4)><

(Kp/ﬁ @)Rg -?"). At the paraxial beam boundary we therefore
have:

(?f /’ag>g=Rp - K/2R@R, - ¢"R /2 (25)

This leads to the well known paraxial beam equation:

AR @Y PR /a2 = (K /B GF@R, - §"R)/28@) (26)

It is given in, for example, [9] s where an external magnetic
field is also included. This equation can be simultaneously
integrated together with eqs.(8), (11) and (12) to get R_ and
s*ftmmxeq.(ah). Since KpﬁoRg(O) and‘Ré(O) = 0, eq.(26) shows
that anpr(O) and a*is therefore independent of Rp(O). For
this reason we can use:

Rp(O) = R(0) and Kp =K (27)

In the cases computed up to now the error &*was found to be of
the order 10'3 or less. The corresponding relative difference



R/R(0) - Rp/Rp(O) between the paraxial and the nonparaxial
beams amounted to a few per cent.

For the first part of the beam 8.( can also be estimated ana-
lytically. This 1s again done with the aild of REDUCE 2 by a
power series expansion of eqs.(18), (19), where the additional
factor (1 + ‘)2'2112(0))'1/2 is inserted into the parentheses
on the left side of eq.(18). It is thereby assumed that ¢ is
unchanged. Inserting‘QPNO) from the old and new expansions as

Rp and R respectively into eq.(24) yields:

& - (p3K3/2/qu3)(o.o73376 - 0.021751p/p° + ...)  (28)

Here K is given in conjunction with eq.(8), p, p and'q are
given in sec. 2.2. Higher terms show that the series is again
semi-convergent. For the present purpose the first two terms
given in eq.(28) are sufficient.

We assume a constant current density distribution at the
cathode and approximate the residual radius dependence of the
axial current density caused by the spherical aberration by
Jz = A + Bse, where A and B depend on z and 332 is small re-
lative to A. Making use of eq.(27) we have A =-I/% g ;2) and B
is determined from the condition that the integral of-;jZ over

the beam cross sectidn REQ‘ is equal to the total beam current
I. This yields:

3, ==(I/R®%) (R%/R + 2(1 - R?/R2) @ 2/R?) (29)
p p
Using eqgs.(9) and (29) the maximum relative error §s on the

right side of eq.(10) due to the spherical aberration can be
estimated to be:

|8,|®|R%/R2 - 1 - r'Z/4 | (30)




Its observed order of magnitude was 10'2 or less. Another
error %3 is caused by neglecting higher Taylor expansion
terms of 1/8 1in eq.(9), being given by:

|6s |8 332728 ) T4 ) (31)

where JP corresponds to the potential difference between the
beam axis and the beam border in this case. This error can be
kept small if 1"15 zero or goes to zero faster than z near
the cathode. The same condition is necessary to get a constant
field and a homogeneous current density distributipn at the
cathode plane. In the examples given in see. Z this was re-
alized by dividing the beam into two parts by a plane grid
electrode where 1": O in the first part. In these cases ga
is of the order of 102 or less. In the examples given the
space charge error is thus mainly determined by Ss .

The potential and electric field errors which are effectively
caused by the space charge error correspond to a solution of
the Poisson equation for this error in the actually calculated
and realized electrode system under the condition that the
erroneous potential is zero at all electrodes. If the relative
error were constant and equal to § 1in the beam region, the
potential error would“ge $ times the source part of the cal-
culated potential distribution. Its absolute maximum would
occur at the beam axis and away from the electrodes. The cor-
responding electric field error would have its maximum at
electrode surfaces near the beam.

At the cathode the source part of the electric field due to
space charges can be found to reach up to about 250 kV/em. For §
z&pu 10"2 this would correspond to local field errors of up to
2.5 kV/em and corresponding potential errors of up to about

1 kV because the distance of the first grid from the cathode

is of the order of 1 cm. For this reason compensating relative
deviations up to 8, from a homogeneous emission can be expected
at the cathode because the field emission depends very strongly



on the electriec field. The actually remaining axial field
error should then be small relative to 2.5 kV/em. This applies
all the more so to the corresponding erroneous radial electric
fields between the cathode and the first grid since the mean
space charge error in the beam cross section was practically
set equal to zero by averaging (eqs.(9) to (10)). In addition,
radial fields are largely shorted owing to the nearby elec-
trodes. The erroneous radial electric field should be uncriti-
cal if the corresponding force is small relative to the mag-
netic forces at the beam border. The normalized mean radial
electric field Ef which would be equivalent to the magnetic
focusing effect at the beam border up to the first grid can be
estimated by equating corresponding integrals over the magne-
tic and electric terms on the right side of eq.(8):

SazE,/(22 ¢ '(0)) /2y fsdzEf(1+R'2)1/2/,e = gsde/ZR 2z _K/2R(0)

O™ 1N
o

or: B, % K(z4¢ '(0)/8)/2/R(0) (32)

where Z is the distance of the first grid from the cathode.
For a cathode radius of 1 cm, z, = 1 cm and a total emission of
1000 A we have K = 0.235, ¢'(O) & 0.5 and get Er ¥ 0.06, which
corresponds to 511 x 0.06 a8 30 kV/em. This is much larger than
the possible field error. For this reason the focusing pro-
perties of the section between the first two electrodes should
be very insensitive with respect to errors in the self-con-
sistency assumptions. For the same reason small irregularities
such as might be introduced by the finite beam emittance or by
inhomogeneous emission should be uncritical.

In the second part of the beam between the first grid and the
anode the above-mentioned relative current density variation
up to S‘appear which were generated by inhomogeneous emission.
In addition, the relative space charge error §g is present.
Both effects may cumulate to §= 2 8g but in any case their
radial average is practically zero because the total beam
current 1s assumed to be constant. If the average of § is not




zero, its effect may be estimated by using the model of a
cylindrical relativistic electron beam. In this case the
electrical field at the beam edge 1is GOI/GHQ in V/em and

the radial potential difference in the beam is about 30149

in V. This corresponds to about 60 kV/cm and 30 kV respectively
for a relativistic 1 kA beam of 1 cm radius. A space charge
error of 1 per cent corresponds to 600 V/em and 300 V respec-
tively. The beam border deviation AR,‘ caused by this radial
electric field can be estimated from eq.(8) by dQ@I’AR})/dz

2 600/5.11 x 10°8 . This yields AR'® 6 mrad over a beam 1lengtn
of 20 em if/Q on the right side is assumed to be constant
corresponding to 1MeV and the end energy of the beam is 2MeV
If a linear growth of AR,‘ is assumed, this corresponds to a
radial displacement AR®0.6 mm over the same length. If the
space charge error were caused by an error in the current den-
sity, then AR' and AR would be reduced by the average of 1/)"2.
Thus space charge errors should not be critical, especially if
they result from an erroneous current density. For this reason
drastic changes due to the finite emittance of the actual beam
are not to be expected as was also the case in the first part
of the beam.

With increased computational effort more exact beam equations
are possible where radial averaging in the space charge density
is not necessary. Substituting eq.(29) into eq.(9) and using

(1 + r'2)1/243 1 + r'2/2, where r 'ss S R'/R, we obtain instead
of eq.(10):
AP = F?-— f&z,g) + F’gsz (10%)

= K/RBP) (33)
= &/REP Py () (34)

¥5 = 2k(RS/R%-14r'2/4)/R?R2B@) (35)

FO
ke
By



Instead of eq.(5a) we use:

J(2.9) =§?'n<2><5n<8> - B,(0)) + ¢%(z) (5a%)

The function g(z) is used to remove terms which depend expli-
citly on 32 from eq.(10%). For this reason g(z) is to be de-
termined by:

E |
2

g" = Fy - gFy (36)

Instead of eqs.(10a) and (10b) we use:

I (10a%)
P, o= B (105¥)

This again leads to egs.(11) to (15). The new set of beam
equations is now given by egs.(8), (11), (12), (13) and (36).
Numerical evaluation of this set has not yet been made. The
results shown 1n the appendix were obtained with the aid of the
original beam equations (sec. 2.1).

3. Continuation of the potential

The mathematical procedure to determine the potential outside
the beam region is similar to that used by Harker [1Q]. First
the original initial-value problem for the Laplace equation

is formulated in suitable coordinates. For this purpose the
following coordinate transformation is made which maps the real
z- § plane into the real u-v plane and the beam border 8 =R(z)
into the u-axis at v=0:

z+ 18 =1R(u + iv) + u + iv  or: (37)
z = (1/2)(R(u s=iv)satRus- 1vih) T (372)
8 = (1/2)(R(u + iv) + R(u - iv)) + v (37b)




Since this transformation is ceconformal, the new u-v coordinates
are orthogonal to each other and the Laplace equation is of
the form [1{] :

2 (82u) Au + (]IYAv) /v = 0 (38)

Here § 1s to be expressed by eq.(37b) as a function of u and v.
This equation has to be solved in a limited region for v 2 O

and 'f must satisfy the following Cauchy initial conditions
along the u-axls at v=0:

P =9(2.3), WAY - Yo - P (), for 2 = u, 8

Here R' = dR/dz and q%, ?} are the expressions for the partial
derivatives of 'f with respect to g and z obtained from
eqs.(5), (5a) and (13). Since eq.(38) is elliptic, an attempt
to solve this problem by finite difference methods in the real
u-v plane leads to numerically unstable results even.if the
true solution is regular. As shall now be shown, this problem
can, however, be reformulated in the form of a well posed
hyperbolie initial-value problem if an analytic continuation
of the Cauchy initial conditions eq.(39) for complex values of
u is available. In this case numerically stable results can be
obtained for regions where the true solution has no singulari-
ties.

R(u)  (39)

We extend u to complex values and write:
u=x+1y (40)

where x, y and v remain real. Correspondingly, (f is extended
for complex values of u (where {f becomes complex). Since for

analytic functions d/du = 9/ (1y), the Laplace equation
(38) may be rewritten as:

2 (V) Ay - R v)/Av = 0 (41)



where § 1s complex since 1t is to be expressed by eq.(37b)
for complex values of u. Eg.(41) is hyperbolic and has the
real characteristics v = const + y. The derivatives in this
equation with respect to y and v mean that the other two co-
ordinates x, v and x, y respectively are kept constant. If‘f
is looked at as a function in the x-y-v space, it obeys an
elliptic equation in the original plane y = O (which is the
real u=v or z-8 plane) but obeys a hyperbolic equation within
planes x = const which are orthogonal to the original plane.
The beam equations in sec. 2 can also be extended for complex
values of u. For this reason they are written as a set of
simultaneous first-order differential equations:

aw/dz = AW) (42)

where the components of W= W{z) are given by R'(z), R (z),¢'(z)
¢(z), ‘Pi(z), \Yl(z), ....,YN(Z). The components of AH(W) are

the right sides of the corresponding componential differential
equations which may easily be obtained from egs.(8), (11) and
(12). First eq.(42) is integrated for real values of the argu-
ment z. Then an extension of W(z) foﬂV#O is made within the
plane v = 0 as follows. Under the conditions x = const and

v = const = O we obtain from egs.(37a) and (40) dW/dy =

(d¥/dz) (dz/dy) = 1dWdz or with eq.(42):

d¥/dy = 4¥), for x = const and v = const = 0  (43)

Starting at x = 0 and v = 0, where z = x is real and the
initial value W(x) is known from the previous integration,
eq.(43) can also be integrated. This yields a complex4z) for
the complex argument z = u = x + iy at v = O, where § = R(u)
and R(u) becomes complex, too.

With these results f, (fg "?z and (Pv = 3P/Qv, 1.e. the Cauchy
initial conditions eq.(39) can also be extended for complex




values of u. From egs.(5), (5a), (13) and (39) we obtain for
v=0,u=x2xH+1iy:

¢ -du) + s‘jw@ (3 (LA R(W)-1)/ A2 (44)
Y, =¢' () + 2?‘-}’;1(11) (Jo(i/lnR(u))-1)//l.r21 (45)
fy - - ﬁ 103 (LARW)/ A, (46)
¢, - - 'E;:[i Yo ()3 LA R/ Ay + R (W) P (w) we
(3,(12 Rw)-1)/AL] -4 (WR'(w) (47)

where J1 is the first order Bessel function.

The solution of the whole continuation problem can now be
illustrated with the aid of fig.la and 1b. fig.la shows the
real z - 8 plane which corresponds to the plane y = O in fig.
1b. The portion AB of the curved beam border maps into the
straight line A'B' at the x-axis in fig.lb. The triangle E'D'C'
in fig.1lb is parallel to the y-v plane, i.e. normal to the
x-axis. It is bounded by the straight lines v = 0, v =L - ¥
and v = L + y for x = const, where the last two lines are
characteristics of eq.(41). The straight line B'C' in this
triangle maps into the curved part BC in fig.la, which inter-
sects the beam border at B at right angles. Eq.(42) is now
integrated from A to B or A' to B'. Eq.(43) is then integrated
from B' to D' and complex Cauchy initial conditions are generat-
ed there by eqs.(44) to (47). With these initial data the
hyperbolic equation eq.(41) can be solved in the triangle
B'D'C' by a stable finite difference algorithm. At y = O, where
‘P must be real, the reflection principle is used as a boundary
condition along B'C'. This principle states in our case that
any regular complex function which is real at y = O changes to
its complex conjugate i1f the sign of y is reversed. After the
solution of eq.(41) ‘f is known at discrete points along B'C'.
The z -.3 coordinates of these points are obtained by egs.(37a)



and (37b). The potential is thus finally found at discrete
points along the curve BC (which is not an equipotential line!)
in the original real z -8 plane in fig.la. The potential dis-
tribution outside the beam is thus obtained by repeating the
described process for a sufficiently large number of points B
along the beam border.

4, Numerical solution

The numerical integration of egs.(42) and (43) was done by the
usual library subroutines. The right sides of eq.(43) were
thereby computed in complex arithmetic and numerically split
into their real and imaginary parts to get the two correspond-
ing real differential equations. For the hyperbolic partial
differential equation (41) the following simple explicit differ-
ence algorithm was used:2

(pl(l-hgy/eg) - P,(1-n8 /28) + P5(1+ng /28)
P, -
1+hgv/23

The complex potentials ‘fl to ?4 are thereby taken at the re-
lative positions 1, 2, 3, 4 around some intermediate point o,
as indicated in fig.2, h is the mesh size which was made equal
in both directions and 3 together with its partial derivatives
sy’ gv is to be taken at the intermediate point o. Fig.2
corresponds to the triangular area B'D'C' in fig.lb. The origin
k = j =0 in fig.2 thereby corresponds to point B' and the
dotted line indicates the charateristic v = L - y of fig.1lb,
From the previous integration of eq.(43) R' = R&, R=R, «evvs
‘{JI(I =‘PI:I’m’ WN =‘PN’m are given at equidistant discrete points
Yy=hmform=k=0,1, 2, ... at J = 0 In Sigs2iEAbthesmesh
point o, whose position is described by the integers jJ and k,
we then get from egs.(37b) and (40):

(48)

2)Eq.(48) is not yet well adapted to the nearby logarithmic
singularity of @ at the beam axis. This may lead to slight
systematic numerical deviations from AY = 0 at increasing
distances from the beam axis especially at small beam radii
%Pd large beam currents. In addition, the step length ratio
v/hy which is equal to unity in this equation may possibly
be decreased to improve the numerical stability.




- D0 .
8§ =/2)®, , 4 +R _ 4)+hy (49)
Sy = (W/2)Ry , y-Re _4) +1 (50)
8, =(1/2)(Ry , 4y + By _ J) and (51)
R = R:', R! =~ = Rr;]* (52)

where the asterisk denotes the complex conjugate.

Thus g 3 g B and gy are known functions of the position of the
intermediate mesh point o. Eq.(48) is evaluated at the consecu-
tive Ypogieions °ji= O;' Kk ‘=115, B, S 54 kL -1, j=1, k=0, 2,
Wioiag, kL S IR B e Ao W, R kL -3, ... of the
intermediate point o. If k = O, (fl is given as the complex con-
jugate of (.P}. )% 0, \Pl and tf} are given by eq.(44) for
m=%k-1and m =k + 1 respectively. In this case \PQ is given
by:

Po= @ +95)/2 - b - (1 + R ZNgn®/2r, (53)
where (fg and (Pv are given by eqgs.(46) and (47) for m = k.
At the end of this calculation real values of '-P result at the

points k =0, j =0, 2, 4, ... in fig.2, whose z and § -coordi-
nates are given according to eqgs.(37a) and (37b) by:

N
|

- (1/2)(R, - n‘?) +x (54)

8 = (1/2)(Ry + K + nJ (55)
Points in the z-@ plane corresponding to prescribed potential
values can be found by interpolation. After repeating the whole
continuation process for a sufficiently large number of differ-
ent x-values and after topological ordering of the interpolated
points, equipotential lines can be drawn by the usual plotting
routines.



5. Results

Results of the computation are presented in fig.2a to ial=2515)

in the appendix. In all figures the beam propagates from left
to right. The straight horizontal dotted line corresponds to
the axis of symmetry, the curved nearly horizontal line is the
beam border, the straight vertical part of the leftmost line
corresponds to the emitting area of the cathode and the two
vertical dotted lines indicate the first and second grids (if
present). All other lines correspond to equipotential surfaces
obtained by the described continuation process. Owing to the
different form of the beam ecuations used at either side of the
first grid, two different equipotential surfaces of equal po-
tential emerge from the grid. They do not overlap and can thus
be realized by the surfaces of a solid electrode as indicated.

Fig.2a shows a comparison between the described continuation
method with an earlier result [h— EL] which was originally ob-
tained by an unstable calculation in the real domain. 3) The
short equipotential lines correspond to the earlier calculation,
whereas the radially more extended lines were obtained by the
described method. As can be seen, there is good agreement in
the shape of the lines near the beam border. The earlier cal-
culation stopped, however, after a few cm because of instabili-
ties. No such instabilities were, however, encountered with the
new method, which indicates their purely numerical nature.

In fig.3 the potential lines emerging from a saddle point were
nearly obtained (1.86 MV lines). The figure indicates that the
lines at an off-axis saddle point intersect at right angles as
is to be expected. This figure is also an example of a tube
without a second grid. The left part of the 1.86 MV line or some
adjacent line can be replaced by an actual electrode without a
grid. This is again shown in the following figures where the
corresponding equipotential lines have a potential of 2 MV as

is desired in our case.

3)Irx this earlier calculation the equipotential lines were direct-
ly calculated in the real € -z plane in the form z = ?
}:he equation 2z/9¢2 = . té 8)/8 +9((1 + (?z/‘ﬂf)Q/(Qz/Nf
o

‘a(f , which corresponds e Laplace equation.




Fig.4 corresponds to an electron source without a second grid
which yields a weakly divergent electron beam about 2 ecm in
diameter, 1 kA and 2 MeV. The grid electrode at %22 kV with re-
spect to the cathode is placed 1 cm distant from the emission
area (3 cm in diameter),at whose surface a field strength of
230 kV/em 1s maintained at a total emission of 1.2 kA. Field
strengths of this order of magnitude are necessary, for example,
at quasi-plane cathodes made from stacked razor blades [6] .
Between the cathode and the grid all ?GIin the beam equations
(6), (7) were set equal to zero, corresponding to JP= 0, to
get the conditions for homogeneous emission. This 1s also the
case in all other examples. In the given example the corres-
ponding angular deviation of the beam border was found to be
less than 1 mrad near the anode (2 MV equipotential surface) .
Between the grid and the anode ‘Pl ?- 0 was used in the beam
equations, where ‘Fl = 0 at the grid. This corresponds to a
radially increasing potential (I}'?. 0) in the beam, which in
effect slightly overcompensates the magnetic force and reduces
the beam convergence caused by ‘l"= 0 near the cathode. The
proper shape of the anode surface was achieved by a suitable
choice of the initial condition for (}’i at the grid and the se-
paration parameter )_1, which are not otherwise determined. In
the same way Fig.5 was obtained, which corresponds to a smaller
beam radius.

The author wishes to thank Dr. W. Ott for many useful discuss-
ions and experimental information. He is indebted to Dr. P.Merkel
and Dr. C.Andelfinger for critical reading of this report. He
would also like to thank Dr. H.Tasso and Dr. K.U.v.Hagenow for
stimulating suggestions, E.Springmann for computational assist-
ance and various other colleagues.
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7. Appendix

Figure captions:

Fig.

Fig.

Fig.

FPig.

Fig.

Fig.

la,b Illustration of the potential continuation method

2a

in the real Z'S plane and in the corresponding
fictitious x-y-v space.

Mesh pattern for eq.(48)

Comparison between two different methods of potential
continuation from an electron beam to the space
charge free region outside. Beam current 500 A,
initial beam radius 2.5 cm.

Potential continuation from a 1000 A beam. Initial
beam radius 2.5 em, virtual beam focus distance at
second grid +3.4 m (focusing).

Beam current 1000 A, initial beam radius 1.5 cm.

2 MV equipotential surface to be used as anode with-
out a grid. Virtual beam focus distance in the
corresponding anode aperture approx. -50 cm (defo-
cusing).

Beam current 1000 A, initial beam radius 1 cm,
2.12 MV equipotential surface to be used as anode
without grid. Virtual beam focus distance in the
aperture approx. -40 em (defocusing).
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