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Abstract

Solutions are given for axisymmetric MHD equilibria obtained
by superposing the magnetic field of the plasma currents and
the field of current carrying conductors situated outside

the plasma. These equilibria were numerically calculated by
several different iteration methods for solving the nonlinear
free boundary problem. They can describe experiments in which
the discharge time is long compared with the diffusion time of
the magnetic field through the external conducting walls.
Equilibria were obtained both for approximately circular
plasma cross sections and strongly elongated (elliptical) ones.
Such calculations are of interest for constructing axisymmetric
Tokamak divertors, as well as for producing elongated cross
sections, which have been postulated to be stable for higher
values of plasma pressure,

The results presented here are restricted to the case of

zero plasma pressure and a particular current distribution

in order to reduce the number of free parameters and allow
more detailed discussion of the dependence of the equilibrium
configurations on the arrangement of the external conductors
and the currents.,




INTRODUCT ION

The vertical magnetic field needed for equilibrium in a
TOKAMAK device can be produced either by the mirror currents
induced by the toroidal discharge in a conducting casing

or by additionally applied currents in external conductors.
For experiments of sufficiently long duration, the diffusion
time of the magnetic field through the conducting walls
becomes too short to make the first method practicable.

The present paper is therefore concerned with the computation
of axially symmetric ideal MHD equilibria in which the total
poloidal magnetic field is obtained by superposing the vacuum
field of currents in axially symmetric conductors on the
field of the toroidal plasma currents. The superposition of
these two fields can result in the appearance of a magnetic
separatrix, which can be used for constructing an axially
symmetric divertor [l]. Such multipole currents can be used,
moreover, to deform the magnetic surfaces so as to produce
configurations having better stability properties than
TOKAMAKS with circular plasma cross section[2,3]°

The equilibrium problem which we have treated numerically

in this paper is a free boundary value problem, with boundary
conditions at the axis and at infinity. Previously
SHAFRANOV[4] and JOHNSON[SJhave already used approximation
methods to study the equilibrium position of a plasma column
with circular cross section in an external vertical field.

A problem analogous to the present one also occurs in the
theory of the geomagnetic ring current, where it was solved
by a technique similar to that used here[rkjh

The calculations presented here are restricted to force-free
equilibria with a simple sharp boundary distribution of
volume currents. These restrictions were chosen to reduce




the numbers of free parameters during the first tests so as
to allow discussion of a number of geometrically different
configurations. Calculations with varying plasma pressure
and current profiles will be reported later for a reduced
nurmber of plasma cross sections. Tests have already shown
the numerical methods developed in this paper to be equally
applicable to a much wider class of current distributions.

1. MATHEMATICAL FORMULATION AND METHOD OF SOLUTION

Ideal magneto hydrodynamic equilibria with axial symmetry
are described by solutions of the equation [7]
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for the flux function * where p is the plasma pressure
and ‘r and F are defined in terms of the magnetic field by
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F und the pressure p can be shown to be functions of"l’
only. In the following we shall abbreviate the

differential operator on the left of equ. (1) by L and
the function on the right by f ("’,f)o

It is convenient to split the flux function Y’into two

¥=t + Y

where Y’o is due to the applied currents in the external
conductors and P due to the currents in the plasma

parts




and any mirror currents induced by them in conducting
walls. In the case of a multipole TOKAMAK without
conducting casing, Y;, has to satisfy

L. = £, + %), 7)

and the boundary condition Yfg = 0 at the axis and at
infinity. The contribution ‘[: of the multipole conductors
can easily be computed using the standard expressions for
the field of circular wire loops.

For the general case of £ (¥y) the above problem is
nonlinear and has to be solved by iterative techniques.
Lackner [6:], Fisher [8] and Marder and Weitzner[Q] have
previously shown that the most straightforward scheme
for the above equation

l#nwl:’[(m*y;n)"r) “eqxs (hes (2)

has only a limited range of convergence. They found that
if the formulation of the problem allows of more than

one solution, this scheme is able to give only one,
generally the "shallow" and often physically uninteresting
one, If, in particular, the problem allows of the trivial
solution ?’PE O, as do many of the cases to be reported
in this paper, the above scheme (2) will converge to it
only.

The range of convergence can be significantly extended
by using a more general iteration scheme of the form
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in which also the functional form of the right-hand side
of equ. (1) is changed from iteration to iteration [ 10] .




This change,which in practice implies a change of one or
two parameters of the function £, is governed by the
requirement that an equal number of other parameters b."
which depend on the solution of (1) are kept constant
during the iterations, i.e.

b:: f;(wfpﬂ)g bi = E(TP) N €Y

A scheme of this type was used in [6J for computing
equilibrium configurations of the geomagnetic ring current,
where keeping constant the dipole moment of the plasma currents

allowed to obtain equilibria far beyond the branch point.

A mathematically more detailed explanation of the success

of the scheme and a comparison with the alternative method
of Marder and Weitzner ( a three-point iteration scheme)

is given elsewhere [lOJ; purely by intuition alone one would
already expect a scheme of the type (3) to be sucessful,
provided the ki can be chosen so as to determine uniquely

a solution. In particular, it is, of course, very easy to
find restrictions of the form (4) which discriminate against
the trivial solution %= 0.

As outlined in [l(ﬂ, a scheme of the type (3) has some
further advantages concerning the rate of convergence of

the iterations and the selection of parameter intervals
corresponding to the range of existing solutions. Furthermore,
the parameters Bi of formula (4) often turn out to be
physically important and transparent quantities (such as

the total current or height of the plasma column) which can

thus be chosen prior to the calculations,

The results presented in this paper are restricted to a
force—free' sharp boundary plasma with distribution of

toroidal currents given by
s

and #”r """'(5)
FF=A for Y2 Y,
FF'=0 for ¥,




Formulated in this way, the problem is nonlinear since

the position of the plasma-vacuum boundary 'f‘" ‘fé

depends on the solution itself. In particular, it allows

for the trivial solution Y'PE O in all cases where )‘é 2
max lg, €.9. when t)o and Y‘o is produced only by
currents with a sign opposite to that of the plasma currents.

In implementing iteration scheme (3), A was either kept
constant or varied so as to conserve the total plasma
current IP' The value of YE” was adjusted during iterations
so as to ensure that the plasma boundary would either always
intersect the symmetry plane z = O at the same point at the
inner (fig. 1 a) or outer side of the torus (fig. 1 b)or
always touch either a double cone going through the center
point (fig. 1 ¢) or a plane z = h parallel to the symmetry
plane (fig. 1 d). The combinations found to be most
successful here were:

I. keeping A constant and varying % as in fig. 1 b (for
plasma columns of approximately circular cross section)

and

I, keepingIP constant and varying v‘c as-an fag, 1 ¢ *(Eor
plasma columns elongated in the vertical direction).

Other combinations tested and giving convergence are:
constantIp and variation of ",’c as in fig. 1 a fmainly

used, however, with current distributions other than

equs. (5)) and constantIP and variation of ‘fz as in

fig. 1 b (used for elongated plasma columns,but giving

in many cases worse convergence and over a smaller parameter
range than II). In no case did we get convergence when
keeping Ip constant and varying Y’c ag 'in fig, 19b%

The linearized equation (3) for Y;:“v?ras solved by a method
similar to that used in [6] which consisted in numerical
evaluation of its formal solution in spherical coordinates
gand X = sin O:
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where
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?VM (X) are the Jacobi polynomials and
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their normallzatlon factor. The numerical scheme for the
evaluation of (6) and (7) can be reduced essentially to

two matrix multiplications corresponding to a computational
effort involving 2¢NeM (}/2) multiplications per iteration
cycle, where N and M are the number of radial and azimuthal
grid points respectively and a} the highest order of the
expansion into Jacobi polynomials. This method automatically
incorporates the correct boundary condition and is quite
satisfactory except in the case of very small aspect ratio

( .‘:,0.06) ,» for which the expansion into Jacobi polynomials
converges slowly. The computer time for a typical
equilibrium calculation (excluding the time required for
computing the field of the external conductors ) with

N = 100, M = 50, J = 50 and requiring 10-20 iteration cycles
is less than 10 sec on a 360/91.

The examples of application of this method that are given

in the following sections refer to two sets of configurations:

(1) equilibria with approximately circular plasma cross
section and magnetic divertors

and (2) equilibria with strongly noncircular plasma cross
section,



The results are given in dimensionless quantities based
on a characteristic distance Ro (indicated in the figures)
and a current Io. The corresponding c.g.s. quantities

are given by

- - 3¢
lP—IQ ‘Lp e » o o o (total plasma current)
4lo 2*
~B = E‘cs‘ B « ¢« ¢ o+ + (magnetic field)
L)

e
\P = -‘-’—'%Lgﬂ. ‘f‘ e« »~ & ¢ o« (flux function)

£

7; A e » o+ (toroidal plasma current
+* density)
L o

from the dimensionless
» o
values_Tp ’ 3“ etc. The asterisk for the dimensionless

quantities is dropped again in the following,

TOKAMAK CONFIGURATIONS WITH MAGNETIC DIVERTORS

Fig. 2 shows an equilibrium configuration produced by the
vacuum field of four conductors, with currents flowing

in the direction opposite to the plasma currents. This
configuration originally suggested by LEHNER[llJ ., can be
used to construct a divertor with a separatrix passing
through a stagnation point on the inner side of the plasma
torus, The four conductors are situated on a circular torus
with an aspect ratio of 1 : 3, the current in each of the
inner conductors is -0.725'.??, in each of the outer ones:
-0.362'IP. This configuration lead to a strong coupling




between the plasma and the multipole currents: any change
with time of the multipole currents during the duration
of the discharge induces an electric field in the toroidal

direction, driving additional plasma currents.,

To minimize this coupling between the plasma and multipole
currents, we chose for fig. 3 an arrangement in which the
sum of the currents in the five external conductors vanishes.
For this configuration we compared the numerically computed
equilibrium positions with those resulting from SHAFRANOV's
formula [4] , which for our case and in our dimensionless

variables reads:

Bjea Rc(&ﬁf“é)-"" A b

Here Bz is the vertical magnetic field (assumed to be
homogeneous for Shafranov's formula) required to keep a
circular plasma column with homogeneously distributed
currentI}: and a small radius rp in equilibrium at a
distance R, between the axis and center. line of the plasma.
Fig. 4 gives a comparison between the equilibrium positions
resulting from the above formula with those of our
calculations for cases with constant values of A and of
the external currents, but varying total plasma current P
As the actual field produced by the external conductors

is inhomogeneous, we substituted B, in equ. (8) by its
value at r = R . The agreement w1th Shafranov's formula

is very good except for the larger values of]Q’ where the
plasma column approaches the stagnation point and starts
to deviate significantly from the postulated circular shape.

An additional problem is the stability of the plasma column
to horizontal and vertical displacements [12]. For
approximately circular plasma cross sections we found it
possible to obtain solutions which are stable to such
disturbances by adding suitable external conductors.
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NON-CIRCULAR PLASMA CROSS SECTION

In addition to balancing the hoop force and forming magnetic
divertors, external conductors can also deform the shape of
the plasma column., According to a semi-empirical argument

by ARTSIMOVICH and SHAFRANOV %] plasma cross sections
elongated in the axial direction should be stable to helical
deformationsfor plasma pressures up to an order of magnitude
larger than those permitted for circular columns.Flute type
instabilities would then have to be stabilized by giving

the elongated plasma column the shape of a segment [3]. As
elliptic deformations are produced by external fields which
destabilize the column with respect to vertical displacements
[1%], plasma of this type will probably require feedback
stabilization of its vertical position. In the following

we discuss three ways of producing elongated equilibrium

configurations.
CONDUCTORS ON A TOROIDAL SURFACE

For the case of a straight geometry, MUKHOVATOV and
SHAFRANOV l%] have given an expression for the ellipticity

G -
G -t"'-ﬁ" of a plasma column with homogeneous
fﬁ;‘f éhg

current density in the quadrupole field of surface currents
distributed over a concentric cylinder of radius d with a
surface current density i = .'f cnldw

€= . 4 Q"Gl 1((5‘*‘54? ce st e v (g
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To check the validity of equ. (9) in the toroidal case, we

substituted the currents on the surface of the cylinder
by sixteen discrete conductors arranged eqguidistantly on
the surface of a circular torus of aspect ratio 0.491l. To

balance the hoop force, four conductors were added on the
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surface of the torus (see fig. 5), with currents equal to
+ 0.2'1-‘: in the inner pair and - 0.2'1-[; in the outer pair.
No effort was made to compensate for the fact that owing
to the finite aspect ratio increasing the currents of the
quadrupole conductors shifts the whole plasma column,

Results of our calculations for five different values of

D = ‘E oL » together with the predictions of équ. (9) for
these values of D, are given in fig. 6, showing remarkable
agreement, The limit of the usefulness of equ. (9) is given
by the fact that it treats D and the ratio (ei L o e,‘)/d
as independent parameters. While it is possible to find for a
given D equilibria with plasma columns of various height {ﬂz
(and hence various values of (1z + lx)/d as well), this
variation is limited by the existence of a stagnation point
between the top of the plasma column and the torus formed
by the external conductors (fig. 5). The position of this
stagnation point depends strongly on D and weakly on lz,

so that for a given value of D there exists a maximum value
of lz for which the plasma surface coincides with the
separatrix (fig. 7). These values of lz and the resulting
values of lx also define a maximum of ellipticity é'm Hor
a given D. The opposing effects of increasing D (reduction

of EMQX'
existence of an absolute maximum in £, corresponding to

but increase of € for a fixed (2) result in the

a ratio of the semiaxes of approximately 5.9. From the
experimental point of view this conductor arrangement has
the advantage of great flexibility (the same conductors
could be used to produce a hexapole field, thus resulting
in triangular deformation of the column), but uses the
available volume rather inefficiently.
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3.2, CONDUCTORS ON TWO COAXIAL CYLINDERS

In order to improve the use of the volume, the conductors
should be brought closer to the plasma column. We therefore
studied a configuration in which the conductors are

arranged along concentric cylinder surfaces of finite height
with equal currents in all conductors of one wall (fig. 8a).
Such an arrangement corresponds, at least in geometry'to
that of a belt pinch.

The results for this configuration showed that for given
currents in the inner and outer conductors the radial
position of the magnetic axis depends practically only on
the total plasma currentIP und not on the height of the
plasma column or the parameter A (which for elongated
equilibria with nearly constant radial distance is just
proportional to the current density and inversely
proportional to the plasma volume). For a given total
plasma current IP' A determines the height of the plasma
column and the ratio of its half-axes but not in a unique
fashion (fig. 9)$ for values of AL Al there exists no
solutiong for values A <A ¢ Az there are two:

a strongly elongated and a near-circular one.A, is
determined by the coincidence of the plasma boundary and the
separatrix, giving the maximum possible elongation of the
plasma column. Fig. 8 ard 10 show that with increasing
elongation of the plasma, the stagnation points at the

top is pushed upward but recedes much more

slowly than the plasma column advances, so that the latter
ultimately catches up.

This maximum height of the plasma column was found
empirically to correspond to approximately half the height
of the conductor, The obvious suggestion of extending

the row of conductors is unpracticable, however, since

increasing currents are required in the inner conductors.
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In this geometry the plasma volume is on the outside of
the coil formed by the inner conductors and therefore
makes use only of the stray fields, which naturally
decrease with increasing length of the coil. Already for
the case of figs. 8 - 10, the sum of the currents in the
inner conductors is six times that in the outer conductors

and 11.5 times the total plasma current.

Certainly the current distribution assumed in this case

does not constitute an optimum and allowing a variation

in the currents along the cylindrical surfaces will reduce
the external currents required. Since with the present
method such optimization has to be accomplished by trial and
error adjustment of all external currents, it would be
desireble to have available as a guide the solution of the
corresponding boundary value problem with 'f’= O along a
torus with rectangular cross section coincident with the
surface on which the conductors areto be placed [10].

This solution would give the external current distribution
required to make this surface a flux surface and to maintain
the desired plasma equilibrium. The procedure corresponds
essentially to the virtual casing principle of SHAFRANOV

and ZAKHAROV [141.

CONDUCTORS ON ONE CYLINDER WALL

As the conductors on the inner cylinder wall of the

examples in the last section are obviously very ineffective
it is of interest to study the effect of the outer conductors
alone. Since the hoop force will tend to press the plasma
against these conductors, some elongation of the plasma

column can be expected in this case as well. The conductor
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arrangement and some typical equilibria are illustrated
in fig. 11, showing an elongated and sector -like plasma
column with half-axis ratio of up to~2.7 and an aspect
ratio (defined as % height of plasma column/radius of
magnetic axis) of up to 1.8. As the plasma is inside the
coil formed by the outer conductors, only comparatively
small currents are needed in the latter, for the example
of case 3 in fig. 11 45 % of the plasma currents.

Contrary to the cases in sect. 3.2, fixing the plasma
current.rﬁ for given external currents does not fix the
radial position of the magnetic axis. For a given value

of I, there exists a series of equilibria corresponding

to a'narrow range of column heights (fig. 12), but a

larger range of radial distances of the magnetic axis (fig.
13), and different values of the parameter A. This variation
is limited by the plasma column touching the conductors

for large A and getting very close to the axis for small A.
As there are no stagnation points at the top and bottom

of the column, the latter is not limited by a separatrix,
although one could easily be created by an additional
conductor pair with currents parallel to the plasma current
above and below the plasma.

CONCLUSION

We have developed a fast and a accurate general method
for computing equilibrium configurations of multipole
tokamak devices. The results presented in this paper are
restricted to force free fields and a simple current
distribution, which nevertheless lead to a nonlinear

problem. Other tests have, however, shown the range of




= 1d =

applicability of this method to be much wider.

The results of such calculations are important for the
construction of magnetic divertors and for the design

of configuratioms in which the cross section of the plasma
column has to be significantly non-circular. Furthermore
they also automatically show the effect of the discreteness
of the external conductorsl-y), which has also been
discussed recently by YOSHIKAWA [15]. Future work with
this method will concern equilibria with finite 8 and
different current distributions, as well as design studies

for plasma experiments.
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Fig.

Fig.

Fig.

Fig.

Fig.

1 Restriction on the variation of the plasma cross
section between successive iteration cycles, as
imposed by the four methods for determining ’f’n

. . c
described in the text.

2 Equilibrium configuration with circular cross section
and stagnation point on the inside.Ip =1, I, =

-0.725, 12 = -0.362, A = 46,

3 Equilibrium configuration with circular cross section
and stagnation point on the inside. Ip = 0,926,

Il = 0,982, 12 = -0,341, 13 = -0.15, A = 35,

4 Equilibrium positions of a plasma column with A = 35
and varying Ip in the field of the external conductors
of fig. 3, as resulting from SHAFRANOV's formula

(solid line) and from numerical calculations,

5 Conductor arrangement used for the calculation in
section 3.1. The plasma column in this figure
corresponds to the limiting case, where plasma
surface and separatrix coincide up to the stagnation
point (Ip =1l.,, D= -1., A = 0.4683).

6 Comparison of the formular of MURKHOVATOV and
SHAFRANOV (solid lines) for the ellipticity of a
plasma column in a quadrapole field with results of
numerical calculations in toroidal geometry, for
1)/1p = -12,, -6., -3., -l.,= 5 (from left to right).




Fig. 7
Fig. 8
Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig., 13

Limiting values of € and é/d_, determined by the
coincidence of plasma boundary and separatrix, as
function of D/Ip.

Conductor arrangement, plasma boundary and position
of stagnation points for the runs described in
section 3.2. The current in each inner conductor

is 0.21, in each outer conductor 0.035; Ip = 0,164
(in all cases)., (a) A = 4.71, (b) A = 3.33, (c) A =
3.226, (d) A = 3.423, (e)A = 3.63, (f) A = 3.75.

Axis ratio & for the plasma columns shown in fig. 8
as a function of A. Al corresponds to a branch
point, A, is determined by the coincidence of plasma
boundary and separatrix,

Height of the plasma column and vertical distance
between stagnation points as function of axis ratio c(,
for the conditions of figs. 8 a - 8 £,

Conductor arrangement used in section 3.3. Currents
in each of the external conductors : -0.05. Plasma
contours (1) and (2) correspond to the same plasma
current Ip = 2,888, illustrating the variation in
shape and radial position with varying A (A = 3,155
for (1), A = 4.41 for (2)). Contour (3) corresponds
to a higher plasma current (Ip = 3,33, A = 3,144),

Half height of the plasma column as function of A,
for different values of plasma current.

Radius of the magnetic axis of the plasma column
as function of A, for different values of plasma
current,
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