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ABSTRACT

The results of previous authors for the injection of relativistic
electron beams into unmagnetized collisional plasmas are generalized

by allowing for arbitrary radial beam profiles and finite electron
temperature. For vt' << 1 (v = collision frequency of plasma electrons,
t' = time after passing of the beam front) the magnetic field B depends
strongly on the beam profile, smooth or sharp in units of the plasma
skin depth c/mp. For vt' = vty = (pr/c)2>>1 (R = beam radius) the

return current has diffused out of the beam and magnetic shielding is
lost. For beam currents well above the Alfvén current the beam pinches
before reaching tye For beems with currents from 1 to 100 times the
Alfvén current and with n'/ne = 10—] or 10-'3 (n'=beam density, n_ = plasma
density) critical times for which the beam is seriously affected or
destroyed by pinching are calculated numerically. A parabolic and a

step function profile are used for comparison and the critical times

are found to be only weakly dependent on the profile. The return current
heating time, which determines the maximum free path of the beam, is also
calculated. Finite plasma temperature does not affect the magnetic field
in this linearized theory. Its validity is estimated by evaluating
critical times for the return current as well and comparing them with the

critical beam times.




1. Introduction

Upon injection of an electron beam into a plasma a reverse current

is induced in the plasma, which strongly reduces the beam's azimuthal
magnetic field. Beam currents well above the Alfvén current may therefore

be transported in plasmas without difficulty. HAMMER and ROSTOKER (1970)
have shown that without dissipative effects the screenirg factor for the
magnetic field is s = Rmp/c >> | provided the plasma density is high compared
with the beam density (R = beam radius, wp = plasma frequency of the back
ground plasma). A step function profile was assumed by these authors for

the radial beam current distribution. More recently it was shown by
ROSINSKII, RUKHADZE, RUKHLIN and EPEL'BAUM (1972) and in detail by

KUPPERS, SALAT and WIMMEL (1973) that for more realistic, smooth beam
profiles (gradient length >> skin depth c/mp)screening is still considerably
stronger, with s of order (R mp/c)z. At later times, with collisional effects,
the return current diffuses out of the beam and the magnetic field increases.
This process was investigated by RUKHADZE and RUKHLIN (1971) and, with
inclusion of an external magnetic field by LEE and SUDAN (1971), LEE (1971)
ROSINSKII and RUKHLIN ( 1973 ).

These investigations suffer from two restrictions. First, only a step-like
radial profile of the beam was considered. This restricts one to a rather
narrow class of situations. POUKEY and TOEPFER (1972) considered a parabolic
profile, but the numerical solutions were obtained only for small beam
currents and particular experimental conditions. Second, the investigations
mentioned assume that the beams are rigid and parallel and that they disturb

the plasma only slightly.




These two assumptions are satisfied ipitially owing to current

screening; but both may break down for overcritical beams after,

possibly short, times as soon as the magnetic field reaches certain
critical values. Obviously, a nonlinear theory is needed in order

to solve this problem exactly. Although this is not attempted here,

we do get critical times for beam propagation and for propagation of

the return current.

This paper is arranged as follows. In Section 2, with the assumption

n' << ne(n' = beam density, R, = plasma electron density) the equation

of motion of the plasma is linearized. Although heating of the plasma

is excluded as a nonlinear effects we allow for a finite plasma temperature.
We consider a highly relativistic rigid beam of arbitrary radial profile,
with a simple injection phase and a subsequent steady phase.

In Section 3 the azimuthal magnetic field is discussed.

A scaling law for the magnetic field which holds in the dissipation -
controlled phase is derived. Numerical plots are presented which compare

the magnetic field for two representative profiles, a step function profile
and a parabolic profile as time evolves. These two profiles are also used

in Section 4 for a set of plots in which six critical times are calculated
and discussed for each profile. Each critical time corresponds either to
violation of a criterion for regular beam propagation, e.g. the Alfvén
criterion (ALFVEN, 1939), or concerns the perturbation of the return current,
or is generally of interest, such as the diffusion time of the return current.
The electric field is discussed in Section 5 and final conclusions are

presented in Section 6.




2. Induced charges, currents and fields

We consider a current j'(r,t) of highly relativistic electrons
injected into a fully ionized unbounded plasma with infinitely
heavy ions. No external electric or magnetic fields are present.
The induced charges, currents ieand fields are connected through

Maxwell's equations
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where q =
e

—1e1; ne, ve, Te

are plasma electron density, velocity and

temperature, assumed to be non-relativistic, n, =const is the ion density,

and v is an effective collision frequency.

On the assumption that the beam is a small disturbance to the plasma
the equations (1) - (4) may be linearized. If we go over to Fourier

transformed quantities
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easily be solved with the result
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essentially is the thermal velocity of the plasma electrons.

For arbitrary radial and axial beam profiles j'(r,t) the net
currents, charges and fields may be found by Fourier inversion of
equations (8) - (12). Equations (8)(9) and (10) show that as long

as the linearization holds the magnetic field and the nonpotential
part of the electric field are not affected by finite plasma electron

temperature, while the space charges are.

Considerable simplification occurs for highly relativistic beams for

which the velocity of propagation u, assumed to be in the z-directionm,




may be put equal to c, the velocity of light, and if the beam
quantities depend on time and the axial coordinate only in the

combination t - z/c. In this case
3 W, .
i'Ck,0) = 2m(k, - = l'(El’m) ‘ (14)

where if(EJ,w) is the two-dimensional Fourier transform with
respect to the perpendicular coordinates x,y. The results of
RUKHADZE and RUKHLIN(1971) show that the assumption u=c is not
essential for the validity of the results as long as u Zc. Ve

introduce -cylindrical coordinates:
r = (r cos ¢, r sin ¢, z); k = (k, cos @, k,sin 6, kz) {15)

and consider axially symmetric beams only.

Then B is in the ¢-direction, while E has components Er and E .

In the following, for simplicity we confine ourselves to the study
of the magnetic field B = B¢ and the total space charge p in order

to investigate current screening and charge screening. From equations

(8) -(15) we get
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We choose a simple ansatz for the axial profile with an injection
phase of time T and a subsequent stationary phase:
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Effects due to the rear end of the beam are not considered. Only a
b 1

small overall damping e EE , € > 0, has to be added in order to

make the Fourier transform converge. In Fourier space one gets
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Through the é-function B and p also depend on t and z in the
combination t'=t-z/c only. From equations (16), (17) and (19)
‘one obtains
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The integrals may be done with the help of the residues at

w = 0;i/t; ivk3/(kZ+a?); iv +f and the result for t' > 0 is
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3. The magnetic field

Without collisions, v = 0, we obtain
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one easily recovers the result (HAMMER and ROSTOKER, 1970)
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where X = rwp/c, Xl = R mp/c. For a parabolic profile,
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the Fourier integral of equation (27) gives (GRADSHTEYN and

RYZHIK, 1965)
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which agrees with KUPPERS, SALAT and WIMMEL (1973).

The fields (29 and (31) are listed for later reference.

For weak collisions, vt' << |, the effect of collisions is small
(see Appendix A). Hence, in the following we only consider times t'
such that vt' >> 1. Also, we separately consider the build-up phase

of the beam, t' << 1,and stationary phase t' >> 1.

In the build-up phase, t' << 1, it holds that vt >> 1, which may be

used to simpiify B, equation (22):
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with y = kivt'/az. For t'/1 << 1 equation (32) approximately reduces to

tl
b 3

Blky,t") = 222 cos (6-¢) 3! (k) + [1 - %(1-3‘37)].
1

(33)

In the stationary beam phase, t'>>t, the second term of equation (22)
may be dropped. (The singularity that occurs at ki(l—v1)+a2= 0 for vt > 1
disappears when the third term is taken into account). The third term
may be simplified by noting that only such ki contribute effectively for

which ki < a?/(vt'-1) << a?/(vt-1). As a result
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B (k,,t") = "I cos(8-9)5] (ky) l‘(—l (1 -eY) (34)
The interpretation of the equation (33) and (34) is obvious:

The first term is the magnetic field that would be produced by

the beam j; alone. This follows from equation (22) for example,

with the plasma frequency wp = ac put equal to zero. Consequently,
the second term of equations (33) and (34) is the contribution BP of
the plasma return current to the magnetic field. In the steady beam
phase this contribution is particularly simple. The exponential exp.

(-ki vt'/a?) shows that Bp is determined by the diffusion equation

2 P
2 P _ 2 oB
Vs B < 3¢ " (35)
Hence for times t' >> ty (LOVELACE and SUDAN, 1971), where
Rmp
= P 2
vep = (—2)2, (36)

and R is the radius of the beam, the return current inside the

beam has diffused away and screening inside the beam is lost.

Comparison of equations (33) and (34) shows that in the build-up
phase the process of field diffusion is slightly different. The
function f(y) = y_l[:l- exp(-y):] decays more slowly for large

y = ki vt'/a? than does exp (-y). An e-fold decrease of f(y) from

f (y=0)=1 occurs only at y = 2.5 instead of y = 1. Hence the
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diffusion of the return current is slowed do;n by a factor of
approximately 2.5 during the build-up phase. Since apart from
this factor there is no great difference to the stationary beam
phase, we will not consider the short initial phase any more.

In the steady beam phase we get from equation (34)
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Another useful representation is obtained by Fourier inversion
of exp (-k?) and subsequant integration over lk (GRADSHTEYN and
RYZHIK, 1965):
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Equation (40) shows that the normalized B, apart from the beam

profile, depends only on the two variables r/R and q,
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From equation (40) it also follows that asymptotically for large
radii the magnetic field goes to zero as
- (+=RY2,2 —
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where factors (r/R)a, o = const, have been neglected. The fact that
the magnetic field decays more strongly than r'_l is important. It
proves that the total net current remains zero in spite of dissipative
effects acting on the reverse current. This is possible because
additional return currents are induced outside the beam. Since the
radial e-folding length of B, equation (42),is p_1= orsl c/mp it
follows that the average radius of the return current grows proportinally
to (vt')%ﬁ.

Obviously, if the plasma is confined in a cavity of radius T 2 R the
return current distribution will be modified by boundary effects if
pal(t') > T and the compensation will be lost. This effect has been

investigated by, for example, POUKEY and TOEPFER (1972).

Inside the beam, at times t' >> tD when we expect the return current to
have decayed to a small fraction we find from rp < Rp << 1 and the small

argument expansion of the Bessel function in equation (39)




B(r,t") = o [1'(0) - 1" (R)r202/4 ] (43)

where I'(r) is the beam current at radius r,

r
I'(x) = 2r J dr'x! j; CE)s (44)
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This shows that the residual return current is only a fraction of

-1
order R2p2 v o(vt') of the beam current.

We calculated numerically the magnetic field distribution from

equation (40) as a function of r/R and the dimensionless time q ‘=
4c2vt'/(Rmp)2 both for a step-like radial profile of the beam current,
equation (28), and a parabolic profile, equation (30). Figure 1 shows the
early phases of diffusion, t' << tps together with the analytic curves
for vt'=0 taken from equations (29) and (31), respectively, with the
arbitrary choice Rmp/c = 25, corresponding to q = 12,5 for vt'=l. The
differences in the amplitude and radial distribution of B between both
profiles are very pronounced. (Normalization is with respect to equal
currents I'=I'(R) in both profiles.) At later times, see Figure 2, the
dependence on the profile is much weaker. At the diffusion time tyo

q = 0.5, the return current inside the beam has almost vanished so that

the magnetic field approximately agrees with the relevant beam vacuum fields.

Outside the beam however, the return current is strong, and B decreases

much faster than r_l.



4, Beam criteria and return current criteria

We made use of the magnetic field as given by equation (40) for the
numerical evaluation of several criteria relevant to the propagation

of overcritical electron beams in plasmas. Again, both a step function
profile of the beam current and a parabolic profile were considered. The
beam currents I' were taken to range from one up to one hundred times
the Alfvén current I, = mec3 v'/e. Under these conditions the magnetic

A

field initially screened by the plasma reverse current, grows by

diffusion of the return current until at some critical time t' =t - z/c it

is strong enough to modify appreciably the propagation of the beam itself

or the propagation of the return current. Six characteristic times which

were discussed in detail in KUPPERS, SALAT and WIMMEL, 1973a were

considered:

a) The "Alfvén time" t,- At t'=tA the gyroradius R'e of the beam
electrons in the azimuthal magnetic field has become equal to the
radial (half-) width 8r of the magnetic field region, and parallel

motion of the beam is perturbed.

b) The "pinch time" tps which is defined by the virial condition (KUPPERS,

SALAT and WIMMEL, 1973a)

12 = 21,1°, (45)

where I = I(R) is the net current at r = R.
For t > tP the magnetic pressure is larger than the maximum possible

transverse beam pressure p' = n'meczy'. The criteria a) and b) are

max




c)

d)

e)

£)

I

equivalent for beams with smooth radial profiles in vacuum, but
not for beams in plasmas. t' > te leads to catastrophic pinching,
while for tP > ! 3 ty propagation is still possible, in principle,

if the beam manages to change to a new self-consistent structure.

The "diffusion time" equation (36). For t' > ty the magnetic field

tD,

in the beam region is almost constant (up to 20 7, see Figure 2).

The "heating time" ty (LOVELACE and SUDAN, 1971). While all other

criteria give critical times t' = t - z/c, t_, actually corresponds to

H

a critical length LH = cty. LH is the length after which the beam has

lost all its kinetic energy by dissipation of the return current.

The '"gyro time" t_, the duration of the first gyroperiod of the plasma

G’
electrons. It may be used as a lower limit to the time when the nonlinear
magnetic force on the return current becomes important.

The "Lee time" defined by Qe = mp. LEE and SUDAN (1971) have shown that

tL,

an external magnetic field Eﬂ does not interfere with the return current

propagation provided Qeo< mp because plasma electrons set up electric

fields which compensate the [:v x B_ |/c term in the equation of motion.
—- -0

When finite ion mass is included (LEE, 1971) however, ion drift in a plane

geometry leads to an additional rapid deterioration of the return current.

The relevance of these results to propagation of a cylindrical beam in the

self-consistent inhomogeneous field B is unknown. We have included £ which

may be useful as an upper limit to the time at which magnetic field effects

on the return current flow become crucial.




The criteria a)-f) were evaluated with I'/IA and n'(r=0)/ne as free
parameters (see Figure 3). Two values of n'/ne were considered, 1'1‘/ne=10_3

(see Figures 3a and 3b, and n‘/ne = IO—] (see Figure 3c and 3 d).

The procedure to determine the critical times was as follows. From the

definition of q¢ = (R wp/2c)2/(vt') it holds that

1 1 n
o' = XL = (46)
q? I n'(r=0)
where b = 2 for the parabolic and b = 1 for the step function profile.
All criteria except criterion e) may be expressed in terms of q directly or

in terms of the normalized magnetic field, which again is a function of g

(and the radius) only, and the parameters I'/IA and n'(O)/ne. Then, the

q were determined numerically and inserted in equation (46).

critical
For the gyroperiod te the parameter wp/v has to be fixed independently,
and mp/v = 100 was chosen somewhat arbitrarily (see GUILLORY and BENFORD,

1972). It is easy to see that while te alone increases vt. decreases with

increasing mp/v. The characteristic parameter Rmp/c is determined by

Rw n 1/2

. 1Y e
- (bY IA n|(0)) . (47)




From the graphes (Figure 3) we get the following results:

The Alfvén time tA is well below the diffusion time tD as soon

as the beam current is gppreciably larger than the Alfvén current.
From this one might expect large differences between the parabola

and the step function profile. This, however, does not occur. The

two t, never disagree by more than a factor of two. The reason for
this is the following. The step function profile indeed needs less
time to reach a certain magnetic field level; additional time is

used, however, to quench the gyroradius to the small value 8r of the

B region, typical of this profile.

For very large beam currents one would not take the violation of the
Alfvén criterion for the step function profile too seriously since

it occurs in a very thin sheath only. Figures 3b) and 3d), however,

show that in this case the pinch time tP is not too wide of the Alfven
time, any way. The pinch times for the parabolic profile (Figures3a) and
3c)) are consistently somewhat higher than for the step-like profile.
The ratio of the two pinch times, which grows with increasing current,
never exceeds a factor of three, however. For small beam currents the
pinch time curves run into the diffusion time curves, which indicates
that catastrophic pinching no longer occurs. Of course, the criteria

that have been used are based on simplifications so that factors of

order one should be allowed for all critical times.

For the step function profile the magnetic field maximum and the half-width
r grow in time in a particularly simple manner (roughly in proportion to

q—]) for times far from the diffusion time. This may be used to derive
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simple analytic expressions for the Alfvén time and the pinch time;

see Appendix B.

The heating time for the parabolic profiles lies between the Alfvén
time and the pinch time, while for step—like profiles the Alfven and

the pinch time are both larger than the heating time.

The smallest of all times plotted turns out to be the gyroperiod oo
with vt. of order one. For later times this indeed implies the existence

of a radial electric field to compensate for the nonlinear magnetic

forces on the plasma current. Figures 3a and 3b show that the compensation

could work for low—current beams oOr for sufficiently small values of

n'/n, where the Lee time £ is not reached before the magnetic diffusion
time. For n'/n = 10_1, however, t. is of the order of the pinch time tp,
so that the return current is influenced by the magnetic field certainly

not later than the beam pinches.

Instead of the absolute value of the critical times t, ve plotted the
products Vt , which do not depend on the collision frequency v any more
(except for the gyroperiod). The effective collision frequency will be

an anomalous one if the return current velocity exceeds a critical value;

see, for example, GUILLORY and BENFORD (1972) and GUILLORY (1972).
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5. The electric field

Electron beams injected into fully ionized plasma are initially charge
neutralized very effectively since owing to the induction of the
reverse current almost as many plasma electrons are thrown out of the
common volume of the beam and plasma as are replaced by beam electrons.
Section 3 shows that the global balance between inflow and outflow is also
maintained when collisions modify the return current distribution.
Since dissipative effects act only on currents, but not on a static
distribution of charges, the role of collisions should be different

for current neutralization and charge neutralization, respectively.
This is borme out in equation (23) for the charge density p:

Plasma oscillations which are induced in the beam front are damped by
collisions for vt' >> 1, the radial profile of p is modified somewhat
(second term) by collisions, but there is no diffusion-like behaviour

as in the corresponding equation (22) for B.

If we neglect plasma oscillations whose dominant modes k, = mp/vth
are of order (mpr)—] << 1 compared with the non-oscillating part,

the charge density is given by

k2v2 1-vt+ k2v2 {2 ]
l L th 1 th T
Py, e =2 G [ 202 42 202 102122 1 w8
klvth+wp ]“UT+(leth+wp)T

For a cold plasma, vth=0, it follows that p is of the form p (ky,t")=
f(t')-j;(kl) so that the normalized radial profiles of p and the beam
current are the same and the charge demsity completely disappears in the
steady beam phase t' >> 1. In the build-up phase the charge density is
non-zero owing to the finite inertia of the plasma electrons, which causes

a phase shift between inflow and outflow of electrons.




For a warm plasma space charges exist even in the steady state
because electric fields may bebalanced by a pressure gradient in
the plasma.

For t' >> 1 one gets

[ o]

I ¢ ; k?
p(r) = -——2TTC ,,0 dk k Jo(kr)Jz (k) W (49)
where ‘b_1 = vth/mp is the plasma electron Debye length.

From curl B = 4mj/c and equation (27) for the magnetic field

in the collisionless case it follows that

1 .
= Jz(r; v=0, a—b) (50)

p(r) =
where the symbol jz(r; v=0, a -~ b) stands for the current density
in the collisionless case with the skin depth a_] replaced by the Debye
length b—l. From the symmetries involved and Poisson's equation

it follows for the radial electric field Er
Er(r) = B(r; v=0, a~ b). (51)

With previous results for B, equation (29) and (31), this means that
the electric field is smaller than the initial (vt'=0) magnetic field
by a factor of order Vth/C or (vth/c)2 for the step—function beam
profile or a smooth profile, respectively. On the other hand, it has

been shown in the previous section that additional radial electric
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field have to be set up in the plasma if the return current is
to overcome the [:Ee X E:] force. This electric field is obviously
of order (vez/c)B = (n'/ne)B and, depending on the value of n'/ne << 1,

may well be larger than that due to finite plasma temperature.




24

6. Summary and conclusions

The evolution of the magnetic field and the space charge of a relati-
vistic electron beam injected into a warm plasma with collisions was
investigated for arbitrary radial beam profiles. Initially, there is
a large difference in the magnetic field for smooth and sharp beam
profiles, compared at equal beam currents. Finite plasma temperature
does not affect the magnetic field, but affects the electric field,
in this linearized injection theory. The electric screening is more

effective than the magnetic screening and persists in time. Collisions

have almost no influence upon charge screening.

For overcritieal beams, 1' > I, (IA - Alfvén current), the magnetic
field, by diffusion of the return current, becomes strong enough at

later times to interfere with a regular propagation of the beam and

to influence the return current. The pertinent critical times (KUPPERS,
gALAT and WIMMEL, 1973a) were calculated numerically for a set of beam
and plasma parameters. It was found that differences in the beam profile
exert only a limited influence on the values of the critical times.

The critical times for the beam, i.e. the Alfvén time and the pinch time,
are in general well below the magnetic diffusion time; for step-like
profiles of the beam they do not differ much from each other. The heating
time for parabolic beam profiles lies between the (smaller) Alfvén time
and the (larger) pinch time, while for step-like profiles it lies below

both times.
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The influence of the magnetic field upon the return current was
estimated by calculating the gyroperiod of the plasma electrons

and the LEE time. It turns out that at the critical beam times an
additional radial electric field is needed in order tc compensate for
the nonlinear magnetic forces on the return current. Such a compensation
could happen for sufficiently small values of n'/ne or I'/IA such that
the LEE time is not reached before the magnetic diffusion time. For
n'/ne = lO_l, however, the LEE time is of the order of the pinch time

of the beam, and the results of the linear injection theory will be
insufficient. Actually, according to LEE(1971) the return current due

to ion drift could be quenched by the magnetic field even at times
earlier than the LEE time. However, it is not clear to what extent LEE's
results can be applied to the present case. A definite answer to these

questions can only be obtained from a nonlinear theory of beam injection.

Appendix A: vt' << |

Consider equation (22) for the magnetic field. In the build-up stage of
the beam, t' << 1, the exponentials in both the second and the third
term may be expanded. If we keep the first two terms of each expansion,
this leads after several cancellations to

. ]
B(k,, t') = ﬁ%ﬁ k, cos(6-¢) j;(kl) : =

(A1)
ki+a2

which is identical to the collisionless case, equation (26), with

t' << 1.,
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In the steady phase, t' >> T, the second term of equation (22) may

be neglected, while the third term may still be expanded, so that

4mi

Blkyst') .—.—-C—kl cos(e—d))j;(kl) { — 4 ( — - — yo — } (A2}
K2 + a2 ki +a’ ki +al T
where
2

2 W 2
v n, y
B - —te—w @ = 2 . W o= “p_ (a3)

1 = vt c? P 1-vt

From t' >> 1, vt' << 1 it follows that vt << 1, so that equation (A2)
may be expanded in powers of vt and by comparison with equation (26)

one finds

3B (r,t',v=0)
ow

. ovt! (AL)

e

w
B(r,t") B(r,t'; v=0) - TP ;

where B(r,t',v=0) is given by equation (27) and is a smooth function

of w_.
P

In conclusion, for times t' small compared with a mean collision time

collisional effects are either negligible or small.

AEBendix B

From RUKHADZE and RUKHLIN (1971) it follows that for the step function
profile the maximum of B is at r = R and for t' <ty is given by

T
B, o e (81)

v,TT—C RC[
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with q = Rmp/(c#vt'z). This agrees with our numerical results, which,

moreover, approximately yield for the half-width 6ér:

R
ir = g (B2)
Inserting this into the Alfvén condition and equation (45) yields
1
. 31 y'n . L
\JtA = T %ﬂ H \)tp = 27 = . (B3)

Figures 3b) and 3d) show that these are indeed good approximations

if € t

A’ Ep are well below t_.

D

"This work was performed under the terms of the agreement on

association between the Max-Planck-Institut fiir Plasmaphysik
and EURATOM".
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Figure captions:

Figure 1:

Figure 2:

Figure 3:

Evolution of the radial magnetic field distribution at
early times t' = t-z/c. Curves with maximum at r/R = 1
correspond to a beam with radial step function profile,
other curves to parabolic beam profile. Times are the

same for each pair of profiles.

BO = 41'"/(cR), q = Rmp/(ZcJGET). I' = beam current,

R = beam radius, v = collision frequency. For the analytic

initial values pr/c = 25 was specified arbitrarily.

The magnetic field at later times. Also shown is the asymptotic

state with no return current.

Critical times versus beam current for beams with parabolic

radial profile - Figures a), c) - and beams with step function

profile - Figures b), d) - for deasity ratios n'/ne = 10“3 and

10_1. t. = diffusion time, tP = pinch time, t

D = Lee time, tA=

L

Alfvén time, t

H = heating time, tg = 8yro time. For £ not shown

the Lee criterion is not violated.
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