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Abstract

For a toroidal plasma with vertically elongated cross
section, an exact solution of the MHD equilibrium equation
is constructed which satisfies the Mercier criterion on
the magnetic axis. In the particular example treated in
this note, the ellipticity parameter is E = 0.15 which
corresponds to a ratio of the half axis b to ap of the
elliptical plasma cross section of 1.2. This equilibrium
is Mercier-stable against localized modes for (Rj/ZB)2 .
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Recently, a class of exact axisymmetric solutions of
the ideal MHD equilibrium equation has been found by the
authors. If only the simplest type of solution is used
for describing a toroidal plasma with vertically elongated
cross section, e.g. a belt pinch, it is found that this
equilibrium is MHD unstable according to Mercier’s criterion.
However, using an appropriate superposition of two exact
solutions, a weak triangular deformation of the plasma
cross section is achieved in such a way that Mercier’s

criterion for stability can be satisfied.

In recent experiments on toroidal plasma confinement,
the aspect ratio (= ratio of major to minor radius of
the torus) is relatively small, so that the usual expan-
sions of equilibrium solutions in powers of the inverse
aspect ratio are not applicable. A class of exact solutions
has recently been found by the authors [1, 2]. A very
simple particular solution has a bell-shaped current
distribution and seems useful for the description of
equilibria of the tokamak or pinch type. In the present
note we investigate the stability of this particular
solution against localized modes by applying Mercier’s
criterion [3] in the neighborhood of the magnetic axis.
We shall show that this solution is unstable for a plasma

with vertically elongated cross section, as for instance




the belt pinch [4]. We then show that it is possible to
construct a stable solution by an appropriate super-

position of two exact solutions.

Let us first introduce the general solution of the
equilibrium equation. Using cylindrical coordinates, we

write the axisymmetric magnetic field in the form
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where R measures the large radius of the toroidal plasma.

IA and the pressure p are functions of F only. We choose

these functions in the form
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The equilibrium equation, j x B = Vp, then takes

the following well-known form:
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We now introduce the new variable
2
1 R
p= .3 777 . (4)
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Looking for solutions in the form F = H(p)cos(kz/Ro)
we find that H(p) satisfies thé differential equation of

the Coulomb wave functions [5]. Thus, the general solution




of the equilibrium equation has the form

F(R,z) = «[F_(n,p0) + yG_(n,p)] cos (kz/R)) (5)

where F and G, are the regular and irregular Coulomb wave

functions of order zero, with

N TR T (6)

We now prescribe the following boundary conditions on
F(R,z): F =0 for R =0 and for z =t b. From the first con-
dition we get y = 0, the second condition determines the

possible values of k:

R
k = (2n+1)-g- —g— = k, (n=0,1,2...). (7)

It is now possible to construct various types of
equilibrium configurations by superposition of solutions
with different values of n. For our purpose it is suf-
ficient to consider

F(R,z) =Z

Lo F, (q,.p) cos (knz/Ro) (8)
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where U is given by eq. (6) for k = kn.
We take al/ao > 0 in order to have a magnetic axis (and

not a hyperbolic point) in the plane z=0.

We now assume that thereis a magnetic axis at R = Ra’ z = 0.
If we denote the partial derivatives of F with respect to

R and z by the corresponding indices, we may write the




equation of the magnetic surfaces in the neighborhood of

the magnetic axis in the following form:

2 2

2
(F,.) (R=Ry )< (F,,), %

RR’a + (F ) (R-Ra) z

Rzz’ a
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(the index a indicates that the derivatives are taken on the

magnetic axis).

For equilibria characterized by functions p(F) and
IA(F) of the form (2), Mercier's stability criterion applied

to the neighborhood of a magnetic axis is
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The expression on the left-hand side of the criterion (10)

is related to the rotational transform on the magnetic axis by

(12)
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(-4 _ = 1-g2 (R4,

. (13)
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The last term in the curly brackets of (10) is the ballooning
term which is always destabilizing and increases in magnitude

with increasing pressure. The other terms in the curly bracket

correspond to the mean magnetic well.

a) We first consider the case a; = 0. This corresponds to the

case studied by Herrnegger [1]. We then have

(Ppgzla = 0 (Fg). “(B,.), &0

since (FR)a = 0. For the other partial derivatives we find
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Here s = (1/2) Np (Raz/Roz).

The stability criterion then becomes
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The expression pa/(pa—Zno) in the second term of the right-

hand side of (14) is of the order of the aspect ratio, as we




can see in the following way: The differential equation for the
coulomb wave function [5] shows that for p = 2n_, the second
derivative of Fo(no,p) vanishes. Hence, for this value of p
‘dFo/dp\ is a maximum and therefore p = 2n, corresponds ap-
proximately to the boundary of the plasma. Denoting by Rb the
radial coordinate of the inner plasma boundary and by ap the

typical small plasma radius we may write
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TIf the ballooning term in (14) is negligible (low pressure)

then stability is achieved if

P
1- = E 2

> 0. 16
> oo, (16)

This is clearly satisfied for E < O (horizontally elongated
plasma cross section). But according to (15), the stability
condition (16) is not satisfied for E > ap/Ra (vertically

elongated plasma cross section).

b) We now consider the case al/ao # O.
We wish to show that a small deformation of the configuration
considered in a) is sufficient to achieve stability for E > O
(vertically elongated plasma cross section). For this purpose
we consider a particular case by choosing the following para-

meters:
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R
-qo = 4, —f— = 3.59, V-P = 21.2,
a
1 _
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We then obtain n = 7, M= - 307 and E = 0.15,
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The criterion now is ( 3% )a < 1.25

or taking the square root and using eq. (13):

b
( e )a < 1.23 .

In Figure 1 the magnetic surfaces of two configurations with
vertically elongated cross sections are shown. Fig. 1l(a)
corresponds to the case a) discussed above, Fig.2(b) corresponds
to the case b). In both cases, the magnetic surfaces are
approximately elliptical with a triangular deformation.

In case a), the triangle points are towards the symmetry axis,
and this case is MHD unstable, as we have shown above. On

the contrary, in case b) the triangle points are away from

the symmetry axis, and this case is stable for sufficiently low

current density.




In conclusion, we have obtained the following result. For

a toroidal plasma with vertically elongated cross section,
an exact solution of the MHD equilibrium equation can be
constructed in such a way that Mercier’s criterion is satis-
fied. This solution is then appropriate for further studies
of the stability of configurations like a belt pinch or a
sharply curved tokamak with non-circular cross section. In
the particular example treated in this note, the ellipticity
parameter is E = 0.15, which corresponds to a ratio of the

half axis ap and b of the elliptic cross section of

2. & 1016y with b/R, = 0.28. It is

b/ap ~ [ (1+E) /(1-E) ]
possible to obtain stable solutions with much larger values

of E, for instance of the order of the values used in the

; 2
belt pinch [4]. In this case the stability limit for (R3j/2B)

can be shifted to values larger than one, so that more

efficient ohmic heating might be expected.
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Fig. la) Magnetic surfaces of configurations with vertically

elongated cross section: a; = 0, ng = 4

A, E = 0.51,
b/Ro = 0.28, VP = 20.5, F(Ra, z=0) = 1l; unstable for
localized modes.
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Fig. 1lb) Magnetic surfaces of configurations with vertically
elongated cross section:

al = 0393' no - 4’ b/Ro = 0.28, V-P = 21.2' E = 0.15,
F (Ra, z=0) = 1l; stable against localized modes.
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