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Abstract:

The influence of plasma dynamics in toroidal high-beta Stellarators is investigated
in an idealized, linear model (incompressible, sharp boundary) with artificial force of
gravity instead of the toroidal drift force. The dynamic interference force produced by
the coupling of oscillating ¢ =1 and ¢ = 2 stellarator fields is calculated for frequencies
near the resonance frequency of the helical modes. A simple interpr etation of the
frequency response is given and the influence of damping and compressibility is dis-

cussed.

The result is used to explain the initial dynamics in the ISAR T 1 experiment and to

estimate the effect of plasma heating by helical Alfvén waves on plasma stability.




|. Introduction

Toroidal, net-current-free magnetostatic equilibria with /g = Zc'fo Po /.Boz <1
( po = static plasma pressure, B, = toroidal magnetic field) can be achievedby super-
posing spatially periodic fields on a toroidal main field /1-7/. These equilibria are
referred to as high-B stellarator equilibria or else as generalized M & S /1/ equilibria.
An essential feature here is that the part of the plasma surface facing the centre of
the torus is enlarged by making the plasma contour more strongly corrugated than on the
outer side (M & S effect /1/ (Fig.1). The corresponding magnetic field structure can
be achieved in principle /4,5/ by superposing on a strong, toroidal main field (at least)
two helical fields with equal field period ) = _le_T_ and with multiplicity ¢ differing
by one, i.e. equal toroidal wave number and azimuthal wave numbers differing by one. A
suitable choice of the magnitude and phase of the helical fields ensures that in equi-
librium the plasma is concentric with the helical windings, which generate the helical

fields.
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Toroidal, M & S-like equilibria call for a three=dimensional description with

all theoretical and practical consequences such as the possible non-existence of exact




equilibria, the compexity and extent of numerical codes etc.. The calculations know
at present are therefore mainly based on the surface current model and the ideal MHD
equations and the toroidal equilibrium is described by a small parameter expansion
around the linear theta pinch (e.g. /4,6,8/). The ratio of helical fields to the main
field and the inverse aspect ratio are usually the essential smallness parameters and
determine the range of validity of the results. A useful interpretation of the M & S-
like equilibria is given by introducing the so-called "interference force" : This is
because, if two helical fields with equal field period and multiplicity differing by one,
as stated above, are superposed on a linear theta pinch plasma, the marginal, highly
symmetric theta pinch changes to a non-equilibrium which is periodic, but not helically
symmetric. The plasma column is then subjected to a force F£ ¢t perpendicular to
the axis in the direction of the maximum corrugation of the surf’ace (Fig.2). This force,
whose origin will become clear from the later calculations, is frequenctly referred to

in the literature as the "interference force" /5/.

Fig. 2

Toroidal equilibrium is then obtained for not too strong curvature simply by making

the toroidal drift force and interference force equal (Fig. 1).

The foregoing magnetostatic equilibria form the basis




for the following treatment of dynamic effects. An estimate of dynamic effects

has to be made for the following reasons:

1) The production of a high-8 plasma by, for example, fast compression, leads
to a dynamic initial phase accompanied by strong inertial forces. It is experimentally

observed /9/ that the dynamics has an influence on the interference force.

2) The plasma heating with helical Alfvén waves /10-12/ now under discussion calls
for a knowledge of dynamic effects on equilibrium. Inertial effects may also lead
to disturbances of equilibrium in other heating methods, e.g. transit time magnetic

pumping with periodic fields, etc.

3) The dynamic stabilization of periodic equilibria as described in /13,14,15/, may
be regarded in terms of a "dynamic interference force" between the original periodic

field and the perturbed fields.

In the following investigation of dynamic effects the surface current model and the
validity of the ideal MHD equations are assumed. The time dependent interference
force acting on a straight plasma column with time dependent periodic fields and plasma
deformations is calculated. The main concern here is the £€=1/2=2 combination. First
the plasma is treated as incompressible and nondisssipative. The influence of compressi-

bility and damping is then qualitatively discussed.

The resulting dynamic interference force is used to explain dynamic effects in the
experiment ISAR T 1 and to estimate the influence of Alfvén wave heating on plasma

stability.

Il. The ¢=1/2=2 interference force for arbitrary time dependence of the plasma deformation

1. Description of the equilibrium

Helical =1 and ¢=2 fields with equal field period ) = 217/h are superposed on a
linear, cylindrical plasma column with circular cross section in a longitudinal field Bo.
A sharp surface and only surface currents are assumed. The plasma density is constant and
the plasma is assumed to be incompressible. The plasma pressure, however, contains dy-

namic components because of inertial forces and so it becomes space and time dependent.




The plasma is treated as an ideal fluid. The flow should be a potential flow. Plasma

rotation is not allowed.

The problemdf solving the relevant magnetohydrodynamic equations of motion
is considerably reduced in this model (e.g. /14/). The magnetic fields inside and out-
side the plasma can be derived from scalar potentials ¢‘ or ¢c , with 4 ¢"'e_ =0.
Similarly, the local plasma velocity can be derived from a scalar potential X and it
also holds that A X = 0. The solutions of A¢"e =0 and A X=0 in cylindrical
coordinates (r,®,z) are known and can be written for the £=1/¢=2 system in leading order

in the form, for example,

¢~ 2+ (c,L,tc, K,) sin(b-hz) +
N (C3I2_+Cz/ Kz).Sl:n (Zé'hz)-i-m (M

X~ e I1 co> (& ‘Az) f20y Iz cos (26 -hz)+.., (2)

l;(hr)l Kv(hr)are the modfied Bessel functions. For simplicity we assume hro K 1

(ro = plasma radius), and so the expansion for small arguments can be used.

As mentioned, the interference force in linear geometry leads to a non-
equilibrium because there is no toroidal curvature and hence no drift force. In the
present calculation this is counteracted by introducing an artificial gravitational force
which in the time average should be equal to the interference force. There are never-
theless, (e.g. in the case of an oscillating interference force), small, periodic dis-
placements of the plasmacolumn from the initial position. A nearly rigid displacement

of the plasma column, however, causes the plasma in the new position to '

'see" a changed,
external magnetic field /7,5/. In addition to an original ¢ -field, one has induced

e¥ =2 % 1 side bands, which are roughly by a factor l';/"'.f smaller. For the
¢=1/2=2 combination this yields £=0/2=2 and £=1/¢=3 fields. The corresponding induced
interference forces are proportional to the dfsplacement; , causing the well-known un-
stable behaviour of high beta stellarators (without stabilizing wall). In the followingi«’{

will be assumed and therefore the induced interference froces can be neglected. °

In accordance with the foregoing the following magnetic potential is taken:



¢6 =~ floe [2+ (A‘H %)St‘n (9—hz)+ (Crz-f %)—Z)sin (26 -he)t,_,]
(3)
¢[=_Hoi [E’: + Er sin (G-hz)+ Fr?som (29-—}1,_2) Wity J

All coefficients are time dependent. A and C are determined by currents in the
external & 1 and £=2 windings, E and F by currents in these windings and by their

mirror currents in the plasma surface, B and D only by mirror currents.

The plasma surface, is taken as an expansion about the cylinder:
=, [4,}. 54 Cos (O-AZ-) + 52 o> (20“A?)]+ ;COSG‘I‘ o
S0, 5.0, ft)y <1

The next step is to find a form for X which is consistent with ¢b'6 and rp,
I

(4)

i.e. the fluid moves with the boundary. This condition is met in leading order

by the ansatz:

X=-rr; 6 co(B-hz)-r S f cos (26 -hz)=r{aob + s
+r§(<§131+ 5251)&579)“" ) 5=°“S/dt

The last term in (5) is of higher order and ensures that there is no nonhelical

dipol term with respect to the perturbed plasma surface.

Together with helical terms of the same order and with the boundary conditions
at the plasma surface one gets conditions for higher order terms in the magnetic field
and the plasma surface. These terms are not needed in the following calculation and
have been neglected. One should show, however, that, inprinciple, a solution can

be found in this order.

-
The velocity field now follows to the required order with W= — VX

<
I

r, 5., co>(0-hz)+ rgz co> (26 —A?)#’j (i
Vg ==V, S, sin (0-h2)- 13, s (0 -hd)-§snbti. @



The magnetic field follows from (3) with B = *—V¢ :

Beg =B, [1- Ar+§)cm(é~kz)“ h(Cr®+ 25 ) o (26 -h2)t..]
Bey —Eeo[ Sm( ‘AZ-)‘I*(ZCY"—- )Sua 26~ /Lz)'fuJ
Beo =5, [(A+ ) (0-h2) 4 (20r+ 22 ) cos (26- hz)r.. ]

Bie = B, [1-hErcor(6-h2) - hFr2 cos (26 -h2)+ .. |
Bir= By [ sin (6-h2)+2Fr sin(26-hz2)+.. ] o
Bio= By L Ecos (6-h2) +2Fr cos (26~hz )+ o ]

It should be borne in mind that all coefficients are time dependent.

2. Equilibrium conditions and ordering scheme

The coefficients still free are now determined by two conditions:

a) The plasma surface has to be a flux surface.

b) The dynamic pressure balance has to be satisfied everywhere on the plasma surface.

Point a) has only to be satisfied in leading order and one obtains from h- 'B/Y‘

egs.(7), (8) and ansatz (4):
hy, 84 = E = (A-B/5;?)
hr, 8, = 2Fr = 2(Cr-/p,3) ®

The dynamic pressure balance according to point b) in the idealized model takes

the form of a time dependent MHD Bernoulli equation

_ __g 2
[_ +p,—2 v 2 +V-costs + ;4] v, [Z[M]'

(g = plasma density) (10)



The term Vecos € is assigned to an artificial gravitational field which is used
for compensating the interference force. In the foregoing definitions various assumptions
on the relative size of individual terms have already been made and many terms have

accordingly been neglected.
The order scheme taken as a basis should now be explained in detail.

It was assumed that hro, 61/ 52, {/yz <. In the following the relative order of

magnitude is characterized by the small number & = hv, <1
~ ~o <

From eq.(9) it then follows that

Ber  Beo Bir Bip o 2

) ) v o7

Beo’ Beo ' Bio  Bio

Bez —Beo oz =B _ =
-BCO / .B.,},

In Bz/ 2(«40 there are cross terms between £=1 and ¢=2 in ['qu ‘«Brz] and
z 4
(3, B, 1z(rp)])Where C-1/By = &7 . The terms [-30'32-,1,2 (v5)]
1

are pure helical terms of order £,

To calculate the interference force in leading order, only terms of the relative

: 4 .
magnitude &  need be taken in the pressure balance.

The relative magnitude of the plasma pressure is essentially determined by the
frequency. An essential influence of the inertial force is to be expected in the region

of the resonance frequency of the helical oscillations. With

T st a7 <
one obtains for a typical term:

74

B b3S, oo (6-hz) [+ 8, cor(0-h2) *8o ol -he) v ] =
Bog /2p10 ~ 0 (g3,£9)

As in the magnetic field pressure one thus obtains pure terms Of €3) and cross terms

or anharmonic terms 0’({;‘/) when @ is near the resonance.




(g%f )/(B:/Zt,ts) is of the order &% and also contains cross terms. The order

scheme thus fits exactly in the region of interest surrounding the resonance.
The dynamic pressure balance (10) now looks as follows:

a) The main field pressure and s’rutlc plasmo pressure are O (1) and yield the theta pinch

-Boi -Boe

= , where the plasma beta can now be introduced

2[4.9 Zc'{e

B=Po /(B 2ps) = = (Bod-R%) / Boc an

b) Terms 0 (€3) are pure helical terms and yield the equation of motion for the helical

pressure balance P, +

eigenmodes. With A or C = 0 one obtains the natural frequency of the (m=1, k=h) and
(m=2, k=h) modes.

c) The terms of the order 54 contain

®) constant and helical terms

ﬁ) cross terms of the form sin (B=hz). sin (286=hz) and cos(@=hz) » cos(28-hz) which can
be split into helical terms and non-helical terms proportional to cos®. The latter have

to be calculated explicitly.

3. Equation of motion of the helical modes

In the pressure balance (10) all terms up to 0’ (£3)are taken:

—5)';,25; ¢o> (6 ~he) —g"oz% co> (26-he) + p, +
‘BLO
0
Bey
ZCAO

(12)
[1-2hEv; co(b-he)-2hFr;2cor (26 - he) | =

—

[1-2h (v —y’% )cos(6-h) ~2h (Cr+ -,J% Jeo (20-hz) ]



The constant terms yield the theta pinch pressure balance (11). The time and space
dependent terms in conjunction with the flux surface condition (9) give the equations of

motion of the helical modes (in general forced oscillation, i.e. A% 0, C# 0).

- 2 2
et gl B )t -amin de

(13q)

A0 3,28, sinut = w5 = (—ﬂ)#f% = (28 k',

L=2: ,»625+Bco 2,2 27 B
L &{ZA)A §,=4 hr, CC"

(13b)
£=0, 3,28, sinwp,t = Wy = AN L
7,02 TO2BN Wy 02 = (2-4) h'Up =y = Wy
For constant 51 2 & , We get the well known result /5/
] ]

comme———

*mhro T(2A) Bee AW, 3

_ A
51 < .'BV'4¢. 1

¢ o mmm—

— A
S - 4Cr, L2 Jyrze 1
2 (-fhr (2-8) "B, hr,

For €=1 and ¢=2 of equal field period A=2r/h the resonance frequencies are
equal. With finite damping there would also be a d— term. The influence of which
on the interference force as well as the effect of the compressibility will be discussed

later.

4, Calculation of the interference force

Contributions to the directed force are made in eq. (10) only by terms with the angular

dependence cos ©. These are obtained from the cross terms according to the relations

sth (26 -hg) s (b-hz) = -;1 [cos® —cos (36 2he) |
cos (26-hz ) co> (0-—h2)=§ [ cos® + cos (30—2Az)] (14)




At this point it becomes clear that cos &-terms are obtained just when the
longitudinal wave numbers are equal and the azimuthal wave numbers differ
by one. At the same time, however, one also obtains helical coupling terms
(and also pure anharmonic terms) of the same order, which cause a slight ad-

ditional plasma deformation and may lead to parametric effects.

The derivation of the individual terms of order €% will be briefly indi-

cated:

) v? §
[35%—‘33]’;—?*—3’@5‘%9 (15)

(This is the only £9 term containing the displacement f )

.Boz—fl‘: Bey _ _Dd _
Czc*o /r_r 2;‘ %9{ (A% )(Cro= s ) -2 -8)EFs -

~She (A-E5)- 28, by (0= 25 )+ 2, (Ary+ ) (Criv

+ (1-4) [ hr; 6, E +2hv, 4, Fr, —ZEI'/,;]} (16)

Together with the equations of motion (12) and (13) and the flux surface con-

dition (9) this finally yields in order g9

-Bcoz' -B;oz -Beo 2.2
2o q> e ca>9[ AR 640, # (17)

2P1P2

et o 2 i )]

Pr = “3'525; , P=2= ‘S"ZZJz /2-

(18)
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According to eq.(10) this produces the following equation of motion for the transverse

displqcementfof the plasma:
2

Voot - grfco—aﬁ* ‘B‘l’; cm@[ (2-3) 3 h’r, 2oC

2Py p; Mo 2po
el AE (Gprdps2) ]

or with V= /(,“°3/ we=hl (2-2) (cf eg. (13))

(19)

me" 24 2/3)hro [/35, +(2ﬂ)‘;’ 2 4 1/5’)5"3*325«]

The dynamic interference force F

V=0 cmdF]2 STy 5’/ or:

12 Per unit length is obtained by setting

Fom 52 Ao 44 syttt |

As a check, the static interference force ( 5., = 81 , §Z S JZ )

per unit length agrees with known calculations /5/.

Z

Fiz, stat —Z-t—i; (2-8)mh*3 -6, 5,




In the formulas above 6., (f), 52 (t) are assumed to be given. If, on the other hand,
A(t) and C(t) are prescribed, then (;1 (‘t’)J Jz (‘l’) have to be calculated from the

equations of motion (13).

Let A(t) and C(t) be periodic in time:

A (f‘) % Ao Sin h),t
C(H=C, stnw, t

2A. o?. , Y S
‘{1 (f): (2_/;)4,”, : wi‘)-'wz S to,,t = cS, Smw.,f'
0 (1} 1

‘/C woz \ 4 N ~
b

One then obtains:

V-rgf= ﬁ; (2RI 8y 8y sinw b sim, t 22

[-B+(a-p) Beve “’2 - (1-R) “’”w‘ N

/

2 A A
3 Wo

W . .
F"YZ (t)*"-’jﬂ"f; * 3 0102 Spnw1t~5w1wzt‘ (23)

'[ﬁ’(z°ﬁ>) 1602_ +(7_£)w1 +L~)2 ] o

/



Z
{_ = Z oe . ‘/Ao Co
R, () =y, Y

-Sth el stnw, t -

(23b)

Y

(wow W R)(0E-00%) [B-(2 ﬂ) -+ (1- Flgh-do® - w,m)a ]

As an example we discuss the special case Wy=wW, =W .
We define

fa= [p-(R) 2y + (2-28) 2, ]

Plots of the function fB and fB .woq/(woz—wz)z are shown in Fig.3. From

the curves the following behaviour of the time mean value is obtained for oscillating

=1 and =2 fields with the same frequency (for W4 # W, the situation is more

complicated):

a) For w < We the interference force acts in the direction & = 0, i,e, in the

direction of the more pronounced corrugation as in the static case.

b) At the resonance W = Do the force goes to zero when the plasma amplitude is kept
constant (Fig.3a). As the external fields are zero there, no force can be exerted
from outside. With constant external fields the amplitude would tend to infinity be-
cause there is no damping; the order scheme is then only valid at a sufficiently large

distance from the resonance (Fig.3b).

c) For @ >t the interference force acts in the opposite direction, i.e. in the

direction of less corrugation.
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Fig. 3a,b

The explanation for this frequency response is the following: In the static and low
frequency case ( W < (e ) the plasma advances into regions of low magnetic pres-
sure and recedes at regions of high magnetic pressure. In the region of stronger curruga-
tion the mean pressure at the plasma surface is thus also more strongly reduced. The de-
formed column is therefore subjected in the static and low-frequency case to a force

in the direction of stronger corrugation.

This behaviour changes drastically at the resonance frequency (o= Vz—/3 h \a

because there is a jump in the phase relation between the plasma oscillation and
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the driving field from zero to JT . Thus above the resonance frequency e the plasma
is driven in regions of high magnetic pressure by inertial forces and vice versa. The
mean pressure averaged along the surface is therefore higher at the side of stronger

corrugation and the plasma column is pushed in the direction to lower corrugation.

At very high frequency ( O » h Va ) the plasma surface can no longer follow
the field oscillations and becomes more and more cylindrical (if there is no static
part of the helical fields). Again the mean magnetic pressure is stronger at the side
of stronger field modulation and the force is in the direction to lower field modulation.
For constant magnetic field amplitude the interference force becomes independent of
the frequency in this simple model.In Fig. 4 a corrugated asymmetric plasma column

and the direction of the interference force is shown schematically for different frequency.

oscillating

/P“‘S"‘“\ J/ field N\

Z
‘ z
. Z
Z
Z
\ Z
Z
— A e
W< Wy W> Wy wS>Wg

Fig. 4

The latter case corresponds to that of a rigid, conductive cylinder (e.g. Cu pipe),
where inertia is replaced by intrinsic strength. That is to say a Cu pipe will always be
forced in the direction of weak corrugation, irrespective of the frequency (ideal

conductivity being assumed). This special case can be exactly calculated and leads




siié-=

to the same result as the approximation calculation.

From the foregoing it is also clear that the frequency response of the interference
force is not only valid for the £=1/£=2 system, but probably for every M-and-S structure.
Nevertheless in a real plasma the phase relation between the field and plasma oscil-
lations is more complicated, possibly resulting in a qualitative change of the frequency

response at very high frequency (W > We )-

As many MHD instabilities in M & S equilibria are produced by interference forces,
it is anticipated that a reversal of such interference forces above the resonance would
cause a change from instability to stability, i.e. these model would be dynamically

stabilized.

Finally, 5 (t) is given for the case of static fields with oscillating component

(w.,=l*)2_=w )s

51;—; +81 Sl:VlL\)t ) 52"—‘ 5‘; +(§'Z SI:V!lA)t )
e V —. =
f(= or, + > /-]’6\15\ +[/~7>+(1 ﬁ)w 2_](61gz+8181)5‘n“)2-+
~ (24)
+35 8 st [B-(2-R) L5, + (2-20) 2% ]
V is adapted so that no constant term occurs, i.e. equilibrium is maintained in the
time mean:
Wo* o
L= o { a0 +
4
183 [p-emigy+en ]
(25)

Integration then yields:



W T “ 2
— cos 2wt e 843, [ﬁ- (2-13) Z)-Jo" +(2-2p) g’-;zj

~

As it holds that 3 5 8 = £ , the relative de flection for )2z (e LS
even §//" - £ and so the assump'rlon made previously is justified.

5. Influence of damping on the dynamic interference force

Damping of the helical oscillations can be caused by classical effects. Much
more important at high temperatures in real plasmas, however, seems to be the decay
of modes as a result of phase mixing /10/, mode coupling, excitation of parametric
resonances etc. followed by classical damping of the secondary modes . m 3> 2 modes
may also be subjected to strong damping by finite gyroradii. Without defining the
damping mechanism more precisely, we arbitrarily introduce a damping term into

the equations of motion (13):

(¢ : 20 20 G2 A
J,+Zty,5,+wo 91 = s T e

(27)

.. 21.4 g
$3+ 2,8, +w, d, = Wy e

This results in a changed helical dynamic pressure
P = = 58%°(d;+ 24,6 ) = §% Wy (‘51“2’4/((2‘/3)'”*%))
C e R S Voo B2
Fop = =8 % (32 2492 )=8 B2 (.- 4cns (=) )
It then follows from eq. (17 = 19) that

. 2 ' . o b o
Lo e S i)

(1) 33 [ (62 di)+ 5, (6,42,8) 1)

(28)




- 18 -

2 z P4
In the freely oscillating, damped case (A=0, C=0/ Ll),,lz_:[\)o . X.fl;_ )

the interference force term is zero.

For a stationary, oscillating case we get the well known solution of (27):

AlB)=Agsinw,t | C(H= Csinw,t .

2

- A Ao w‘) . =
81 ({-) (Z—ﬁ) hb’; V(w12“woz)z+ 4)’12401{ Sin (wqt (fﬂ) )

4 G (e ‘ (29)
0 (1)< 27) A \oz-wz)+ Yy wr e OF

59 2000y / (wi-orl) |

For }4/604/ Xz/la)z & the interference force is not essentially changed. For
strong damping, however, the combined effect of phase shift and reduction of plasma
amplitude can cause a reversal of the interference force well below the resonance frequency.
For X'f,z MWy, for instance, the plasma cannot follow the magnetic field oscillations.
Thus we get the case of a nearly cylindrical plasma column also for low frequency, while

without damping it occurs only for W 5>, as found in the preceding section.

6. Influence of compressibility on the interference force

So far incompressibility, i.e. velocity of sound Cg = 00 has been assumed. In
2 2
experiment, however, one has Cg = UA, \ Xk ! ﬂ/z )
. 2
t.e, Cs £ U)‘a

to be expected that there will be additional effects near the magnetoacoustic resonance.

( = adiabatic exponent). It has therefore
k

With finite compressibility appropriately modified expressions P]K' P2K have to be

substituted for P] : P2 in the oscillation equations and correspondingly in the interference

force (19).

P]K is obtained from the paper of G.Berge /13/ on dynamic stabilization for
~v

g =5,,$inw,'t, )/1=0.'

1
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g 2
P'fK =—f02(§1§w4 i K4 (UA,CSIA/ w") )

2,2 (1. 2 (. 2 ° e
K,,=[’l- hUZ)fZ/g)J/[%é)+7_hUAo£;A)J (30)

A similar form is probably valied for P2K:

5 gV

N

62. . 82 -SI:VI L\)Zt

@31

2 4,

— 2

PZK 0 ?gw K ( Cslﬁlwz).

Instead of (23) the interference force is now qualitatively (&, =60,= LO ) :

FZK 2 (Z-ﬂ)i"}lz 35 5 Swn wl‘ ]Cﬁk)

(32)

759)( [ﬂ Zﬂ)—al' K K 7‘/5’)%;". (K1+K2)J

fB K is represented in the following sketch for ) 5/3, B= 0.6 on the assumption

that K] = K2, with the incompressible case for comparison (Fig.5) .

‘ fan
1.0 - f=0.6
054-—4—76\_\%3
N \
\
\
0 v v \‘ 1=
bee. . hYA..:\ w
\\
'0.5" p-oe \
YK'“ \
-1.0 1 \

Fig. 5
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The interference force is now negative in two regiohs, namely in the immediate
vicinity of the magnetoacoustic resonance and above the slightly shifted Alfvén resonance.
With strong damping the first region may disappear. In the case of long mean free
path a new calculation has to be made, because the velocity of sound then losses

its significance and .new effects occur.

One should also notice that for @ » g radial plasma oscillations become
important. In this region the phase relation between plasma and field oscillations may
be a complicated function of the frequency and the result of the incompressible model

may be completely misleading for very high frequency.

I11. Some practical applications

1. Dynamics in the ISAR T 1 high-beta stellarator /9/

In the ISAR T 1 torus the ¢=1/e=2 interference force (and partly the £=1/¢=0) is
used to compensate the drift force. The plasma is heated by fast compression in a simple
quartz torus, thus the plasma deformations are initially almost zero. The helical fields
are switched on almost simultaneously with the main field, forcing the plasma column into
a helical equilibrium position and therefore causing helical oscillations. The observed

oscillation of the m = 1 mode is approximately of the form
< ; i, -¥qt -
The m =2 oscillation is more difficult to measure. For é\z (f) the same form is used here:

3, = (Tz (4—— cosw,t c—Xz l{-)

Again Xl = (), '1,,,0.2L.)zho|ds, at least, when the influence of the finite gyroradius is

weak . One thus has damped oscillations which are excited at the time t = 0.

The potential V, which here replaces the drift force, should produce equilibrium

fort—= co

V __ &,y
3'32 Zﬂ.’z'
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Integration of eq. (28) with f(#-=0)=§ (£=0)=0 yields

2 2 2
S= - B8 [(pap)p v 220

2
+ X,’_qu' —X"i: ‘{'—-Z w‘fz‘i
wDZ e Cosw‘f woZ @
A
3’22‘ 0,2 &2 W2 Y2

-E/r, [
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Fig. 6

Fig.6a shows the sideward motion ;(/rof the whole plasma column compared to the drift
- °

parabola( 51'-‘ ng =O.2/ %:Xz:(msw, w=w4=wz=3—1065'1/

p=05).
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One finds that with helical fields in the first half-cycle the plasma moves in the drift
direction faster than in the case of pure toroidal drift. The asymtotic behaviour is
characterized by an initial displacement So = =V 54 d; and a constant
velocity U = — 1N (;:(fz Y . By increasing the helical fields (here 3.5 % each)
for some time, the plasma can be forced back to the axis again ("field programming")

(Fig. 6b).

This behaviour is also observed in the experiment /9/. One should keep in mind,
nowever, that experimentally the dynamic phase is much more complicated and the scaling
used here, in principle, is not valid for ISART 1 ( J1,exp 2 1). On the other hand,
calculations of the static interference force have hitherto yielded the same results in most
scalings, and therefore the explanation in terms of a dynamic interference force should
be at least qualitatively valid. On the basis of the above calculations one can now con-
sider ways of avoiding such a displacement in the dynamic phase of high beta stellarators

(shaped discharge vessel, programmed ¢=1/2=2 fields, etc).

2) Alfvén wave heating and its effect on equilibrium and stability

The theoretically predicted /10/ and experimentally confirmed /11/ strong damping

of the helical modes in real plasmas suggests their application for plasma heating.

From the radial dependence of the helical fields together with the oscillation
equations (13) it follows that the m=1 excitation is the simplest and most economic

proposition /12/. It is therefore assumed that only the ¢=1 field oscillates:
b and ~ —
§,=0,% 34 smuw,t, 9,=6,
From the equation of motion (27) we calculate the heating power per unit length of the

helical plasma column:

(34)

~ 2
P =4, ~w12~)/4-/‘r5;g_"



o

In order to drive this oscillation we need an oscillating external €=1 field B

r1, Vacuum
at the plasma surface
B ~ 2 2y2 2 S
'B"", Vacuum = _ 5 (Z‘ﬂ)h v \/(wo =Wy ) rh z/[,‘&h
B 1.2 p W2 '

oe

From theory /10/ as well as from experiment /11/ one finds Y1 =01, 02w,,
For economic reasons (optimum ratio of heating power to external losses /12/) one
wants to work near the resonance, and it is very important to know, if there is any
influence on the equilibrium. Therefore we calculate the interference force and

its time average :

Fo= s 2[R i+ §sinut) -

_(1_ﬂ) §—7; 51 (Zx,wcoswf - szinwlL)J )
LJOZ

_ 3WS )T T (35)
<Ez> —gTTY;, > 3281 = '[‘;Z,Sfai'. 5

It turns out that in leading order there is no change of the equilibrium forces in

the time mean.

In next higher order, however, one has to include the induced interference force
as described in cap.II, 1, i.e. one has to investigate the stability of the system in the
presence of an oscillating field. This has been done by the author in a preliminary way
showing the possiblity of dynamic stabilization of an m=1 displacement above the Alfvén
resonance ( W * > (2-/3) AzUA,a ). With damping stabilization occurs also
at lower frequency. The explanation of this fact is quite similar to that given in section I, 4,
but now corresponding to the induced interference force. A similar result was obtained in
/15/ for the case of a travelling bumpy Field‘s'rrucfure superposed on a linear theta pinch

and, in a more general way, in /13,14/.
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It should thus be possible in, for example, an ¢=1/2=2 system to choose the static
and oscillating field components such that equilibrium is preserved, that it is stable to
long-wave modes, and that sufficient heating is provided at the same time. This state
could be very interesting in the heating phase of a stationary high-8 stellarator reactor
since external high-frequency losses in the initial phase are insignificant when the burning

time is long.

V. Summary of results

The influence of the plasma dynamics on high-beta stellarator equilibria was investigated
in an idealized, linear model with artificial force of gravity instead of the toroidal drift

force.

Time dependent 2=1 and ¢=2 fields with equal magnetic field period were super-
posed on a circularly cylindrical plasma column in a homogeneous longitudinal main field.
The equations of motion of the plasma including anharmonic effects and mode coupling
of the 2=1 and ¢=2 fields was explicitly calculated for frequencies in the region near the
resonance frequency of the helical modes. It is frequency dependent and changes direction

above the resonance frequency. A simple interpretation was given for this frequency response.

The influence of damping and compressibility was discussed. Essentially, the two
effects only lead to quantitative corrections without changing the basic behaviour. With

strong damping reversal of the interference force is possible also for low frequency.

Judging by known results, those obtained here are probably relatively independent of
the scaling chosen, and should thus be valid in other scalings. In similar form these results

should be valid for all theta pinch like equilibria with periodic additional fields.

The calculated frequency dependent interference force was enlisted to interpret the

plasma motion in the dynamic phase of the ISAR T 1 high-beta stellarator.

Finally, it was found that with sufficiently strong damping of the helical modes (e.g.
by phase mixing and the like) it might be possible to combine plasma heating and dynamic
stabilization to advantage. This phenomenon could be interesting in the heating phase of

a stationary stellarator reactor with high 3.
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