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Abstract

Starting from the Boltzmann equation for the neutral gas in a plasma, an integral

equation for the density of the neutral gas is derived. We take inelastic collisions

into account only as  charge exchange and ionisation. The integral equation is

solved numerically. It is shown that the reflection mechanism of neutral particles

from the wall modifies the density profile. The distribution function of the charge

exchange neutrals deviates Fron21. a Maxwellian, and for fast particles (uvr> v*-h.)
U

-1
we obtain Fo ~ v expl- (U)] . The total particle and energy fluxes on the wall

C
are also calculated.




. Introduction

The interaction between ions and neutral particles in a plasma has become a field
of increasing interest in the last few years. The neutral particles coming from the

wall into a plasma contribute to the particle energy balances of the plasma

B. Lehnert,(1972) Y .N. Dnestrovskii, D.P.Kostomarov, N.L. Pavlova,(1972).

On the other hand, the hot neutral particles which leave the plasma volume are

used for diagnostic purposes W Stodiek et al. (1971). In a thermonuclear plasma

it is of special interest to know the flux and distribution functions of hot neutral

particles impinging on the walls since a large flux of hot particles can cause severe
damage to the first wall H.Vernickel ,(1971). The description of the neutral boundary
sheath has mostly been made in the frame work of @ macroscopic fluid picture

B. Lehnert, 1972, S. cho,(1970) . But since the dimension of the neutral sheath

it is of the order of the mean free path for ionisation, the macroscopic picture is only

an approximate one. This ist especially true if one wants to include details of the reflection

mechanism of the neutral particles from the wall.

In the following paper we will give a kinetic description of the neutral hydrogen in a
plasma and present numerical solutions of the integral equation for the density of neutral
particles. This equation has already been derived and solved in  Y.N.Dnestrovskii,
D.P. Kostomarov, N.L. Pavlova,(1972) . But there the authors approximate the
plasma by a delta-distribution function ( Jci= tg(v+vi) 0 (v-vi); ¥ = thermal velocity
of the ions). In this paper we take into account several reflection mechanisms of neutral
particles from the wall and compare the results obtained with a Maxwellian distribution
of the ions with those of a delta-like distribution. The effect of the neutral particles on

the plasma distribution function is neglected.



I1. Kinetic Equation

If the neutral particles penetrate the plasma, they undergo all kinds of interaction

with the plasma particles: ionisation, excitation, charge exchange, elastic collisions.

In order to derive a kinetic equation which is still mathematically tractable, we shall
only take into account the ionisation by electron and ion impact and the resonance charge
exchange between like particles. The cross section for the charge exchange process

H+H" —> H'+H is of the order of 10-15 cm2, which is larger than the cross section of
elastic collisions. All the cross sections for ionisation and charge exchange can be found

in a paper of A.C. Riviere,(1971),

The loss rate due to ionisation is

1 i t 3’
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with Fe’ Fi = electron and ion distribution function
G 65 . _ : &g o
eo ,)io= cross section for ionisation by electron and ion impact
fo (v ) = distribution function of the neutral particles.

The interaction between neutrals and ions due to charge exchange is described by the term

S -v'is; L, 0008, () - £, (0,00 @

L is the total charge exchange cross section. It can easily be seen by integration over v
that the charge exchange term conserves the number of particles.

With (1) and (2) we can write the Boltzmann equation for the neutral particles:
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In order to solve this equation, we must know the distribution of the ions and electrons.
We assume that these distribution functions are local Maxwellian with given density

and temperature profiles:

2
§, = N Cpexpb )] £ N Coexp[-)'T
: (@

v.= —, v = (thermal velocity)

N(x) = particle density

1
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(normalizing constant).

If the neutral particles are slow compared to the electrons and ions, we may neglect v
in the therm [ v -v’ o 5 (v=v") and the ionisation rate becomes independent of the
I

velocity of the neutral particles:

This approximation is valid for the slow neutral particles coming from the wall

(Eoé 100 eV). In order to simplify the charge exchange term, we approximate the
function 1 v = v'| <, (1v = v'1) by a constant c. In reality, this function slowly increases
in the regime O<E ( v-v'l)< 30 keV. Therefore, this approximation is also valid for

neutral particles and plasma temperatures below 30 keV.



With these approximations the kinetic equation for the neutral particles is
5 2
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As can be seen from this equation, the decay length of the neutral particle density is

[u-] 7)

A= NeLot +¢]

In a dense plasma this length can be smaller than the dimensions of the plasma (i,e the
characteristic length of the density and temperature profiles). This is especially true of
thermonuclear plasmas, but also of plasmas in large Tokamak and Stellarator devices.
If Az Nﬂ'}.?{_’ , we may consider NTe, Ti as constants in equation (6). In the region of
neutral particles the plasma is homogeneous. If the plasma is impermeable to neutral

particles, the structure of the neutral particle layer can be described in the one-dimensional

approximation: 2
) ; ®
Ux?j = = N[w+c]f +NCe ‘eff (v)d%

The most important quantities which we want to know by solving eq. 8 are the density
n(x) = ‘(fo d3v' of the neutral particles and the distribution of the outgoing particles
f(v. v ,Vzl o ) vx< 0 on the wall.
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Boundary Conditions

The distribution of the ingoing particles F (v U U 0) consists of two parts. One

A 21
type of particle is those which are em:Hed from the wall by thermal desorption,
recycling plasma particles etc. The other part consists of reflected neutral particles,

which in the simplest case is a linear combination of the neutral particles impinging on

the wall.
3¢ (9
f ou) = f (v)+ [ Rephf de
+ ! 2 7 -
Two limiting cases are
1) ideal case
i f+° = . R.§ (8v) ©)

2) diffuse reflection

%
f o,v) = £ %4 Rn E[E‘)J’Hli f_di—f (10)
o

+

Ri & reflection coefficient. The case Ri oiie 1 may describe the actual situation
r

when a fraction of the outgoing particles is pumped away.

o
A SSS A f CI_D_' is the flux of the neutrals towards the wall. F (v ) depends on the
details of the desorption mechanism and is normalized by j ?J' [u) C/u- 1

If the wall is covered with absorbed neutral particles, the flux of the "reflected"

particles can be larger than the flux of the outgoing particles. In this case we have

-
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diffuse reflection with RD > 1. The problem described here is similar to the albedo
problem of astrophysics S. Chandrasekhar, 1960. In addition to the simple albedo

problem we here have to deal with internal reflections.

Formal Solution of the Kinetic Equation

Because of the homogeneous plasma background, eq. (8) can be simplified. Since e
and c are constants, eq. (8) can be integrated over v, and v, - F (VX) =_(Fo dvydvz.

We measure the velocity in units of the thermal velocity of the ions:

§ = an

and introduce a new space coordinate z by

- =!N(°L+C)Jx (12)

With these simplifications we find

2
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u is the x component of Eqndﬁ = oL-(I:- .

This equation is well known in the theory of rarefied gas dynamics (M.M.R.Wiliioms, ]97]}.
The difference to the problem of rarefied gas dynamics is the absorption mechanism which

is introduced by the ionisation.

In principle, it is possible to solve eq. (13) with the method of singular eigenmodes,

but for numerical purposes it is more convenient to apply the integral equation method.
+o°

With n(z) = J F'du we find from eq. (13)
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The distribution of the outgoing particles is
- .2 z'
g e‘w ,
F = - :
" (o u fv_ ) dz (15)
o
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we obtain
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n(z.) F!i u “ nz)dz £+ ) (16)

The second term on the right-hand side describes the particles which come from the wall
and arrive at z without any ionisation or charge exchange process. The first term describes
those charge exchange neutrals which originate at z’ and reach the point z without any

further interaction.

The general behavior of the solution is determined by the properties of the kernel.

The kernel K(]z 2 ) is positive and has a logarithmic singularity
at z' = z. It can be shown that
!
2 |[z-2

o5 L SN "I_G._ ’

SK(a zldz'<1 Kzfg——--—- cu (17)
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With this result one finds by iteration of eq. (16)

FIN

n(z) < [H-[S +ﬂ1+...] max fﬁ; e B duw (18)
o
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and
Py [
S h{z)c[z = —— j. (o "“) udu (19)
(o p o

This means that for (3 < 1 and finite input flow of neutral particles ( f[—:_ucfu <oo)
o
a solution of eq. (16) exists and can be found by a Neumann series. Furthermore, inequality

(19) says that n (z) = 0 if z—» +o=.

Fromﬁ < 1 we see that the presence of ionisation guarantees the existence of a unique

solution.

By differntiation of eq. (16) and partial integration we find

ﬂn

n'te) = Kllzl)nio) + fK(]z Dhz') d= —f Zdu (20)

2—> 0

If there are no arbitrarity slow parhcles from the wall (i.e. F° = =0 foru < Uo)'
the last term in (20) is bounded ( S l— d"“d‘”) In this case n” (0)=® ©°@ because of
the logarithmic singularity of K (12\ ) at z=0. The general shape of n (z) is shown

in fig. 2.

n(z)

Fig. 2
-10 -
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In the foregoing considerations we have made an assumption about F+ (o, u)
[-=-]
( f:'+ w dw<es ), Butsince F+ (0,u) depends on F (o,u), we have to consider

this in more detail.

| ldeal Reflection

-7 i1 o —_
Following eq. (9) [ £, = I—.,«. E RL- + ]
and eq. (15), we find z
z ¢z’
n(z) = J'K(IZ Z’JhCZsz @_f_t 'ng_— u'du_n(z!}cjz_
=z ° (21)

+ g (u.)e “ du

The presence of |deo| reflection thus means that the kernel K ({z-z'| ) has to be

replaced by K=K (|z —~z ) + K' ( z'z; ), where

o 2 _ z+2'
Fe —u.e w
= —=\e du 22
K ﬁ?é " 22)

This kernel is positive but without singularities.

With

Co
g = [ F e du
(=]

and

= !
f}j [K(’Z"Z'D + K'(zlz')_]g(z!)dz
the formal solution of the integral equation
n(z) =Mn (z) +g (2) (23)
n (z) =[I+M+M2+ Jg (24)

=11 -
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All terms in (24) are positive.

By estimating Mg we find
o

Mj = Pg [ K(IZ--ZII)-* K1(2,2')]dz!-mak3

With oa |'
5 K(lz;?_hdz < |
and o
o |
we obtain the result
| R.
Mg < 1+ 3" ) maxg (25)

and from (24)
m

h(z) < ;[ﬁ(r t g")_'f - max 9 - (26)

oo

o
max g = I E’_ du is the density of the inflowing particles and therefore finite (max g<eo).

We therefore conclude the existence of a solution under the condition

B!+ g")cl
(27)

This condition is only sufficient for the existence of a solution, but not necessary.

Il Diffuse Reflection

To prove the existence of a solution in this case, we take into account the degeneracy

of the Kernel. In the case of diffuse reflexion the integral equation (16 ) becomes

=z
oo oo .
I | L
n(z) = (35 Ktlz—t'[Jh(Z)dz + F?D cj:g(u.)e du -/4_
(28)
+ 9(%=)

= =
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A_is the flux of the outgoing neutrals. The solution procedure is as follows:

Eq. (28) will be solved with a given A_<o2 . The solution u(z) is inserted into the

right-hand side of (29), and (29) will be solved for A > (.

Let us consider the special case RD = 1. We integrate (28) over z and obtain

a0 [~ —4

[ ! / o
- lz-z])dzn(z)dz + A +A
DS n(z)dz (3 S;S KOz~-z1) =T % a0
. oo
- 9 | ° el is the input flow.
0 Taotd = 5
From the explicit form of K (z-z1 ) we find
oo 2z
T r)dzl'_zl___l_.)‘e—-u- u'du,
] K(lz-z1 =~ J
This formula together with (29) and (30) yields
_ - A° 31
(I p)gn(z)crz = A, (31)
: &
The solution of (28) is
-y = -z
ney = [I=M,T (A [Fuwre * + g2
o (32)
e Il
Def. M_ = (;,& K(lz-z"1) .. . dz
o

=19 =
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From (31) and (32) follows

Yo (%) —
(1-p)A_{ (r1-M 77" [ Eawe  dudz (33)

o

FIN

+

= A" - (1= [lu-H) g ]z

If the right-hand side of (33) is positive, we have found the solution.

In order to show this, we start from the equation

f(z)= Mo f(z) +g(2) ' (34)
With the formal solution
fe)= (1-M)7' g (35)

By integrating eq. (34) over z we find the estimate (see eq. (19)):
oo

Oeo

[
f f(z)dz < 3-3623 clz
o f—f3 o

pay =1 / °©
OS [(I—Mo) QCZ)JdZ = A (36)

l—-ﬂ £

This inequality shows that the solution of eq. (33) is positive and finite for 3< 1.

For R.D < 1 the proof of existence is similar to the procedure above. The case of diffuse
reflection is mathematically more convenient than the case of ideal reflection. The
reason is that we have to deal with a Wiener-Hopf-type integral equation for which analytical

methods of solution are available (W. L. Smirnov, ]963).

i T4 =
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Special Choice for lon Distribution Function

We approximate the ion distribution Fi (u) by

§(w = g [Sur)+3(u-D] @

This distribution function was used by Dnestrovskii in the case of an inhomogeneous
plasma. With this distribution, the kernel of the integral equation becomes

- |z-z'|

K= e

N —

(38)

There is no singularity in K. The solution of this integral equation is given in
W.L. Smirnov,(l963). If the particles coming from the wall can be considered as

monoenergetic

Fou) ~ dlu-u,)
(39)
l:; (w) ~ J(u.—u )
Eq. (28) becomes
oo ( Z
e ~lz-2| ’ =
n(z) = | e n(zydz +ae ° 4
o
a = const.
The solution is (W.L. Smirnov, ]963)
_ = —1-p'=z
n(z) = A e % —+ 8&. p (41)

= Yhie



with [= u‘:-(’hﬂ)

The density profile can be described as the superposition of two exponential functions.

Another approximation of the distribution function is

|
72 -] ¢ uw 2+ | 43)
Auw) =
.5-‘ o i € —1 ,) w >+ |
The kernel of (28) is ’ z-2 l,
(P8
] =
Klz-2b = 3 { ) e (44)
[+

and the integral equation (28) becomes the Milne integral equation of the radiative

transfer problem (S. Chandrasekhar, 1960 ) ;

I11. Numerical Calculations

To solve the integral equations (21) and (23), we first transformed the domain of integration
from (0,9°) to the finite region (0, 1). The transformed equations were converted to a set

of algebraic equations by replacement of the integration by a finite summation. It has
already been rnentioneg.?n the discussion of the kernel that a singularity exists at z =2z",
but that the integral f K (|z-2"1 ) dz’ is finite. We therefore replaced the singular
valves K (Zi' Zi) in ﬂ:'e diagonal elements of our equations by the interpolated value

12 (K (ZI z, - %) + K (zi ,z - %9 The system so obtained is solved numerically. In

the special case (37) the numerical solution could be checked by comparison with the

= B
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. the analytical solution. Very good agreement was found for nearly all values of
parameters u_ and B. For v, = 10 and B = 0.9 the difference reached 10 % at small

values of z.
We compared three different cases:

a) without reflection on the wall
b) ideal reflection (Ri =1; RD =0)
c) diffuse reflection (Ri =0 RD =1)

As distribution function of the incoming particles we choose

c?(u-u ) u |2
o _ o o_ 2 ~(—)
F+ R and F+ == e U
o Y,

The normalizing constants are selected in order to give the flux 1:
oo
(4] — O
=: w F c]u. =
A—i— S + /
G
In the case of diffuse reflection the distribution of the reflected particles was taken to be

gt
FO(U) = 'U—2 e UI'(
k
If we consider a plasma with temperatures of several 100 eV, the energy of the recycling

and reflected neutrals is about a factor of 100 less than the energy of the plasma. In

order to include this fact, we made the numerical calculations with = 0.1, Yy = 4

1) Density Profiles

Figs. 3 and 4 show the density profiles of "cold"neutrals (Uo =0.1). Close to the wall
there is a fast decrease of the fraction of cold neutrals and then one obtains a slow
decrease of the number of particles which are heated by charge exchange. The reflection

mechanisms considerably modify the profiles. Diffuse reflection has an accumula ting

- 7
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effect on the density of cold neutrals close to the wall, whereas with ideal reflection

the particles can penetrate further into the plasma. The details of the distribution F_l_o
of incoming particles have no great effect on the profiles. Fig. 5 shows a comparison
between the density profiles n (z) with two plasma distribution functions:

2
f.~ve Y and FEN %[cg(u+1) +€S‘(u-|ﬂ

It shows that the analytical solution which can be found with the d -like distribution
function is a goood approximation for the density profile. Figs. 6 and 7 show the details

of the density profiles close to the wall.

2) Distribution Function

The distribution function F_ (o,u) of the outgoing particles is of importance for two

purposes:

a) It describes the energy loss due to charge exchange;

b) it gives information about the temperature of the plasma.

The function B (o,u) is given by formula (15). In the case of a homogeneous neutral
density(n (z) = const) which we find in a permeable plasma, F_is proportional to a

Maxwellian

2
F (o,u)~e v (45)

But because of the inhomogeneity of n(z), we obtain deviations from the Maxwellian.

With the approximation (41) for n(z) we calculate

2
5 A B
E(o:u)zﬂ%{tg’ +]+L¢.V;___ﬁ.} o

A comparison between approximation (46) and the results of numerical calculations is

shown in Figs. 8.
-18 -
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Fig. 9 shows the effect of the different reflection mechanisms of the distribution function.
This effect is not as great as it is in the density profiles. Since the distribution k. (o,u)
is calculated by integration over n (z), the different reflection mechanisms only add a

constant to In F_. The dependence on the velocity u is not affected very much.

3) Mass Flow and Energy Flow Towards the Wall

The particle flow of neutral particles is calculated from
o=
A = I uF_ (o,u) du
o
The relation between A_and A+° is given in Fig. 10. Without reflection this flux is

always smaller than the input flux A+°. But if the charge exchange mechanisms dominate
over ionisation ([(8 - 1)[<< 1), the flux A_ can be larger than A+° owing to the

reflection at the wall.

Since in the case of ideal reflection there is no energy loss, we calculated the energy

flow S_on the wall for RD =0 and RD =1

s~ ({0 v i o, dr

f (o,v) is calculated from eq. (8). Fig. 11 shows

2 3
o - St Ux f- div (48)

-— A+0 J.j:‘ 1_)2c[32-

Diffuse reflection on the wall increases the . energy loss due to charge exchange by a

maximum factor 2 - 3.

-19 -
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IV. Discussion and Conclusion

The results obtained by numerical calculationsshow that the J-Function—approximation

of the ion distribution is sufficient for calculating the density of the neutral particles.

The reflection from the wall modifies the density profile of neutrals by a factor of 2-4.
Especially diffuse reflection enhances the density of neutrals close to the wall. The
distribution function of the outgoing neutral particles deviates from the ion distribution
function. This fact has to be taken into account if this distribution is measured for

diagnostic purposes. Because of the factor % for large values of the velocity, there

are fewer fast particles in the distribution function F_ (o, u) than in the Maxwellian
distribution. With respect to the damage which fast neutral particles can cause on the

wall, this is a favourable result.

In order to give an example, we consider a plasma between T = ]02 eVand T= ]03 eV.

In this regime we only have ionisation by electron impact and the ionisation rate for
hydrogen is nearly independent of the temperature. oteﬂf.?: g 10-8 c:m3 s-] . The charge
exchange rate (averaged with a Maxwellian) is also nearly independent of the plasma
temperature and the velocity of the neutrals (Eo (o) <500 eV) (S.Rehker, E.Speth, 1972 »,
The numerical value is < o [v— E’l>= 5-6. ]0-8 cm3 s_T . This yields values of 3
between B =0.62 and B = 0.66. In the regime below T =100 eV the ionisation rate
decreases rapidly and we obtain for a 10 eV plasma:

9 3 -1 -8

o m5 . 107 cm” s and <qlu-v'1>%2.5 . 1070 s, This yields 6= 0.83.

In a thermonuclear plasma (T = 2. ]04 eV) the ionisation rate (including ionisation by ions)

I
and the charge exchange rate are about equal a(.e-l- o x < 0:.11_!_'—-'_!._1' wand B becomes 0.5,
These values are independent of the energy of the neutrals if this energy is smaller than the

thermal energy of the plasma particles.

Experiments in Tokamaks (W. Stodiek 1971) show a distribution of the charge exchange

neutrals which is similar to the results shown in Fig. 8 and 9.

-20 -
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But a quantitative comparison between these calculations and the experimental data is
not yet possible, because of the inhomogeneity of the plasma density and temperature.

The inhomogeneity of the plasma also modifies the distribution of the charge exchange neutrals.
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Fig. 1

Fig. 3

Fig. 4
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Fig. 6,7

Fig. 8

Fig. 9
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Figure Captions

Schematic picture of the interaction zone between plasma and wall.

n (x) = density of neutral particles.

General form of the density profile of the neutral particles.

Density profile of neutral particles with different reflection mechanisms.

The incoming particles are monoenergetic.

Density profile of neutral particles. The distribution of incoming particles

is Maxwellian.

Comparison of density profiles of neutrals calculated with different

plasma distribution functions.

Density of neutral particles close to the wall.

Distribution function F_ (o, u) of the escaping neutral particles. Effect

of different plasma distributions function and different reflection mechanisms.

Distribution of outgoing neutrals as a function of energy. The incoming

distribution of neutrals is Maxwellian.

Particle flux on the wall normalized to the flux of incoming particles.

Energy flux on the wall normalized to the flux of incoming particles

times the thermal energy of ions.
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