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Abstract

The coupled distributions of viscous flow and temperature in a
wall stabilized arc with transverse magnetic field are calculated
on the basis of the conservation equations for mass density,
momentum, and energy. By means of Green’s function of the
biharmonic and the Laplace operator, the relevant equations

are converted to integral equations which can be solved by an
alternating iteration procedure. An example involving an argon

arc is given and compared with experimental results.
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1. INTRODUCTION

The problem of the interaction of plasmas with magnetically

driven viscous flows is a very interesting one, but the theoretical
treatment is difficult because of the strong coupling between

the relevant equations. Thus, in order to study such phenomena,

it is convenient to look for a relatively simple plasma confi-
guration. A model which allows essentially analytical calculations
is the wall-stabilized arc, burning in the axial direction in a
tube with cylindrical cross section and constant wall temperature.
By applying an external transverse magnetic field a mass flow
normal to the arc axis is set in motion owing to the Lorentz
forces, thus causing enthalpy transport. The maximum of the
temperature distribution (which, in the absence of a magnetic
field, is of cylindrical symmetry) is thus shifted in the direction
of the magnetic forces. This, in turn, modifies the distribution

of the magnetic forces via the temperature dependence of the
electrical conductivity. Mathematically this means a coupling
between the balance equations for momentum and energy. The arc

is deflected to a new equilibrium position which is determined

by a consistent solution of the conservation equations for mass

density, momentum, and energy in the steady state case.

This paper describes a method of solution based on the method

of Green’s functions for elliptic boundary value problems. The
momentum balance can be reduced to an extended form of the bi-
harmonic equation for the stream function. In the case of in-
compressible flow the use of Green’s function for the biharmonic
equation allows a straight-forward solution when the temperature
field is known, whereas the compressible case leads to an integral
equation which can be solved iteratively /1, 2/. For a given flow
field on the other hand the temperature field can be calculated
from the energy equation by converting it to an integral equation
by means of Green’s function of the Laplace operator /3/. Thus,
both the momentum equation and the energy equation can be solved
iteratively and must be iterated alternately in order to get

consistent solutions of the stream function and temperature.



2. BASIC EQUATIONS, ASSUMPTIONS, GEOMETRY

The calculations are based on a one-fluid model under steady
state conditions (s;-= 0) The relevant equations are the three

conservation laws for mass density, momentum, and enerqgy.

2.1. Continuity Egquation

In the steady state case, we get

oiv (S’MVJ=0 (1)

%
where ¢, is the mass density, and V the flow velocity.

2.2. Momentum Equation

Y
With current density'?, magnetic induction B, pressure p and
constant viscosity ¥e the momentum balance in the steady state

case 1is
l7\ I? - B—\
' rael V= 4 X - ra#/P-H-
9. b /4 / . . . (2)
+?3 (E-?ra,o/p/.-v ]/-Cur((ar( V) ’

2.3. Energy Equation

In the steady state case we obtain for the energy balance

. e

Y —
S)Mv-?mo/h+ah‘vh/=7‘-£) (3)

=

with static enthalpy h, heat flux density W and electrical field
-
strength E.



2.4. Assumptions

The basic equations (1), (2), (3) are valid or will be used

under the following assumptions:

a) steady state conditions, QAQ{ = J , as already mentioned,

= = 02 2 G g : = =
b) JEIM»I|V x B|, Ohm’s law in its most simple form: j=e6-E,

c) radiation neglected,

d) p = constant in the material functions such as h, & , f»,, etc.,

e) magnetic field of the arc current neglected,
f) no influence of the magnetic field on the material functions,

g) constant viscosity, as already mentioned.

2.5. Geometry
From Egs. (1), (2), (3) the fields of the flow velocity v and

temperature T have to be calculated for the circular cross section
of the arc tube, which is assumed to be infinitely long. The
geometry and the coordinate system are shown in Fig.l. The flow

field is two-dimensional:
V,= 0. (4)
There is no change of any quantity in the axial direction (z-axis):

9/'32‘-‘ 0. (5)

R is the tube radius, the current density is in the (-z)-direction

-

. 2. .
= -

7 27

the external magnetic field is homogeneous and is assumed to be

in the (+y)-direction

= A
8=eyB.
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Fig.l Geometrie and coordinate system

Therefore, the Lorentz forces have the (+x)-direction

-\ = - '

j’){ = ex 1 . (6)

Further on, we intrnduce normalized coordinates by

=R n- Ik .



2.6. Input Quantities

For the numerical computation the following input data must be

given:

a) Constant guantities:
- Tube radius R,
- magnetic induction B,
- viscosity Pz
- wall temperature Tw‘

- the value S(0) of the heat flux potential S in the tube
axis r = o (see Section 3.3.1.),

- normalization values ¢, for mass density and 6, for
electrical conductivity,

- furthermore, numerical data such as error limits, relaxation
factors etc.;

b) Tables of the temperature dependent material functions:
- Electrical conductivity e~ (T),
- thermal conductivity K (T),

- specific heat for constant pressure c_(T).

From these tables the following functions, the significance of
which will be explained later on, have to be calculated:

- Heat flux potential S(T),

- normalized heat flux potential s(T) = S(T)/S(0),

- enthalpy h(T),

- normalized electrical conductivity w(T) = 0“(T)AT:
- the function t = g"% /gm (T) (see Section 3.1.).

’



3. METHOD OF SOLUTION

3.1. Continuity Equation and Stream Function

The dimensionless variable t is introduced by setting
P 4

where Om, is a normalization density (see Section 2.6.). The

continuity equation (1) thus becomes
5l o
d“”(i‘ V)-0. (8)

: : . = .
Eq. (8) allows the introduction of a vector potential A, which,
according to Egs. (4) and (5), can be assumed to be in the

(constant) axial direction:
=Y - -
4 - .
; V-Curl A) with A “Ee; y} . (9)
Therefore, we get for the flow velocity

V=t'cw((§; Y)"“é_;)(tﬁ""'dy/) (9a)

or, written in cylindrical coordinates, corresponding to the

coordinate system in the tube cross section:

i Y 4., 4. 38V

Lot B g e g, ana

2 (9b)
= - a 3-1. .gv

Vip=~t57 Rt 59 -

Thus, we are able to express the two components of the flow
velocity in terms of the function yd?'?), which is the well-

known stream function for the divergency-free flow field

-g?a-:g_;iv The streamlines are represented by the curves '(}’ = const
in the f?—-f - plane. Therefore, in the following, our aim will be
to calculate the field yV(g,‘f) , together with the corresponding
temperature field T (9'?)_




3.2. Momentum Equation

3.2.1. Yorticity

In order to establish a differential equation for the stream

function, we introduce the vorticity

-

<N
@ = curl V (10)

which, according to Egs. (4) and (5), is in the axial direction:

= =
w = €, 0. (loa)

The gradient terms are now eliminated by taking the curl of the
momentum equation (2) and, finally, the curl of the inertia forces

is neglected. So we get from Eg. (2):
- = b
CW'Z(J x08) =¥, car( cur( @

and, with div @ = o and Egs. (6) and (loa):

4 24
w=2 82 |
4 a3y

Eg. (11) is a Poisson equation for the vorticity field m(g,'f),

(11)

which, however, cannot be treated immediately because there is
no information on the boundary condition m(f--lj Y ). There-

fore, we have to express w in terms of the stream function HV.

3.2.2. Relation between Vorticity and Stream Function

Egs. (9) and (lo) are combined:

Q) = curl (¢ Curltz) = ¢ curl curl E = (cur! X)X (grcwf ¢)

=f(jrao/o/fvj—vzz)'(0ur8 f) X?rao/ ¢,



Furthermore, using Egs. (5) and (9), we have
. A A A
div 4 =0 anad %A =@, AYy.
Thus, we get

O= o=ty + (&, x grao y) x grad ¢ =

et ay -G (grad e grad )t grac Y (€ pract).

= . : ;
The right-hand term ez-grad t 1s zero since grad t is a vector
in the plane of the tube cross section, i.e. perpendicular to

. . - .
the axial unit vector e,. Therefore, we obtain:

w=-ta Y/—Zraof 'l’ll'graqdf , or
(12)

w= - di'v (t ;?ra&/'y’) :

3.2.3. Differential Equation for the Stream Function

Inserting Eq. (12) into (11) we finally arrive at an extended

biharmonic differential equatinn for the stream function'? g

: 4 '
A oliv (¢ j.”‘""/ '*IV)- th—;—, (13)

The flow velocity has to be zero at the tube wall:
—
V(I’=R)=0.

For this reason (see Eq. (9b)) and because of symmetry, the stream
function y’ has to satisfy the following boundary conditions:

WireRp)= 0 (g_\t_),q&fo ‘ (13a,D)




= lo —

Let us now assume that the temperature field T(r,q ) is known

from the energy equation (or from an experiment). Then, via the
temperature dependence of the electrical conductivity, the
distribution of the current density j(r,??) is also given, i.e.

we know the right-hand side of Eq. (13). In the following we shall
solve the elliptic boundary value problem (13, 13a,b) by means of
Green’s function of the biharmonic equation. First we shall look
for a solution Yﬁ(f,t{) for constant mass density and in the

next step we shall treat the general case of variable mass density.
The method is described in the next two sections.

3.2.4. Solution for Incompressible Flow

In this section we derive a solution Vg(g,y) for incompressible
flow, i.e. S)m;gm,( t=1). Eqg.(13) then becomes the pure biharmonic
equation, which can be written in terms of the normalized co-
ordinates g = r/R and Q=Y/R:

14 2924
886t =~ Rg &# ; (14)

The boundary conditions are the same as in Egs. (13a,b), i.e.
) -
‘% (K:J)‘f)=0 " (_.a%)(f”{}tf) - 0 . (14a,b)

We thus have to solve the first boundary value problem of the
biharmonic equation for the interior of the unit circle. This

can be done by Green’s method: Green’s function of the biharmonic
equation for the interior of the unit circle is given by the
following expression /1, 2, 4/:

G 178", 9') = (A4-g) g™ -akn (afs), a5

where

a= ¢ tp' - 29g'eos (w'=y), (15a)

b =4 +(3 g')?‘-.?_?g'(a(cf’“tf)) (15b)
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with the field point coordinates g'ﬁf ) f ) and the source
[
point coordinates g' -.:% )L{‘

The solution of the system (14, 14a,b) is then given by a para-
meter integral /1, 2/:

Y. e, nf)- -4‘,.,,2 ijY (f,tf P, «f')a4——(g y'}f'dg dy'. (16)
‘f 20 g0

By integrating by parts Eg. (16) can be transformed to an expression
which is more suitable for numerical computation:

-
V(o) =+ Fer /fy(f 7550 g g g g oy !, (e

where we used the property G.Y (S’,\f’;'{,'f') = 0 of Green’s function
at the boundary.

In the following, we introduce some abbreviations and definitions:

a) Normalized electrical conductivity:

) where 62 i¢ o (17)

w=£—=%

normalization conductivity (see Section 2.6.a). We thus get for
the arc current:

T R

3"ff 7'("','{') P’IOIV"R(Y":Rz-].a L(INT) ) where (18)
0 0

T A

(/v ) = ff V(f','f’)f'o{f'ofkf’ : (18a}
0 0




- 12 -

b) Normalization value for the stream function W

c)

. R3IB (19)
YO g?rzi N

Kernel function /2/:
1*@ipig"it) 2 8GR Qg g ')
= 34 (grcf;' f’llf,)j";‘(f‘ 32 (f:'f,'S”: ‘fl)'r"nf’ )

with
_] and (20a)

ols

ga=gg'[5- At

h

a K.
7z [ g2 G-)= i ] (20b)
(For a, b, see Egs. (15a,b)).

Inserting Egs. (17), (18), (19), (20) into (l6a) finally
yields the following expression for the stream function Yg

in the incompressible ecase:
IF 4
“v Xoto'od ! O
t‘(«rf'ﬂ"a* y S L A : (21)
(INT)
' woldoe oy’
[ fwgdgety

where

2T 4

@.—.of‘fwj*a/ja'a/(f’ . (21a)

Eqg. (20) shows that, in the case of constant mass density

g”‘l gmo, we are now able to calculate the flow field in terms
of the stream function \h (f'\f) if the function W(g',q")
is known from the temperature field.
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3.2.5. Flow with Variable Mass Density

If the temperature dependence of the mass density 9»1= fm(T) is
taken into account, we have to start with the extended biharmonic

equation (13), where t is now a function of the coordinates f,tr:

e .
LeRipY S LT, 2]

This more complicated case can, however, also be treated by means
of the biharmonic Green’s function, Eg. (15). It can be shown /1/,
that it is possible to convert Eq. (13) to an integral equation
for the stream function \y §

Y, ) =T Y @) -
;T A

e Y6 p)fgrect €1') groct 8Gy Loyl Nfgilg o)

0

(22)

where'Y4(§,er is the solution for constant mass density, given
by Ea. (21). The partial derivatives in Eqg. (22) have to be taken

!
with respect to the normalized source point coordinates g“-r

R
It may be pointed out that it has been possible to "roll" the
derivatives from the non-analytically given parts in the inte-
grands to the analytically known Green’s function by employing
integration by parts and the properties of Green’s function.
This method has consistently beenused in formulating both Eq.

{(16a) and (22) in order to avoid numerical differentiation.

Egs. (1.5), (15a,b) permit analytic calculation of the Kernels in
Eg. (22), Furthermore, we wish to write the integral equation (22)
in terms of the normalized stream function ¢, as was also done
in Eg. (21). For this purpose we again use the quantities “fo

and (INT) from Egs. (1.9) and (18a).

In this way, Eq. (22) takes the form



e 1 =

v A4

Peedlbit): uw[ rfff] b (g A eifly 'Jf“r"“rf 281

with the kernel function

V(AR ')z H(g,ylf':r’)mﬂv(y,‘fl ,cf')—- 3—‘—(?34—?;'} ) (23a)
where
M*%’ %{-ZC*' b (44 2% )f , (23b)
and
¥
N-.ngfn‘zﬂ{,—f-f(g‘-*l'g)} ) (23c)
where ’J’= \f"—‘f 5
a-g%g“-z”'wrﬁ) a’=99—5'-';=.2(g’-ga; A),
b=a+(op)-290'cs¥,  1's g-.z(gg ges) (23d)

¢*= U-g)-¢g'cnd) c*':%!i-,a -(4-¢%)g cos?h

4u and (INT) are taken from Egs. (21} and (18a), and ¢i is defined
in the same way as in Eq. (21), i.e.

Ye (9 (23e)
Y, (INT)

(The subscript "i" marks the step number in the iteration procedure;
see Section 4.).
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It is convenient to introduce the abbreviation

ir 4

I; (g.y) =ff g Ag'dp'dy' (24)

for the integral in Eq. (23). Thus, the integral equation can

finally be written in the form

4 4
rga™ ?{¢4-7¢r'r_1-1[ ' (29

We are now able to calculate the flow field from a given temperature
field even in the case of temperature-dependent mass density. For
this purpose Eg. (25) will be solved by means of an iteration

procedure (see Section 4.).
The relevant integrals in the momentum equation are
a)! (INT), see Eq. (18a),

b) QT, see Eq. (2la) with Eqs.{2o),(20a,b),
o) I;, see Eq. (24) with Egs. (23a-d).

3.3. Energy Eguation

3.3.1. Conversion to an Integral Equation

Instead of the temperature T we introduce the heat flux potential

T
ST =[K(T) T (26)
T
A

where K (T) is the thermal conductivity and T, is the wall tem-

perature, so that S(r=R) = o.

Furthermore, we use Fourier’s law for the heat flux density
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-
W.—}{(Tjjrow( T=-graoc { (27)

and Ohm” s law

Y -
= £ . (28)

Thus, with Egs. (26), (27), (28) we can write the energy equation
(3) as a partial differential equation for the heat flux potential
S

A_f+o-(.$')£"=jh V- ?radb () (29)
(For the material functions 6~ (S) and h(S), see Section 2.6b.).

Eq. (29) has to be solved with the boundary conditions S(r = R’T )
= 0. This can formally be done by employing Green’s method again.
We see from Eg. (29) that we now need Green’s function of the
Laplace operator for the interior of the unit circle, which is

given by the following expression /3/:

4 (¢, ¢; X',tf") =dng
where a (3'?3 gﬂ?') and.k>(gﬂf;fz?’) are given by Egs. (15a,b).
Thus, we get formally from Eqg. (29)
Ur oy

S (g 9)=~ %éf!rff(g’,?')]‘f);(f.T,-f’, ¢') g'dlgaly™s K,y . o

0

P(Q,?)is the convection term which is represented by

WA

R = )
K Q)57 [ 6§ V- grout b g’ e’ @)

00



- R

where the gradient of h(S) is taken with respect to the normalized
coordinates g'. Eq. (31) can be modified by

o
a) replacing V by the stream function 7‘ according to Egs. (7) and
(9a),

b) "rolling" the gradient from h to §I (see Section 3.2.5.):

wa
f!q, oy V~jraol(g,)h)o/6' )

0

R
K (g,tf)= o g""o

where C(/,':g’o{g’d(f’ , or
¥ 4

Kig, 2215 L[5 3t grosh '

’ 27 41
.-f;_o!!%é;,(?rad"f)(jradh)db =

< A
g £ oo
’+ﬁ“ff§;cé cur((thad“f/)alb
0 9
g 27 41 )
- _\g ~° of +
=T A

4
+e‘;._$%.7fb(irad’r Xjrao/ gr]dé'
00

The first term in Eq. (32) can be converted to a contour integral
by means of Stokes’law and vanishes since ﬁyfilradjp is zero at
the boundary g'= 1. We thus obtain

ar 4
K (g, ‘f)a— %%ff!h(-f)[(f?xirad@)'irad )ij 'df'd?" _

-
The factor e, X grad QJ can be determined analytically and we
get the convection term in the following form:
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7 1
K (g, ‘f)”%?-“ff”“{’)aa%* & 3%_/0/3"#?', (33)
0o

where

Plosy; g )=-gi==2ggein (- ) (33a)
1,0~ 2 I !
Qg 1;61¢) + BE= 2 geasd)F g g F) | 1,
with ﬁ$=?'-f and a,b according to Egs. (15a,b).

3.3.2. Elimination of the Electric Field Strength

It is well known from arc physics that Eq. (30) represents an
eigenvalue problem since the electric field strength E is de-
termined by geometry, material functions and arc current. There-
fore, £ has to be eliminated and it is convenient to introduce
the value S(0) of the heat flux potential in the tube axis §'=

From Egs. (30) and (33) we get
27

JORF ffo'“)%(” ti8'prlgdglore’ -

ffl. (SI[P9,9) y)a" & y;j",‘f'lgl?,]alg'dt{' 5
where
Gs (09,8, ¢')=bn ¢'* =2tng’
Plog;is'y)=0 )
6 it



- IO =

We thus obtain

¥
$(0)= %E‘f 6 () glng'*clg'dy’ -

or

0

Finally, in order to obtain an integral equation suitable for
numerical computation (inhomogeneous Fredholm type of the second

kind) 63 is replaced by a new Kernel function:

K, (f:‘fifjtf')zg'és @n‘f;@' tf')“g'(ng’z -

; -Z(c')fomﬂ‘ (35)
3 /f+(gg')z J(gg')co:zﬂ ’

By combining Egs. (30), (33), (34), and (35) we arrive at the

nonlinear integral equation 751

] 25 A i ([6-(5) K, clg' oA ¢!
$68,9)=] S0+ %‘rf f h)g B gty | ‘?f“mj"‘";dj’“? ]

g”‘- HAU)[Pa , Qa?, ch'dcf’ . (36)

Again, the Kernels are known analytically. Thus, Eq. (36) permits

the computation of the S-distribution (i.e. of the temperature
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field) if the mass flow field (i.e. the stream function}k ) is
known from the corresponding integral equation for the momentum
balance, Eq. (22), (23) or (25).

3.3.3. Normalization

In order to obtain a dimensionless form of Eq. (36) (like Eq. (25)),

we define the following functions:

_ Swe)
$G, ¢+ $(0) (37)

(normalized heat flux potential), and

T'(s) = 'bFOQL (38)

(normalized enthalpy), with the normalization enthalpy

h = 4wf(o) (/NT) (38a)

8w, VYo

(INT) and H% are taken from Egs. (18a) and (19).

Furthermore, we again use the relation'Y:H%-EQET and the
normalized electrical conductivity WH.0$ (see Egs. (23e) and (17)).

Using these abbreviations, we obtain from Eq. (36):
- LG €] _ 7€ ¢
4‘3!‘{’)’/_’“2’_;;'_“ [ﬁ_‘[J-—_}q(g,xf)-L(g,lf) : (39)

This is the dimensionless form of the integral equation for the

energy balance. The relevant five integrals are then given by

-
1

o
L6 [ [wOK i ¢ ey’ e
0o



wis)e' (ne'adg'd ¢’ (39b)

4
1. = J]"aii. f’dy _[ (y 0) (39¢)

27 A

qu(g"f)zij% P(gl‘f:;g'a(f') df,d(f' / (394,
00

27 4
ad i il X
de (S’,q%JfP%% Qle,9, Py ) df’dff’ | (39e)
0

The relation between the electric field strength E and the value
of S(0} in the tube axis, Eg. (34), then takes the form:

2 _ (o[ I ] o
R * '
o e -21

In order to calculate arc characteristics, we also need the ex

pression for the arc current, which, according to Eq. (18), is

3 'R.Jovo E (/NT) (4oa)

where E has to be taken from Ea. (40).



4, COMPUTATION

4.1. General Remarks

In order to find consistent solutions for the heat flux potential
S(Q,Y) and the corresponding stream function1f[?,yd, the two
governing integral equations (25) and (39) must be solved
iteratively and alternately iterated. Eq. (23) can be solved for

a given distribution of S(g',(p') and hence for given distributions
of 9¢ /ag' and ‘aé/a?, . The solution ¢, (9, ¢) for incompressible
flow has to be calculated from Eq. (2la) and it is convenient

to use it as a first approximation for @ on the right-hand side
of Eg.(23). In the following, each approximation Qi inserted

in the right-hand side of Eqg. (23) produces a better approximation
¢i + 1" This procedure converges rapidly within 5 to lo iterations
/2/. 1f the distribution of ¢, (i.e. ¥ ), is known, a corres-
ponding iteration process is used to solve Eq. (39) for s,

(i.e. S). The convergence is the same as with Eqg. (23). The whole
scheme, with typically two iterations of each of the Egs. (25)

and (39), must be repeated about ten times in order to converge
within a maximum error of about 10_4. The convergence can be
accelerated by successive overrelaxation with relaxation factors
of about 1.5.

A problem always occurring when Green’s functions are used for
treating differential equations by transforming them to integral
equations is caused by the field point singularities, e.g. in

our problem the functions M and N in Eq. (23) with (23a) andak}l

P, Q in Eq. (39) with (39a-e). Therefore, in order to avoid
difficulties through numerical integration over these singularities,
the parts of the integrands which are not given analytically

Civer wigh), (B30) 0 ), (085) 6 ), (FE2Ne ), (rER)G ¢ ]
are expanded in Fourier series and the coefficients thereof are
expanded in polynomial series. These expansions have to be

carried out numerically after each step in the iteration pro-
cedure. Thus, all integrals in Egs. (2la), (25), (39), (40), and
(4oa) can be calculated analytically and written in terms of
double sums. In this way, no numerical integration procedure is
necessary. This method of integration shall be described in the
following sections.
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4.2, Fourier Expansions

We use the following Fourier expansions, whereby we have to
ensure that the functions being expanded must be regular and

differentiable in the origin:

N .
b) ¢! rg—g (gl'?’):écé-?" (§)sin ng!' TS
o PEEGIS Cepn Qe n g’ -
a2 .(g ¢')= Z Cren (8 sin " (414)

e) CP (f: ’)=£ Ci?n(g')(o; nc.f' . (41le)

f

As stated above, the Fourier expansions are carried out numerically.
Because the functions to be expanded are only known in the grid
points of our coordinate system, we have to replace the integrals
which determine the Fourier coefficients by finite sums. To

achieve this aim, it is not necessary to approximate the original
integrals by a numerical integration furmula of any kind because
the sine and cosine functions are orthogonal not only with respect

to integration but also to summation /5, 6/.

4.3. Polynomial Expansions of the Fourier Coefficients

As indicated in Eqs. (4la-e), the Fourier coefficients are
functions of the radial coordinate g'. In principle, these
functions of 9' can be represented by polynomials, the number

of terms in these being equal to the number of radial grid points.



= O s

Unfortunately, the matrix of the system of linear equations
which determines the polynomial coefficients is very ill-
conditioned. With the number of radial grid points N, necessary
in our calculations ﬁ%)lo)itis not possible in practice to
invert the coefficient matrix. Therefore, we have to use a
number of terms in the polynomial expansion which is less than
the number of grid points. In order to keep the error below a
certain limit in a controllable way, we use an expansion in
terms of orthogonal polynomials. Because we are dealing with

a finite sum, we again choose orthogonal functions which are
orthogonal with respect to finite summation. A suitable choice
in our case is the so-called Forsythe polynominals /7, 8/.

By rearranging these expansions with respect to the powers of 9’
we arrive at the following sums representing our Fourier co-

efficients:

Con ¢ =£ "’m’f'(“ , (42a)

RN ]

(42b)

Cecn € -2 B, ¢ )

CE(fh(g') =1_Z‘: Chi g' &) : (42¢)
ch" (g) "i% Dn: §' ) ’ (424)

CI?n(f;)‘é Em' f'((.) ' (42e)

The lower index of summation i = n is always equal to the order
of the Fourier coefficient being considered. The upper index m
is equal to n plus the maximum order of the Forsythe polynomials
chosen.
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4.4. Integration in the Azimuthal Direction

By inserting Egs. (4la-e) into the relevant integrals (18a), (2la),
(24) of the momentum equation and into the integrals (39a-c) of
the energy equation and integrating with respect to the azimuthal
coordinate (P', we arrive at the expressions to be listed in the

following sections.

4.4.1. Integrals of the Momentum Equation

54 o4
a) (/wvT) = f[u(fl,nf')f'df'dy’ -r.??ffq,o(f')f’o/g’, (43)
0 ¢ $=o

4
6§, p- ) 770000 0) Al -
6 0

o
b) * ¢Lo'+ 14 +.é§% %Lﬂ 2 (44)

A
. . : _ _ /
vish Qg ==dT s cu, (UGS Cnpaleng ) o

-7 I:}:cf!_!?cv‘ epn [g'tng?- 2 (- & )]p/f'_

4
- ,z;;'r/‘ny/cwp(fy[“'(nr'z—rrlzfg"-?fﬂdf') (44a)
gl

+
B, = —2 Tsingeany[ ¢, (pUger(4-g )a-g") elg '
(o
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2
~2Fsingcosy ('W(S:')[gg'-z(f—s-;! -%’f"'(g‘-s-,-‘i)]o/f'-
™ (44b)

=2 sincp tof ‘ffcw (f‘?[g f’(g ) "[gf'/(f"’ ?-:3)]{;0 )
§-¢

and
¢3m =W gin(n+1)p F /e )+ T Sinln=4) p f:(f) / (44c¢)
Chya)
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1
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f-o
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4
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§'=

1
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F™(e)= "fcw, (?’)fg"("”}(g ~p") dp!

gko

§ - (h~4) ~(n-A)
- "_44 Con (f'J S’nf'(" A)(?n 4_? J)dg'-,l
g0

a ( 4) '(-)
?J. l nt - ”}df -
QP

)12 (0= n~A)__I=(n=1) /
Jo'2et )(?:c -d_fz ( "de ,

finally
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A
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4.4.2. Integrals of the Energy Equation
Q7 4

DI, g0 [[ulelg) K Guyig'p ) detel ¢ =
(]

y
=‘I’iff('“; (f') g'[(nf [,,S;]O/fl-&
feo (
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(45a)

(46)

(47)

(48)



- 29 -
_ 2T 4

o I, (g -/fr'g;@"?(ﬁ o). Plo,p: 8'p') dlpdly

272 winpflpg ”/f Cepnlgp e’ o

- { ff:gnff“f"‘” O- gt f

e) (5’,‘{) ?ZPM(Q =f)&(§,cf g‘f’)df oAep'=

-_-.257'02 cos n? {(f ‘f-")fg(&fn(f’) f’("’"f)df'-i

fto

A

_‘_?;ché_‘fn (gtJ[gl(an_,_gl('-h-4)-]d§,} | oo

4.5, Integration in the Radial Direction

We replace the Fourier coefficients in the integrals, Egs. (43 - 50)
by the polynomials Egs. (42a-d). We are thus able to carry out

the integration with respect to the radial coordinate g' analytically.
In this way, all integrals can be expressed in terms of double
sums.

4.5.1. Integrals of the Momentum Eguation

a) (/1T ) _272_._u_ (51)
ezt +2 /
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(=]
b) ¢4 = ¢40+ 14 "'h% Cb.qn 3 (52)
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2. Integrals of the Energy Egquation

& (c+2)
a) L (g ¢)= ‘m*g a,; (‘fﬁr_ % (54)

b)

c)

d)

(4""2) it ZJ c,'..".‘))
ra 2 2 N g o
+.?4rh2._ t‘o.rnf,fﬁ x -:f—-(?"_zr)-r?('f 4 e //,

£ +nil ran+2

€ n 4
4, = --23?"% %ol taar (55)
£ v C,: e

- 20 m ¢
_’f (§>,~f)-2?7§(or by[g,'”fh/hf-h?n,z B f—-‘—fh—f) (57)

i=nig hi (2 =42




&) I () LF)=‘\'7?';I:(“‘?(/I-S£J -

oo W .
- D5 h > 2 1(pt -e")
.2”"% a”n‘f{(“”? (hf+ii—+4(h'%(€_bn—§_ )

5. RESULTS

In this section, we shall give as an example some results for
=3
= 5 % lo m and mean value of

an argon arc with tube radius R
viscosity 7a - 2 x 1o~° Ns/m2. Fig. 2 shows a computer plot

Argon
©=90° R=510°"m
N [=1A
B=4.10°T
7 =2.10° Ns/m’

i
7
I

a3

.
SNl

= const in one half of

Computer plot of the isotherms S

Fig.2
the tube cross section
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with isotherms S = const in one half of the tube cross section
for an arc current J = 1 A and an external magnetic field of
B=4xlo? tesla. The corresponding flow field is shown in

Fig.3. The stream lines y’ = const form a double vortex.

Argon
R=510"m
1=1A
B=4.10°T

1 =2.10° Ns/m?

Fig.3 Computer plot of the streamlines ﬂf = const in one
half of the tube cross section

Fig. 4 shows the calculated distribution of the temperature T
as a function of radius g along the symmetry axis (x-axis) of
the tube cross section. For comparison we have also plotted an
experimental temperature distribution measured by Kollmar /9/
by means of a Schlieren method which, however, gives no precise
information on the height of the temperature maximum. Fig.5
shows the calculated values of the flow velocity Vx in the
symmetry axis (x-axis) and gives a comparison with velocity
values measured by Rosenbauer /9, lo/ by means of test particles
brought into the flow field of the arc. The observed shift of
the experimental velocity distribution towards the theoretical
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- T [K] @=TC P =
T Argon measured
R=510m
1=1A; B=410"T

,= 2.10° Ns/m?

calculated

0

P

N l — i
0 | ] ] | ] 1 1 ]
10 08 06 04 02 O 02 04 06 08 10
Fig.4 Distribution of the temperature T vs. @ along the
axis of symmetry (x-axis)
0.50 vy [M/s] Q=T ! $=0 measured
0.40 FT Argon calculated
R=5107m
030 F  1:=1a;B=410"T
Y)z=2.10" Ns/m?
020 -
0.10 +
p | p
0 . 1 1 ] ] ] l
10 08 06 04 02 O 02 04 06 08 10

Fig.5 Distribution of the velocity Ve vs. ©

of symmetry (x-axis)

along the axis
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curve can be assumed to be due to the inertia forces, the curl

of which is as yet neglected in this theoretical treatment. Fig.6
finally shows characteristics of the arc, calculated from Egs.
(40) and (4o0a), i.e. plots of the electric field strength E versus
the arc current J with the magnetic induction B as parameter.

For a constant arc current, the electric field strength increases
with increasing magnetic field. This increase of power input per
unit length has to compensate the additional losses due to the

viscous mass flow.

1100

E [v/m] Argon

1000} R=510"m

1), =210 > Ns/m?
900+

800

700 |
B [Tesla]

6.107"

4L107%

2107
400+ 0
I [A]

300} e

1 L i

0 1 2 3 /A 5

Fig.6 Arc characteristics E(J) for different values of the
magnetic induction B

600 -

500

~—
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6. CONCLUDING REMARKS

In the case of a wall-stabilized magnetically deflected arc the
advantage of Green’s function method in treating the relevant
equations and thereby deriving flow and temperature fields has
been demonstrated. The calculated fields show good overall agree-
ment with experimental measurements except in the region near the
arc core, where inertia forces begin to play a dominant role. The
influence of these inertia forces can, in principle, also be
taken into account by the same method of Green’s function. This
leads to an additional term in the integral equation of the
momentum balance. Such theoretical formulations are being carried
out at the present time.
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