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bstract

The maximum acceleration of lons possible in an electron ring
accelerator 1is studied. The case of slender rings without ex-
ternal focusing is treated in beam approximation using macros-
copic fluld equations. The acceleration forces are taken as a
perturbation acting on an unaccelerated equilibrium. The de-
pendence of the maximum acceleration on the ion loading and
electron energy 1is discussed. At the Budker limlts no accele-
ration is possible, while over a wide range in between the
maximum acceleration is only weakly dependent on the 1lon loading.




Introduction

In the electron ring accelerator an upper limit is imposed on
ion acceleration by the strength of ion binding, the so-called
holding power, in the electron ring. The ions are trapped in the
electric potential well of the electrons. During acceleration
the inertial force acting on the ions polarizes the ring by dis-
placing the lons against the electrons. If the inertial force
exceeds the binding force of the electron ring the ring equili-
brium will be destroyed and the ions lost. For an electron ring
with a maximum electric field strength Emax’ the rate of ion
acceleration will be less than e - Emax/M (M = ion mass), where
Emax is the maximum electric field strength produced by the
electron ring. This paper will consider the question of how much
smaller values of possible acceleration are to be expected from
a more detailed examination.

It is assumed that for slender rihgs r/R<<4 (r = minor,

R = major ring radius) toroidal effécts on the holding power can
be neglected; the problem then reducés'to treating straight
electron ion beam equilibria when accélerated perpendicularly to
the beam direction. '

Unaccelerated relativistic electron-ion beam equilibria without
external focusing have been studied by many authors [e.g. BENNETT,
1934, 1955] . Bennett equilibria exist in the range of {:
ﬁr2<“£< 4 , where f is the ratio of ion to electron density
and Y is the relativistic factor of the electrons. The particle
ratio f is a funetion of the electron and ion temperatures Te’ T
The temperatures can be regarded as a measure of the transverse
energies of electrons and ions, taken in the rest frame of the
particles.

i

Accelerated slender-ring equilibria without external foeusing
have been studied by PERELSHTEIN et al. (1971); BARKHUDARYAN et
al. (1972); KAZARINOV (1972). BARKHUDARYAN et al. got an appro-

ximate solution in beam geometry for the special case Te = Ti’




corresponding to a particle ratio f = 4/{ . They found a maximum
ion acceleration Gumax= 0.9-% Beic s

This paper attempts to find the dependence of the maximum accele-
ration on the ion loading f or, in other words, on the temperatu-
res of the electrons and ions. In Section 1 the basic equations
are given. The electrons and ions are described by the macroscopic
relativistic magneto-hydrodynamic equations, and the electro-
magnetic field produced by the charges and currents by Maxwell's
ecuations.

The electron-ion beam will be accelerated in an external constant
electric field, and it will be assumed that the beam is stationary
in the coordinate system accelerated with the beam, this being

known also as the M8ller system [MOLLER (1943), PERELSHTEIN (1971ﬂ .
For small acceleration g and a not too large beam dimension in the
acceleration direction the M8ller system can be approkimated by a
system with a uniform gravitation force g, which is equal to the
acceleration in the laboratory system.

Because of the difficulty in finding the general solution of the
equation for a beam equilibrium with external electric fileld and
a gravitation force, we discuss an approximation linearizing the
ecuation about the unaccelerated Bennett equilibrium. This is per-
formed in Section 2, where the solution is discussed also.



1. Basic equations

Considering a relativistic electron-ion beam accelerated perpen-
dicularly to the beam direction in a constant electric field, it
is advantageous to use the coordinate system accelerated with

the beam. In thils system the external forces are the accelerating
electric field E, which has the same value as in the laboratory
system, and a gravitational force g eaqual to the acceleration in
the laboratory system. Of interest are solutions that are station-
ary in the accelerated coordinate system. To find such a station-
ary equlilibrium of lons at rest and relativistic electrons, the
following equations will be used:
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The indices e and i1 denote electrons and lons resp.; Te’ Ti are
the temperatures, and ng, ny are the particle densities in the
rest systems. In the system in which the iors at rest, the electron
and ion densities are n_j° and n, resp.. é e? ¥i are the elec-
tric potentials of the particles and B 1s the magnetic field pro-
duced by the electrons.

The electron beam has the velocity 5%-(0,Q1r) parallel to the
z-axis and all quantities are independent of z. In such a geometry
it holds that B = ¥, x§, , which will be used to eliminate
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B in eas. (1). The external forces Ke’ K1 have x-components ke,

ki only:
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where m, M are the rest masses of electrons and ions, resp. The
electric field E and the gravitation g are not independent para-
meters. Because the total force on electrons and ions has to
vanish for a stationary equilibirum, integration of the first two
equations of (1) over the (x-y) plane gives the following rela-
tion between E and g:

Nee Snex O(.)(d% !

(3) S - eE"
my + MY, N;=§'n¢- xcly
Ne’ N1 are the line densities of electron and ions in the labora-

tory system.

It ﬁ is eliminated and uniform temperatures Te’ Ti are assumed,

the first two equations (1) can be integrated to yield in cylin-
drical coordinates (r, y, 2)
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where ke = -eE + mg, ki = eE + mg and Ces ci are the constants
of integration.




2. The accelerated béam

A general analytic treatment of egs. (4) 1s difficult. To get
an approximate solution, one begins with the known Bennett
solution [BENNETT (1934ﬂ for a beam without external fields
(ke = ki = 0) and then takes the external forces as a perturba-
tion. The particle densities of the unaccelerated beam equilib-

rium are given by
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and the potentials are apart from an unimportant constant
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and where A 1s a free parameter. As can be seen, the particle
density ratio f is a function of the temperature ratio 72/7;
only.

Now, the equations (4) will be linearized about the Bennett
equilibrium. With the substitution
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one obtains the following system of linear eguations for the
particle density and potential perturbation:
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where di’ de are constants of integration. Confining attention

to solutions in which the total numbers of particles are un-

changed compared with the unperturbed solution, it follows that

the potentials ée(l), qi(l) will approach constants, as r =02 ,

while the densities behave like: M, € Rg 7+ 00,

ﬂﬁﬂ ol th*cw°? . This leads to negative densities ’néwfﬂéu b
nuéu-n:“ . This point will be discussed later in greater

detail.

It is advantageous to introduce functions u and v, defined by
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and the variable X = "at . Inserting these in eqgs. (8)

and eliminating q%(l), éi(l) yields the following uncoupled
set of equations:
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Because of the fact that the acceleration forces are parallel to
the ¢ = o direction, attention can be confined to solutions
symmetric about Y’= 0.



The ansatz

(11) m=0

is used in Appendix A to solve egs. (10) and then the general
solutions of u and v regular for all x and with the asymptotic
behaviour X% coolp  are determined. Satisfying the same con-
ditions, one gets the solution for ne(l), ni(l) with (A 8 )
and (9)
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The constant B1 is determined by comparing equations (12) and (8),
which gives the two relations
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The first of equations (14) connects B, to the external force ky
on the ions, while the second again gives relation (3). Emax is
the maximum field strength of the unaccelerated electron beam.

To determine the constants AO and Al in (12), it can be seen that

the term with Ao leads only to a axisymmetric deformation of the




density profile and is not related to the acceleration. Omitting
this term and using (14), one obtains the following expressions
for the electron and ion densities:
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The cruclal point is now to find an upper limit of the force ki
acting on the ions without destroying the beam and determine how
this 1imit will depend on Yy  and f. The solutions of the lineari-
zed equations do not give a limitation in a direct way. Neverthe-
less an attempt will be made to find an approximation to the limit
by the following procedure: As egs. (15) show, the electron and
ion densities will be negative for large x and cos < O and
cosy > O, resp., even for an arbitrarily small ki' The contri-
butions of the negative densities are limited by the following
conditions on the maximum permissible value of ki' which is
assumed positive
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There 1, ° 0 <h =1 is a parameter, which will be determined

as follows. Putting (15) in (16) one can express A and 4. /Qghqx
as functions of # . It holds for 4./e£, , ~that
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In fig.1 the force #./ek,,  1s plotted vermis f for different
values of ¥ . The curves have their maxima at £ = /4 and
the maxima increase monotonically to a finite limit as YErafel .
To fix K , we use the result of Barkhudaryan et al.. They calcu-
lated the maximum force on the ions for the special case T_= Ti’
which corresponds to f = ¥y , and obtained the result "%@“5 0.4,

Using this result to fit the curves for y—>v one gets for
the value # = 0.62. :

As the plot shows, the maximum acceleration only weakly depends

on f and ¥ over a wide range of f for not too small Yy . This
means that, for equilibria without external focusing, acceleration
near f =1 and f = ﬁ}‘is not possible. Near these Budker limits
one gets the expressions for *gét;u using the asymptotic expan-

sion of J for large A : )= e?: 9’7{‘2"'%30‘ (JA)-”‘
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In fig.2 the density distributions of ions and electrons are
plotted versus{x, (¥ =0, T ) for the case of maximum ‘éi/et',,x

and different values of f and ) . The contributions of negative
densities are small, but are nevertheless present. The Bennett
beam density goes to zero for x —= oo , It seems to be sure, that
the difficulty with the negative density arises from the high-
energy tall of the Maxwellian velocity distribution in the Bennett
beam. It 1s plausible, that in the case of a beam with finite
transverse dimension and bounded transverse energy of the particles




the difficulty would not have arisen. Assuming that the results
do not depend very strongly on the particle distribution, the
calculation given here should be a fairly good approximation.
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Appendix A

Inserting the ansatz (11) into the differential equations (10),
one obtains the following equations for the functions uméx)
and 7V, (x) :
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Both equations have two independent solutions M:,‘)(x)/ u,, x>

)
and U0 , Vp ) for m = 0,1,.. [KAMKE 1967 , MAGNUS, OBER-
HETTINGER 1966] , which are
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M(«) 1is the gamma function and zF+ the hypergeometric function,
which can be represented by the following infinite series. It
holds that for ([xI<1
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and for (x1>"1
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where for m = o the sum 1s defined as 2 = 0. The function

qu?r==P?¥4ﬂa) is the logarithmic derivat?;% of the gamma function.
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The particle densities "t/m;” and ﬂu?id” have to be regular for

all x and should have the asymptotic behaviour x%'cosy. Because

of (9) the u(x,y) and v(x,¥) have to satisfy the same conditions.

From (11) and (A2) it follows that the only terms contributing to

u(x,y) are ug l)(x) and ul(l)(x).

Because of the behaviour of 1ﬁx(x) near X = O
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contribution of . (x) would lead to a singularity of vixP)
at the origin x = o. Furthermore, from the asymptotic expansion
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it can be seen that only the term 'Uka) has the desired
asymptotic behaviour. At x = o this function QQRQY) is pro-

portional to Xx:
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so that, in fact,?;muv is the only regular contribution to V(X ¢).

Thus, the general solutions for u(x,¥) and v(x,Y) which satisfy
all required conditions are

i
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fig. 2a The density profile of electrons ( ) and
ions (----) in the direction of acceleration

is shown for a particle ratio f = 0.5 and K‘: 2




fig. 2b The density profile of electrons (

) and
ions (----) in the direction of acceleration
el shown flor a particle ratio £ = 0,055 and

5 = 30
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