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Abstract

The stability of plasma equilibria is analysed in the framework of
two-dimensional Vlasov theory, where the perturbations are constant
along the direction of the equilibrium current. The method makes
use of several general properties of the equations, thus covering a
rather large class of different configurations. Several necessary and
sufficient stability criteria and an expression for the growth rates
are derived. In particular, the results are applicable to equilibria
containing neutral points. A number of earlier results (e.g. the

tearing mode) are recovered by appropriate specialisation.




1. Introduction

Considerable work has been devoted to Vlasov stability of plasma
equilibria which vary in one direction only. (Furth 1962, Pfirsch 1962,
Schindler 1966, Laval et al. 1966, Schindler and Soop 1968,

Freidberg and Morse 1969). Of particular interest are situations where
the magnetic field magnitude vanishes at some plane (neutral sheet).

In that case there exist instabilities which are not contained in ordinary
(infinite conductivity) magnetohydrodynamics, the most prominent

example being the tearing mode (Furth 1962).

Neutral sheets are belived to be present in a number of important
astrophysical structures, such as the tail of the geomagnetosphere
(Ness 1965), the interplanetary medium (Wilcox and Ness 1965),
solar flares (e.g. Piddington 1969) and flare stars (Gershberg and
Pikelner 1972). There is speculation that neutral sheets play a
significant role also in the interstellar medium (Piddington 1969) as
well as in active galactic nuclei and supernovae envelopes
(Syrovatskii 1966). Similar processes can occur in a number of
laboratory experiments like theta pinches with reverse magnetic field,

belt pinches or tokamaks.

In view of the wide-spread occurrence of neutral sheets it seems of




interest to consider a more general class of equilibria, allowing for
spatial variation in one more direction. A characteristic feature of
such two-dimensional equilibria is that neutral sheets are replaced

by regions of weak magnetic field which may contain neutral lines.

Biskamp and Schindler (1971), in anticipating some of our present

results, have shown that this leads to qualitatively new features.

Because of the mathematical complexity of the Vlasov equations it
seems hopeless to aim af solutions in any explicit form, It turns

out, however, that the stability analysis does not require such solutions.
We approach the problem by discussing general proporties of the
mathematical operators involved and demonstrate the existence of a
variational principle. From these properties we derive several
necessary and sufficient stability criteria. The method can be regarded
as being an extension of the previous work by Pfirsch (1962) and by
Schindler (1966), although the present approach is more explicit and

even allows to estimate growth rates.




2. The equilibrium

Consider the class of two-dimensional collision-free plasma equilibria
where the electric current has only an x3-component in an orthogonal

coordinate frame (x], Xor x3) the metric being defined by
ds?2 = h,2 dx)%+ hy? dxp? + h32dx,?

h], h2, h3, the magnetic vector potential Ao and the electrostatic

potential ¢~ do not depend on Xa- These properties hold for instance

for plane equilibria with the electric field E_ = - Vo and the

magnetic field B =V x A/ lying in the x,y-plane of a cartesian

coordinate system (x,y,z) and for cylindrical coordinates (r,z,8)

with _E0 and Eo lying in the r,z -plane.

Since we are dealing with collision-free plasmas we use the Vlasov

(1)

theory, i.e. Liouville equations for the one-particle distribution functions f

together with Maxwell’s equations for the electric and magnetic field E
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where e and m denote particle charge and mass and I sums
over the particle species. Since we are interested in low-
frequency non-relativistic phenomena we neglect the displacement
current. A guiding center approach does not seem adequate
because in the presence of neutral points non-gyroscopic particle

orbits in regions of small magnetic field are importent.

For reasons of simplicity we confine ourselves to the above-
mentioned case of Cartesian coordinates. We admit the possibility
of adding a constant magnetic field component in the z-direction,

which is consistent with our assumptions.

Under these circumstances Liouvilles equation is solved by

fo(zl X) FO(HO;PZ) (2)

where Ho is the equilibrium Hamiltonian

H = % (vx2+vY2+v22) + e (x,y) (3)

and P, the generalised momentum in z-direction

p, = mv, + er(x,y) (4)

where A is the z-component of A .
o —o
It will be convenient to assume that Fo is a monotonically

decreasing function of

oF
0




This choice excludes several microinstabilities which may be discussed

separately.

The equilibrium potentials Ao and ¢  are found from Maxwell’s
o

equations, which are for the special geometry chosen

—_ \_’2 = S
¢C p OO (AO’ ¢O)
o
IR v = .|
' Ao Mo o (Ao’¢o)
with
p = IefF d3v
o o
= r 3
15 Ze;szO d°v

In the quasi-neutral approximation we compute ¢ (A_ )  from

OO(AO, ¢>O) =0 and Ao from

- g2 _ .
¥ Ao Mo Jo(Ao)

In order to make (6) a well-posed problem we impose boundary

conditions on the boundary D of a domain D in the x,y-plane. A

convenient choice is to keep
A , ¢_ constant on D,
o' "o
Under such conditions it can be established by standard mathematical
techniques (e.g. Courant and Hilbert 1937) that there exists always

a solution of (6) provided o, and io are bounded functions of A and
o

¢, - But even in the case of unbounded functions |
)

(6)




there exist solutions. An example is 5 (A ) = e®o . With
O (o]

this choice equation (8) has the solutions

]
A, = -2 n (1+§(x2+y2)) (10q)

(cylindrical pinch, Bennet 1934)

A = - =
5 2 4n cosh 4 (10b)
(sheet pinch, Harris 1962)
9 ]/2 X Y
AO = - 24n |:(I+a ) coshl;—2 + o cos y7—2] (10c)
(periodic sheet pinch, Schmid-Burgk, 1965)
Equilibrium solutions relevant for geomagnetospheric structures have
been studied by Soop and Schindler (1972).
There is a useful relation between charge density p, and electric
current density j0 . From (2) we find
dFD — 1 m aFG
dv = Es T e DA
z o (1mn

By integrating over relocity space we find

3F,

Efezszo'dav = - ife d3v
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which is the same as
3ia - _ 3pg
30, 34, (12)

This relation says that io and p can be derived from a generating

function W(Ao, q‘:c)

For one-dimensional equilibria these relations were derived by

Volk (1961).

The distribution function Fo(Ho’pz) is not necessarity a single-valued
function of its arguments. There may exist non-overlapping regions
in the x,y-domain which contain particle orbits with the same values
of Ho and P, In that case different values of F can be assigned to
the different regions. When necessary we will take this possibility
into account explicitly by writing the distribution function (2) in the
form
fo(xy ¥) = F_; (H_,p,) (14)
where the subscript i counts the non-overlapping orbits with the same

value of Ho and P, - Clearly, i can be considered to be a constant

of motion.

We will assume that (14) is the general solution to the two-dimensional

equilibrium problem. This means that almost all particles in a domain i

i AR



will ergodically cover the subdomain traced out by the particle’s
values of Ho and P For strictly. one-dimensional equilibria where
the potentials do not depend on, say, y, the subdomains are
characterised in addition by p)/' Nevertheless we consider one-

dimensional equilibria of form (14) only.




3. Formulation of the stability problem

We are interested in the stability of equilibria of the kind described
in section 2. The perturbations are assumed to be two-dimensional
with

= =0 (15)
This means that we study the subset kz = 0 of all possible modes,
where kz is the wave number associated with a Fourier expansion
with respect to the z-coordinate . We assume that all perturbations
vanish on the boundary of a suitable domain in phase space x,y,vx,vy,vz.
We will restrict our consideration to modes which vary with time

sufficiently slowly. The precise meaning of that assumption will be

given at the end of this section.

With x and p being canonical conjugate coordinates the Liouville
equation for the particle distribution function f(x,p,t) for each

particle species separately can be written in the form

of
3¢+ (H, £} =0, {,} Poisson brackets
; (16)
H = 5= (P - eA)?+ep
It is convenient to introduce the linear differential operator H by

It is easy to show that H is antihermitean with respect to the scalar

product
(u,v) = J u*v d3xd3v (18)
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where the integration extends over the full phase space because
by partial integration one finds

(u,ITIv) = - (I;u,v) (19)

-

Any distribution function Fo(Ho,pz) is an eigenfunction of Ho'

because Ho' p, are constants of the motion

-~

HF_(H_,p )=0 (20)

It follows immediately from (17) and (20) that H commutes with Fo.

In terms of the eigenvalue problem

Hf = Af (21)

Fo is an eigenfunction associated with the eigenvalue A = 0.

We shall restrict the analysis to the linear stability problem. By
linearising Vlasov’s equations around the equilibrium

f =FMH,p), A=A, ¢ = ¢, we find from the Liouville
o o o z o o

equation

%%L . ﬁofl - = g F_ (22)
where

ﬁlFo = {H;,F_} , H} = e¢) - ev + A (23)

the subscript 1 denoting perturbations.

Using the fact that Fo depends on Ho and P, only, we write

{81,F,} = F "{H;,8  } = -F_ '{H_,H, =—FO'HOH1(2®
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Thus (22) becomes
Bfl s

. 1 - 1
st T Hof1 = F H H,

We consider (25) as an initial value problem and obtain a formal

solution by a Laplace-transform in time. With the initial condition

fllt=0 = fl(O)

we find

-~

£ (x,v,s) = =5 p 'H o+ e %iﬂ © A+ -
s+H_ ° P s+H

£,(0) (26)

o

Since, from here on, we are mostly concerned with the Laplace
transformed quantities, there is little danger of confusion in not
introducing a different notation for the transformed quantities. The

second term on the rhs of (26) arises from switching from p to v

as independent variables.

Using
afo(x,p) aF (27)
3p 0

(26) can be written as

£1(x,v,8) = - —_— FO'H1+ eFD'¢1+e BES. &

s+Ho Bp2
bl Ei0)
s + Ho

From (28) we find the perturbation of the charge density

9
p1= - I e J d3v =2 F_'my+=R0 ¢4 3po by (29)

s+ ° 34, 34,

+ Dl(in)
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j, = -Le J d3v v —=— F_'H) + e, Sla 4y + e, 2o 4, (30)
s+H =% 3, =B B “
0 o
. (1 si s ..
Here 01(1n)cmd k2 ( nr:)xre the contributions arising from the
initial condition imposed on f]. If we infroduce (29) and (30) into
Maxwell’s equations we obtain a set of integro-differential equations
for A_‘ and ¢,
We are interested in the time-asymptotic behaviour of unstable
solutions. We therefore can drop the terms involving the initial
conditions. A simple formulation of the resulting homogeneous equations
can be achieved if we introduce a matrix notation. We shall ignore
the perturbations Alx' Aly‘; a discussion of this point is given at the
end of this section.
We define the vector
b1 (31)
E =
— Alz
and the matrices
_ 300 - 3pg
300 34,
N =
36, BA,
[ g V2 0
0]
K = 1
t 0 -— v2] (32)
L J
M =3
1 Z
¢ =3
1 - v
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N and K are hermitean with respect to the scalar product (different

from (18))

[u,v] = J u vd?x (33)

where the integral is extended over the full spatial domain considered.

With these notations, Maxwell’s equations assume the form
KE = NE + I eZJd3v ¢ —2-F g (34)
s + H
o
here we have chosen the gauge v+ A, = 0. The boundary conditions
require that £ vanish at the boundaries. The case of periodic
functions can be treated analogously. Multiplying (34) by £ and
integrating over x-space gives

Ef,,(K"N) _g =~ X EZ(C_E_, —S'—x— F(‘)CE) =0 (35)
- s + H

o
This quadratic form will play an important role in our stability analysis .

We shall use Hilbert space methods, the scalar product being given by

(18), where u,v are elements of continuous L? space.

We now discuss why we have ignored the perturbations A]x and A]y
This is justified asymptotically by our assumption that the modes considered
vary sufficiently slowly. Suppose
|s |1- << |
(o]
where T is a suitable characterisic time associated with the motion of

the particles and gcl) a typical time constant of the mode. In typical

situations envisaged (see section 1) t may be the time a particle needs
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to cross the system, i.e. T=L/ Vs where L is the characteristic
length of the equilibrium and iy the thermal velocity. Under those
circumstances it is appropriate to discuss our problem from the multiple
time scale point of view, where |er is the smallness parameter. We
find (Biskamp and Schindler 1971)

£ = ff°)(pz, QH,p,t)) + 0 ([s |1
for the non-Fourier-transformed distribution function where @ is the
phase space volume associated with the domain fraced out by the

)

functions H and P, Clearly Fl(o does not yield current density
components |, and |1y. Thus W |}y and consequently Alx and A]y
or of order |SO!T , whereas A]z is of order 1. It is in that asymptotic

sense that ignoring A]x’ A]y is justified. Note however, that that

property will not be needed in section 7.

In the case of strictly one-dimensional equilibria, the "adiabatic" part
(o) BFO BFO
F] reduces to —— A+ — ¢ (Pfirsch 1962).

3A, 3¢,
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4. Properties of unstable modes

The main purpose of this section is to show that unstable modes are
purely growing, that is that s in (34) is real. We assume an unstable

mode, i.e. Re(s) > 0 and split (35) into real and imaginary parts

obtaining
[QJ(K—N)E_] = 1 e?(cg, —25 ~— F! Cg) (36)
ES+H0)(S —HO)
B
0 = (CE, == gt 4 - )
(s+H) (s —H_) (37)
The property Im(s) = 0 follows from equation (37). To show this we
write s = y +1iv and consider the function
R '
G(v) = (C§ ———— Fl C £) (38)
y2+ (v+ R) 2 -
where
iR =:H
(8]
Since H0 is antihermitean, R is hermitean. G(v) is an alternative way
of writing the rhs of equ. (37), such that
G(v) = 0. (39)
Let S be a transformation which transforms
V.*> =V, V>-V
X x* Uy y
all other variables remaining unchanged. It is easy to see that this
operation is hermitean and unitary
§=5, 8 =1 (40)
Furthermore the following relation holds
sH =-H S (41)

(0] (o]
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If g(Ho) is a function of Ho we find
S g(Hy) =g (-H)) S (42)
Since F (H ,p_ ) contains v and v only in the combination v 2+v
o o'’z X y X
the unperturbed distribution function is invariant with respect to §

Clearly #; - v,A, s also invariant. With the aid of these

properties we will see that

G(-v) = = G(v). (43)

We write &

G(-v) = (QE,_____B-—TH-' F' QE)

y2+(-v+ R)?

= (ngs L = S§C é)
y2+(-v+R)2
R A (44)
= (CE, - — SSCE)
v+ (-v-R)?

- G(v)

which proves (43). In equating §C£ with Cg we made use of our

assumption that A]x and A]y are negligible.

Thus we can write

2 G(v) = G(v) - G(-v) (45)

02
———— F' C£)
(2++R)2) (y2+(v-R)2) ° T
Since Fo' # Othe scalar product in (45) can vanish only if Rce = 0.

= - 4y (Cg

As shown below that is impossible. Thus, from (39) and (45) we find
v=20 (46)
We now show that R C £ £ 0 for £# 0. Suppose R C £ #o0.

Then ¢; - v, Al must be a function of Hoond P, The only possibility is

o1 - vzAlz s pz
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where o #0 is a constant. Then

Alz = -am, ¢; = erxAD

This however leads to a contradiction because A. has to vanish at the

1
boundary. Thus ;tcg = 0 is impossible.

Since v = 0, unstable modes are purely growing. Therefore, the transition
from stability to instability, as a result of changing a continuous parameter,
can occur only at s = 0. In other words, marginal modes are necessarily

neighbouring equilibria.

For one-dimensional equilibria this property was first shown by Pfirsch (1962).
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5. The marginal mode

The result of the preceding section suggests that the marginal mode s> o
will be of particular interest in discussing stability. In this section

we therefore consider the limit s> o of (34) and (35) explicitely.

We introduce the spectral representation of the resolvent of the hermitean

-~

operator R:
+oo
: - EE& Im(w) # O
wrn  gEr mWTE )

-

EJ\ is a projection operator, projecting on all eigenspaces of R with

eigenvalues 1 < A, Note however that E}\ exists even if eigenfunctions

and eigenvalues cannot be properly defined (see e.g. Achieser and Glasmann

-~

1960). If EA is discontinuous

»
»
»

is the projection operator, projecting on the eigenspace with the (discrete)

eigenvalue 1. Setting s = iw we determine the limit s + o of the operator

- s W
Q: y = = (48)
s+HO w + R

This limit is defined in terms of

lim (U,Q U) = lim J iééx do()) (49)
S0 S0

o(r) = (U,E)\U)
for any U € L% | We write (49) in the form

1s£[g (U,Qu) = é-ifc]} [-is J do(r) + SZJ ] do (1)] (50)

g2+)2 g24)2
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The first term of the rhs of (50) vanishes the second term becomes

equal to lim ( o(o+s) - o(0)). With the aid of the projection operator
“ s70

P associated with the eigenvalue A = o this quantity can be written as
)

-~

(U, PoU)' Thus we obtain

lim s = P, (51}
S 70

s+
o
Hence we find from (34) and (35) that the marginal mode satisfies the

equations

(K-N)E + re?sddv C+]Fc')| f’ocg =0 (52)
[Q(K—N) E] + Ze (C§,|F;| EOCE) = 0,

The terms containing go can be cast into a more explicit form by

making use of the definition of f’o as a projection operator.

The projection h = E’og of an arbitrary element of L2 satisfies Hoh =0,

that is h will have the form

h=h(H, p) (53)

where in accordance with (14), i counts non-overlapping regions.
On the other hand, for a given set of constants of the motion h(Ho'pz)
can be defined by
¢ |h— = inf h'-
| In-g| | i L2|| gl | (54)

where ||U|| denotes the norm of U associated with (18). This leads to the
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variational problem

8 J |h-g|2d?xd3v = 0, (55)
or

®

J(h—g) ¢h  d?xd3v = 0 (56)

Making use of (53) we rewrite (56) as
*
L J dHo dpz Sh J d2 (h-g) =0 (57)

Q; (H ,p,)

where @ is the domain of phase space traced out the constants of the
motion Ho' P i. We find
=P o= !
h=Pe= o @) J s (58)
i 2" o

i
which has the form of a phase space average. If, as in the case of Cg

the function g does not depend on Vs Vy’ we can write
do@ ~ dH_ dp, d?x such that

h = = g (59)
where

S B 2
8> = Di(H_,p,) J gd“x (60)

1
i.e. the average takes place in x-space only. Clearly <g> depends on

Ho’ P and i.

Using these relations we can write

P CE = <C& (61)
With the aid of the definitions of E, N, K, C in (31) and (32) together
with (42) and (61) we find the explicit form of the marginal mode

equations (52)
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P o ¢ P n
= ' =
EOA¢1+8¢O ¢1 +3A Al Le JdVFO<“P1 > 0
ajo 35
AA1'+§$;' ¢1*‘§K;' A= ZeZJ d3v v F& <Y >=0

WO(A],¢]) =0

where

o
°o

1 g
W (A),0,) = f dzx[;: | VA |2 - e Ve, ]2+ E 16,12

3] 9p %
__o 2, 9O -
3A_ A, 12 + 34, (A19) *+ 014 )

+ 1 e? Jd3v|Fé| | < ‘{‘]>|§

and

“Pl = ¢1 - VZA]z

In the case of quasi-neutrality, the term eo|\7¢1]2 can be dropped,

the other ¢1-terms however have to be retained.

For two-dimensional perturbations of one-dimensional equilibria, the
procedure of this paragraph requires a modification because h may
depend on an edditional constant of the motion, say py. In that case

(60) has to be replaced by

b J g _dx dy ( dx dy
L oy o e Vo1
H-5—(p,~eA)?-e¢ H- 5=(p, - A)2-e4

This expression vanishes because a two-dimensional perturbation of an
equilibrium which depends on x only has the form g v e 'ky, k# o .

This result is consistent with the treatment chosen by Pfirsch (1962).

(62)

(63)

(64)
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6. Sufficient stability criteria

| recover a sufficient stability criterian obtained by Schindler (1970)

We shal

in a different way. We compare equation (36) with its marginal version,

\ o. the second of equations (52).

o] spectrol representafion we write

¥
(CE, 55 F!CE)
(s+H ) (s—H_) .
o} o] (66)

By returning t

r > -
- (cg, | —=—dE,F! CE)

) g2+)2 ° =
(66) it is obvious that

From the shape of the integrand on the rhs of

2 2
J - d o2 lim { S _—— do (67)
52422 s>0 ) 52+)\2

= (cg, |F)| PCE)

where the equality sign applies to the case s =0 only. Thus for s & o

we find from (36) with (61)
(68)

E,(R-NME ] + 2 e2(<cg>,iF(‘)‘l<cg> )y <0

or using the explicit form (65)

Since we have assumed instability (e.g. by ignoring the contributions from

the initial conditions) the following stability criterion is evident:

WO(A1; ¢]) >0 for all Ay, ¢, € Li is sufficient for stability.

The subscript n refers to the fact that a suitable
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normalisation is imposed on AI and ¢>] to exclude the trivial
solution A = ¢, = o Wedker sufficient stability criteria follow by
dropping positive definite terms in the expression for Wo' An obvious
and interesting possibility is to leave out the contribution of the
averages <¥ > (Schindler 1970). Since Wo(AI’ ¢]) vanishes for
marginal modes we don’t expect that it is possible to improve the
criterion (69) further. That in fact this is true will be shown in

section 8.

The quadratic form (59) takes a particularly simple form if we assume
quasi neutrality, that is ignore €00 , in (62) and g (V)2

in (64). Using (64) we can then express ¢, in terms of A] and <¥,>

SQO/ BAO y
ST sl PR &
where g denotes an average which for arbitrary g is defined by

2r33
Ze“/d v|Fc')[ g

s = (71)
Zezfd3v]F$]
Inserting (70) into the quasi-neutral version of (65) yields
3] (3p _/3A )2
1 o] o] o
W (A, = J d?x[ — |va |2 - : 2
qn 41291 x[uo 94| (BAO " 50 ke, e
Bpo - (72)
+ | ‘3‘470‘ |<¥y> - ¥ 2]

where the subscript gn is supposed to remind of the quasi-neutrality

assumption.
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In deriving (72) we have used (7) and the fact that
<¥p> = ¥ (73)

which is another form of quasi-neutral Poisson’s equation as follows

from (70).

Since we have used (73) in deriving (72) the stability criterion takes
the form:

an >0 for all AT’ ¢] e Li satisfying (73) is sufficient for stability

. (74)
of quasi-neutral systems.
Noting that the last term in (72) is positive we also find the following
(weaker) criterion:
1 2 dJO 2 2
dx [ o= 94,12 - 204,127 > 0 for all Ac L (75)
o

is sufficient for stability of quasi-neutral systems. The constraint (73)
no longer applies because ¢, has disappeared from the quadratic form

i
in (75); ;TO is the derivative of | (A) as defined in (8).

As shown above, the average <y,> and consequently y, vanish for
two-dimensional perturbations of one-dimensional equilibria. Then (74)
coincides with (75). This case was studied by Schindler and Soop (1968).
The criterion (74) was obtainea by Biskamp and Schindler (1971) using a

different approach.
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7. Variational principle

The stability criterion (69) can obiously be expressed in terms of the

following variational principle:

inf WO(A], ¢l) >0

(76)
2
Ay 4y € L°
is sufficient for stability.
If we normalise by
J ]2 a2x = « (77)
where « is a constant we obtain as the Euler-Lagrange equations for
the minimising function & _
i +
(kK-N) g +Ie? [ ddvc |F!lp ce =2 £ (78)
The lowest eigenvalue Ao coincides with K inf Wo'
X
Since >\0=0 reproduces (52) we find
inf W (A;,6,) = 0O
(79)

2
A]’ 4)] € Ln

is necessary and sufficient for marginal stability.

If an is used instead of Wo' the variation in (76) and (79) must be

carried out under the constrainr (73).

We now show that the variational principle (76) can be obtained in

different way. This is of interest because two of the restrictions we had
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to impose so far can be relaxed:

We will no longer restrict the consideration to
(i) the time asymptotic regime

(ii) slow modes, i.e. we allow for A]x’ Al)ﬁéO

For simplicity quasi-neutrality is assumed, the generalisation to the

exact case (e # 0) is straight forward.

Generalising an approach developed by Schindler (1966) for one-

dimensional equilibria we start from energy conservation in the form

m 1
; J E; 2(‘,}2( Fv2) e o (p, - eA)7] £a0 (80)
+ 2i d?x = C
U0
where
do = d?x dr, dt = dvxdvyd(pz/m) (81)

Proceeding along the lines of the paper by Schindler (1966) we find

from (80) to second order in the perturbations

f1 2eAlzf1 o2
Z (A = 0 - = e o= bt 2
( l’¢|) L J d E FD' m (pz er)+ m A]z Fo
. 12 (82)
L 2 —_ =
dex ? B] 02

where the constant C2 is determined by the initial conditions.

We minimize the lhs of (82), subject to the following two constraints

EJefldT=O 7 (83)

i.e. quasi-neutral Poisson’s equation. In addition we impose
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7. Variational principle

The stability criterion (69) can obiously be expressed in terms of the

following variational principle:
inf wo(A], ¢l) >0
2
AI’ ¢] € Ln

is sufficient for stability.

If we normalise by
[ 1217 @x =
where « is a constant we obtain as the Euler-Lagrange equations for

the minimising function & _

(K-N) £+ e/ ddvcC|F|Pce =2
m 0O O m §m

The lowest eigenvalue )‘o coincides with K inf Wo'
X

Since A =0 reproduces (52) we find

inf WO(AI’¢1) =0

2
A1’ ¢l € Ln

is necessary and sufficient for marginal stability.

If an is used instead of Wo' the variation in (76) and (79) must be

carried out under the constrainr (73).

We now show that the variational principle (76) can be obtained in

different way. This is of interest because two of the restrictions we had

(76)

(77)

(78)
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to impose so far can be relaxed:

We will no longer restrict the consideration to
(i) the time asymptotic regime

(ii) slow modes, i.e. we allow for A]x, A]Y?éO

For simplicity quasi-neutrality is assumed, the generalisation to the

exact case (e # 0) is straight forward.

Generalising an approach developed by Schindler (1966) for one-

dimensional equilibria we start from energy conservation in the form

1
) J [-’;‘- ivi + v§ ) + o= (p, = eA 2] fdn (80)
Ty o d2x = C
“0
where
do = d?x dt, dt = dvxdvyd(pz/m) (81)

Proceeding along the lines of the paper by Schindler (1966) we find

from (80) to second order in the perturbations

2eA,

£
- 1 1z71 e?
Z (A =xr | 4q " - — - L, 2
(A},9,) J o [ —,—Fo = (p,~ eA )+ — A °F,

2 (82)
where the constant C2 is determined by the initial conditions.
We minimize the lhs of (82), subject to the following two constraints

EJefldT=O (83)

i.e. quasi-neutral Poisson’s equation. In addition we impose
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J Y(Ho,pz)f]dQ = 0 for all Y(Ho,pz)

(84)
which follows from the fact that F] satisfies the linearised Vlasov
equation. (84) can be derived by multiplying (25) by Y(Ho,p ) and
Z

integrating over phase space. Variation of (82) under these constraints
determines the minimising F] for each species

£ = Fy Lx(xp,) + ep(x) + x (u_,p )] (85)
with

— =
>/‘1 - m (pz eAO)Alz (86)

kJo and X are the Lagrange multipliers associated with the constraints

(83) and (84).

Introducing (85) into (84) yields with (14)

i Jr di dp, Y;(H ,p,)F ;(H ,p,) Jf (x) +ep +x)d%x = 0 (87)
Considering that Yi(Ho’pz) is arbitrary one obtains for each of the non-
overlapping regions

X(H,p,) =~ < x> - e <p> (88)
Inserting (88) into (85) gives

£y = F.:'; (x1 tep- < x + e)P>) (89)
We will identify Y with a physical quantity only in the marginal state.
It is easy to see that there P = 8;. Thus we can write

£, = eFé (¥1- <¥1>) (90)

Inserting (90) into Z as defined in (82) we obtain

TS

52 3
1 Po 2
o o)

inf Z = J a?x [
N 3p

- —9 .2 o
oy Ay * 2 oA, ST

+ I ezdeIFéJ <y,>?
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Noting that we have minimised the lhs of (82) and that the contributions

from Alx and A, in (91) are positive we can write (91) in the form

ly
U+W = C2 (92)
where U >0 and
ap 2 9] 2
1 0 o
w—szx[-—(VA)2+—¢-—A
M, 1 3¢, 1 BA_ 1 (93)
apo ,
+ 2 E_A; A, + Te J d3v |F! | <¥>2 7]

Clearly unlimited growth is impossible if W> 0. Therefore we find
inf W(A],q)]) >0 (94)
2
Al’ ‘bl (3 Ln(r) )
is sufficient for stability, Ln(r) denotes real L™ space with a suitable

normalisation.

W coincides with the quasineutral version of (65) for real Apr 0y
Since all coefficients (factors and differential operators) of the quadratic
form in (65) are real the variational principles (65) (with €_ = 0) and

o]

(94) are equivalent.
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8. Necessary stability criteria

In the preceding sections we have shown that the minimum

> 4

Wz inf v (95)
2
Al’ ¢l € Ln

£ 3
determines stability in the sense that Wo> o implies stability while

X

Wo = o is necessary and sufficient for the system to be in a marginal

3
state. In this section we shall discuss the case W, < o.

~ For that purpose we carry the expansion of equation (36) with respect
fo s one step beyond the limit s +o. We split the spectrum of the

operator R = -iHo for a given equilibrium orbit into a continuous part

(subscript c) and a discontinuous part (subscript d)

2
(cg, oL — |F!|cg)
(s+H ) (s=H )
1 - p [ ZEan (9)
- € = = dalFoicg)

2 -~
+ (cg, f =——dE_ (V)| F'|cE)
T oszaaz Yy

3 To lowest order the first term gives, with the aid of /s = £ dEc/dA = Eé

é'(st)

(CE:S J

b dt|F'|C )
3 - |F!|cg

> s (CE,[F| E;_(o)cg)
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the next higher order term being of 3rd order. The second term of the
rhs of (96) gives the zero order term (Cg, |F")i gocg ) as was
already shown in section 5. The next higher order comes from the first
non-vanishing discrete eigenvalue with smallest absolute value, X;.

For |s| << |x;|one finds

2
s (Cg, F‘; — Cg)

where P] is the corresponding projection operator. Thus we find from

(36) asymptotically for small s

W (A,0,) = - ms(CE, |F!| E!(0)CE) (97)

P
- s%(cg, |7} 173 cp)
- - 1

E(': and p, are self-adjoint operators which commute with FO' .

Therefore both scalar products appearing on the rhs of (97) are positive.

We now go back to the original problem (34) considering cases where
(34) contains a continuous parameter o , where o might be a parameter
characterising a set of equilibria or a continuous (or piecewise continuous)
wave vector k as in the cases of one-dimensional and periodic two-
dimensional equilibria. We assume that there is a marginal state for
a = a_ and expand around that state in terms of a small increment &a
(34) is of the form

M(a) £ = V(a,8)E (98)
where

M(a)E = (K-N)E§ + re? J C+tFé|;o g ddv (99)

and V (% 8)has the following properties
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V(a,0)f = 0

(5:V8) = - sm(cE|F[E! @)cE) (100)
= sz(cgnglﬁca>, s+0

as follows from (52) and (97). We will take the second term on the

rhs of equ. (100) into account only if the first one vanishes.

The lowest order equation (8o = 0) is

= 101
M(a )E, =0 (101)
assuring that @ corresponds to a marginal state. To next order we

find

oM

M(ao)gl * 0 go

a = V(s,a )& (102)
By taking the scalar product with respect to £ we find (condition of

integrability)
oM
(€)» 35 &) 8o = (E,,V(s,2 )E ) (103)

o]

which gives for sufficiently small s (from (100))

3M
(E i— E ) Ba "
R - for E! (0) # 0

(CE, | FLIEL (o) CE) (104)
oM
(§0, 0 50)501 o
3 2 = = for Ec (o) =0 (105)

P
CIETEINTS
1

Both in (104) and (105) there is a sign of ¢&u corresponding to

instability.

The numerator is the change of Wo

oM
¥ )
ﬁwo - (go’ T2a Eo) Gas
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%
Thus we find stability for §wW, > 0 , as required by the results of
sections 7 and instability for 51«13f < 0 . Thus we find the following

criterion:

The existence of a marginal state at an inner point o = o _of the

oM

a -interval considered,with ( Eoia

|u go) # 0 , is sufficient for
0

instability.

Since a change from stability to instability and vice versa can occur

* .
only through a marginal state Wo: o, instability prevails in any
continuous o -interval with Wo < o, if the interval contains a marginal

¥
point Wo = o. (see figure 1)
The following criterion is an immediate consequence.
- o]l . * .| . - - . .
If for a given equilibrium W < o, the equilibrium is unstable if it is
an element of a set of equilibria S& with the following two properties,
: . S ; .
(i) W, varies continuously with the set parameter a

(106)

(ii) Sa contains an element with W:= o.
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9. Growth rates

For sufficiently small growth rates (97) can be used to obtain an order

of magnitude estimate. We find
W (A ,0,) -
6= - —2 1 JEL(0) # 0
n(cg,}F;|Eé (0)CE)

(107)

W o(AL6)) -
(5)2 = e—— "E:) (0) =0 (108)
(cg, |F [P, cE)
A2
These formulas are particularly useful when the equilibrium contains a
small parameter e’ s vanishing with some positive power of ¢ .

We give two examples, recovering results which have been obtained

by different methods.
(a) Sheet pinch.

The equilibrium magnetic field is aligned with the y-axis and By(X)
varies through zero, being constant for large x . The growth rate
was computed by Laval et al. (1966) using numerical methods. An
order of magnitude estimate was provided by Coppi et al. (1966)
assuming that the particles do not see the magnetic field in the region
x| <d, d=VaL" where a is the Larmor radius in the
homogeneous field region and L the characteristic length for the field
variation. The result is (subscript e refers to electrons)

Y kv - Xz (109)

where ky is the wave number and Vi the electron thermal velocity.
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a
We can expect that for -5 << 1(107) or (108) applies and it is in fact

easy to recover (109) from (107).

~ -~

To do this we consider the spectrum of the operator R = - i Ho'

We note that

¥ df
HOF-E—T— (110)

where—dr—f is the rate of change of f that a particle on an equilibrium
orbit would experience with time. The eigenvalue problem

RF = xf (1)
is then readily solved by

f=fleide (112)

X, - . .
where f is constant on the equilibrium orbit considered.

It is easy to see that the contribution from those particles which move
in the neutral region |x| <d dominate. Since these orbits are not
periodic, all values of X in (112) are possible. Thus the spectrum is

continuous and (107) will apply. Since vy is a constant we write

instead of (112)

. A
f=te v Y (113)
y
The marginal mode £ has the form
E eikoy (”4)

=0

The quantity Eé (K)EO , which is the Fourier component (113) of &,

is therefore different from zero only if

A g
v [¢}
y
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Thus A > 0 implies vy+o and therefore é;(o) ~n é(vz)

Under suitable conditions (Coppi et al. 1966) ¢7 can be neglected .

Then we find +de
(ch,IFéiEécgo) N J d3v J v2 6(vy)|Alz:2 dx
-d
The dominating term of W0 is ©
2 djo 2 115
o me ke 1)

Using these expressions in an order of magnitude estimate one

immediately recovers (109).

(b) Periodic neutral point equilibria .

We consider neutral point equilibria of the type (10c), the field lines
are sketched in figure 2. Such configurations were discussed by Biskamp
and Schindler (1971). The growth rate was estimated to be of the order
a 1
Y kv ()7 (116)
In this case, it was shown that the pertinent particle orbits can be
considered as being periodic. Therefore the spectrum is discontinuous
(Ec =0) and the lowest eigenvalue A, is associated with the time a
typical particle needs to go from one x-type neutral point to the next.
Again, the dominating part of Wo is (115). By arguments analogous to

those used in the example (a) we recover the growth rate (116) from

(108).

From a rigorous view point the results of this paper provide the

justification for the procedure used by Biskamp and Schindler (1971),
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who anticipated the instability criterion (106). A continuous change of
the system into a marginal state can for instance be provided in the
following way. The equilibria (10c) can be continuously transformed

info a one-dimensional neutral sheet configuration by letting o approach
zero. The plane sheet in turn can be stabilized by moving conducting

walls is from infinity situating them sufficiently close to the sheet

(Schindler 1972),
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10. Summary and Discussion

We have developed a theory of stability of collision-free two-
dimensional plasma equilibria. This theory is particularly suited for
the discussion of stability of equilibria containing neutral points.
Modes which are able to transport magnetic flux through neutral
points are in typical cases sufficiently slow for the present theory
to apply. By applying operator techniques we

(a) prove that the instabilities considered are purely growing

(b) recover criteria which are sufficient for stability and necessary

and sufficient for the marginal state
(c) derive new sufficient criteria for instability

(d) provide general expressions for growth rates, from which we

recover two special cases already published.

The theory applies to equilibria characterised by distribution functions
which are arbitrary functions of the constants of the motion H and P,
It can be expected that this class of equilibria becomes more and more
representative the more complicated the particle orbits become. Clearly,
the invariance of a second momentum component is already lost by
going from one-dimensional to two-dimensional equilibria. More work

however seems necessary to settle this question in a quantitative way.
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Figure Captions

Figure 1. Qualitative stability diagram for equilibria varying

continuously with a parameter o .

Figure 2. Periodic pinch equilibrium with neutral points.,
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