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heating for thermonuclear ignition is discussed.
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I. INTRODUCTION

In the nth step of the random walk (Fig. 1) problem

Kige = K cos &,
oy = A sin 6,

where A is the step size and © is the angle with the x-axis. After

N steps
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If the walk is "truly random", then for a large ensemble of such
walks each lasting N steps, the average contribution from the
last term of (l1.2) wvanishes so that

L2 = NAT (1.:3)

where the angle brackets denote expected or average value. The
result is readily generalized to include randomly varying step
size An so that (1.3) becomes

K257 = N 2 XY ) . (1.4)

Furthermore, the summations of the type (g l&x)2 in (1.1) possess
a "gaussian" or a normal distribution with a well defined variance
as can be shown using the "central limit theorem" of statistics.l'2
This is the classical problem of "drunken walk" or Brownian motion
studied by Einstein3 who formulated the elegant relationship between

diffusion and mobility.



There are several subtle assumptions implied in the above
derivation. An ensemble is a collection of realizations of a
process, which although differing in detail have certain common
macroscopic statistical properties. Thus, in deriving (1.4), the
average step size in each realization or "trial" is assumed con-
stant. This is the statement of "stationarity". The qualification
"truly random" demands that the process be memoryless, i.e. after
each step, the process starts anew. Such a process is called a
Markov process. We shall later show how seemingly innocuous
appearing constraints can render a process non-Markovian and care
must be exercised in detecting such correlations while studying
random processes. This is best accomplished by the use of corre-
lation functions which automatically help to determine the "state
of the drunk" or the degree of statistical independence.

Before we formulate the problem of stochastic acceleration
using correlation techniques, it is instructive to gain some phy-
sical insight into the problem by studying it as a random walk in
velocity space. A stochastic electric field may be regarded as a
sinusoidal waveform dephased at random intervals. Consider a seg-
ment of this stochastic field with a duration of two cycles and

at the cyclotron frequency applied to a charged particle in a

direction transverse to the static magnetic field. The particle
undergoes either acceleration and spirals outwards (Fig. 2a) or
it suffers deceleration and spirals inwards (Fig. 2b) depending
upon its relative phase @ with the electric field. The force on
the particle is gEcos® and its energy change is given by the pro-
duct of this force with the distance moved,

AE = g E cos@ AS | (1.5)

Assuming that ¢ can equally likely have any value between O and
2n, it is at once clear that on probability basis there is net
energy imparted to the particle because As for an accelerating
particle is greater than that for a decelerating particle. If the
electric field is switched on repeatedly but each time with a
randomly shifted phase, the particle will continually extract

energy from the field. From the "central-limit-theorem" it is once




more evident that the expected energy distribution follows the
well known "gaussian" or Maxwellian curve associated with thermo-
dynamical equilibrium in statistical mechanics. The above obser-
vations are independent of the magnetic field strength and are
valid even for the case BO=O. Stochastic heating viewed in this
manner, is a differential process with the inphase particle stay-
ing a little longer in the field than the out-of-phase particle
and is sometimes compared with Landau damping. Instead of switch-
ing the electric field phase we could cause the particle to have
a collision which would result in identical energy absorption.
For this reason stochastic heating is often compared with colli-
sicnal absorption. This is a perfectly valid viewpoint so long as
we confine our attention to an ensemble of realizations of a
single particle and concern ourselves with the energy absorption
rate only. A hasty extension of this conclusion, however, to an
ensemble of particles (as opposed to an ensemble of realizations
of a single particle) is frought with serious pitfalls. Although,

the electric field of Fig. 2a would impart net energy to the en-
semble of particles initially spinning with random phases, a re-
petitive application of such field segments with random dephasing
would cause exactly the same velocity change in all the particles
which could hardly be regarded as heating. Collisions, on the con-
trary, cause individual members of the ensemble to select their own
dephasing times and angles so that each particle experiences an
almost independent realization of the electric field ensemble so
that the heating results almost certainly in a Maxwellian velocity
distribution. The qualifications "almost" are genuine and no quali-
tative proof is advanced for either one of the two assertions

which find tacit acceptance through usage and experience. In sto-
chastic heating theories this irksome problem is either ignored

or masked in complex models using spatially varying random fields
and Fokker-Planck formalism or patched up with the equally irritat-
ing assumption that each particle manages to experience an inde-
pendent electric field through some unspecified mechanism. Clearly,
such theories would remain of little practical significance unless
it could be shown that in normally occurring situations, the par-
ticles indeed move independently of one another (note that inter-



particle interactions have been neglected and are not pertinent
to this discussion) without benefit of selective application of a
separate field to each one of them. One obvious possibility is the
spatial or temporal variations in the confining magnetic field
either deliberate or through flucutations. A fractional deviation
e in the assumed magnetic field would randomize a particle in 1/e
gyrations. As in the case of its thermodynamical (collisional)
counterpart, the degree of independence imparted to the particle
motion is difficult to guage quantitatively but fairly plausible
arguments can be advanced (see § III) to show that a spatially
inhomogeneous magnetic field acts as a thermodynamic stirrer
serving the function normally appropirated by collisions. There
is still an outstanding remaining difference between the nature
of randomization introduced by collisions and magnetic field in-
homogeneities respectively. While the former gives rise to iso-
tropic scattering, the latter is limited to scattering in two
dimensions only. Thus, a plasma heated through stochastic cyclo-
tron acceleration would be susceptible to temperature anisotropy

instabilities.

With these reservations in mind, we shall assume in the
treatment that follows that all the particles "somehow" manage
to experience independent realizations of the random electric
field ensemble. In (1.5) writing As = v T, where T is the interval
between successive randomizations and Ae = mvAv, one obtains

( q is the charge to mass ratio)

so that
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which on performing an ensemble average yields
N - 4 T 2 2
Laviy =2 n"E TTN

Writing t = NT and T = 1/Aw, where Aw is the bandwidth of the
applied electric field, finally gives,

L 5 LE?_

Vv
a<vz = _']___ (1.6)
dt 2 AW

which resembles the well known collisional heating formula if 2Aw
is replaced with the collision frequency V .

In this derivation the frequency of the random electric field
segments was assumed to be the particle gyrofrequency. In general,
the electric field may possess random, complicated frequency and
amplitude modulations. It can be shown that such a field would also
produce heating although recourse must be taken to more sophisti-
cated correlation techniques for quantitative results. It then be-
comes tempting to call this kind of heating non—resonant4. We shall
see in the next section that such nomenclature is misleading be-
cause for any energy absorption to take place, a resonance must
necessarily exist and only the component of the electric field in
phase with the gyrating particle motion contributes towards energy
absorption.

Another way to look at stochastic heating is by considering
the case of a charged particle in a longitudinal random electric
field E(t) acting along the magnetic field direction. The particle
velocity at time t is given by

t
VR = V(o) + r]f £ (+) dt. 1.7)
0

Since E(t) is random, the integral in (1.7) can equally likely have
a positive or a negative value so that

V() = V(o) E &V

with equal probability. Hence the probable energy of the particle
is given by

2
4 viE) =1+ m v¥o) + L wm (aV)
2 " 2 + (1.8)



which is an alternative way to regard the stochastic heating as
a random walk in the velocity space. A possible scheme to test
this result experimentally would be to attempt to heat a plasma
by applying a random electric field between two capacitor plates.

A little reflection, however, shows that if the capacitor plates
are initially and finally free of charge, the integral in (1.7)
vanishes identically and no energy transfer is possible. This is
one example where the integral constraint that the plates may

not be charged endlessly, renders the process non-Markovian.

The above examples illustrate that, if properly interpreted,
random electric fields could impart energy to charged particles.
This possibility was first recognized by Fermi® in connection with
the cosmic ray phenomenon. Later this principle was suggested by
Burshtein, Veksler and Kolomenskii6 for high energy particle
accelerators and successfully tested by Keller, Dick and Fide-
caro7 who accelerated a beam of protons to energies in excess of
5 MeV in a cyclotron driven by a noise source,

In the context of thermonuclear ignition and energetic par-
ticle production in astrophysical plasmas, stochastic heating exists
as an adjunct to the more general problem of turbulent interactions
either existing naturally or driven by externally injected currents
and charged particle beams. Since several papers specifically on
turbulence are being presented in this symposium, we shall enter
into the subject of turbulence only to the extent of showing its

relationship to the topic presently under consideration.

After it became apparent that rf energy may not be easily
coupled and absorbed in a plasma through collisions and other known
(linear) mechanisms, it was proposed to inject energy directly into
the plasmas by means of charged particle beams or induced currents.
In either case the injected energy is large enough to preclude
linearized treatments and gives rise to instabilities and turbulence.
A large numberof unstable modes are excited resulting in waves with
broad frequency spectra. The theoretical treatment must also take
into account wave-wave interactions by including the non-linear
terms in the Boltzmann-Vlasov equation. At the same time the evo-

lution of the particle velocity distribution has to be followed




with the particles already in a state of unmanageable unrest. The
solution of the problem involving a simultaneous analysis of the
origin of the turbulent spectrum and its interaction on the plasma
becomes too involved to be tackled theoretically with any degree
of generality.

This was recognized by Bass, Fainberg and Sha.piro4 who
sought an artificial separation of the problem of generation of
the turbulent spectrum and its subsequent interaction with the
charged particles. Even after this controversial separation, we
shall see that the simplified problem still poses considerable
theoretical challenge.

In this paper we limit ourselves to the aspect of turbulence
dealing with the interaction of externally applied or otherwise
specified electric fields with the charged particles. In accor-
dance with common usage we shall call this problem "stochastic

heating".

In the next two sections we rederive the stochastic heating
formulae in spatially uniform and non-uniform fields respectively
using correlation functions and power spectra which are briefly
reviewed in Appendix A. It is sought to keep the development co-
hesive and systematic rather than chronological; nor are all the
existing works referenced. A more complete bibliography is, however,
appended. The experimental work is reviewed in § IV. The present
status of research on this topic and the pertinence of stochastic

heating to thermonuclear ignition are discussed in § V.



II. STOCHASTIC HEATING IN A UNIFORM MAGNETIC FIELD

Three cases of successively increasing complexity are studied
with the assumption that the fluctuating electric field is speci-
fied as a function of time and space and the flucuating magnetic
field produces negligible contribution. The treatment is non-rela-
tivistic and the random electric field is assumed to be stationary
in time and space with correlation time T, and correlation distance
Ec . The results are applicable either to the expected acceleration
of a particle in the random field or to a collection of particles,
provided that each particle experiences an independent realization
of the electric field ensemble and produces no reaction on the
electric field itself, i.e. the interparticle interactions are ig-
nored. The results are valid only for time scale T >»> T, . Further

assumptions are listed under the individual subheadings.

a) Electric Field Prescribed at the Particle’s Position

/ F
Let Ey = E(t) be the electric field at the instantaneous
position occupied by the particle moving in a uniform magnetic
field B, = B_. Then
Z o

hoE) = We Vy (B) 2s1)

V.y () = =g Vo CE) +r]r_z_t+,) o

where w, = Y] Bo'

The electric field EQt) is a stationary random process. We can treat
Ekt) as an aperiodic function if we consider the particle motion

as an initial value problem with the field extending from time O

to t for a duration T = t. T can have an arbitrarily large but

finite value. Combining (2.1) and (2.2)

V(1) = —) We Ve (B + N E s (2.3)
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where VT' =V, +J Vy

The solution of (2.3) is
14
v () = “-'KF('j Wct)/d"" B (t) QXF(J wet)elt + v, (o) exr:-(—d' wet) (2.4)
o

/
And since E(t) vanishes outside the limits of integration (2.4) be-

comes

v () = exp (G wpt)/ i" B'(t) exp(jw.t) dt + V. (o) exp (wet) (2.5)

which simplifies to

v, () = [zwm E/(we) + Vr ()] exp(jwet) (2.6)

4 /
where E(m) is the Fourier-transform of E(t). Taking magnitudes of
both sides of (2.7)

LY v"co)+2_rrql_§r?wo) —2rrr) {Vx (0) I L gcwaj = Vy (o) Re[gf‘”cﬂ} (2.7)

where j?ﬁkmc) is the energy density spectrum at the cyclotron
frequency for the entire aperiodic function extending through

time T. If the reader is unfamiliar with spectral analysis, it is
helpful to associate j?ﬁkm) = 27E2/ (w) with the total energy
density in analogy with the Fourier-series expansion. As T —p =© ’
j?/T(w) —+ T j;Qm) where j?f(w) is the power spectrum of the
random electric field. For a large ensemble of particles, each
seeing the field independently and having independent initial con-
ditions, the last two terms in (2.7) contribute no expected value
and

&l

= =27 ql F (wey . (2.8)
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The switch from aperiodic to random fields is justified because
the expression in (2.8) needs information about the power spectrum
only. All the phase sensitive terms in (2.7) cancelled out in the
averaging process.

The result of (2.8) is very general and is applicable for
electric field of arbitrary field strngth and spatial variation.
The principal difficulty lies in determining E?t) at the particles’
position. This difficulty, however, is not peculiar to stochastic
heating and is a rather familiar problem in theoretical plasma phy-
sics. Part (b) of this section is devoted to the determination of

E?t) in spatially varying electric fields. The results obtained are

necessarily more complicated but all the physics is already contained

in the above derivation.

One case, in which the result of (2.8) is perfectly valid
without any further ado is when the electric field possesses no
spatial variations. Since the particle always stays "in resonance"
and produces no reaction (or radiation) on the source implying a
zero impedance generator, it can gain energy endlessly without
limit. In practice, an energetic particle will not only radiate
energy but will also tend to move out of the resonance due to the
doppler shift in the frequency spectrum due to finite wavelength
of the electric field.

For a random electric field the autocorrelation function de-

cays approximately exponentially andthe power spectrum has the form
P (w) = <5">/4rrAw

so that (2.8) becomes
i 58

2
detr o Y 2E 7 (2.9)

SRR,

o B s 2 AW

which is the result of (1.6) obtained from the random walk theory.

Despite this apparent similarity there are essential differences
in the two forms of the result expressed by (2.8) and (2.9) re-
spectively. Unlike (2.9), equation (2.8) makes it unequivocally
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plain that it is only the component of the electric field spectrum
at the cyclotron frequency (a so called particle resonance) which
contributes to energy absorption. If an ideal band-stop filter

with center frequency w = W is introduced between the rf source
and the plasma, no energy absorption would be possible irrespective
of the electric field strength and the extent of randomness present.
Thus a stochastic field merely acts to broaden an already existing
resonance where energy absorption would in any case occur. It is
incapable of transferring energy where no resonance previously
existed. Therefore, it would be incorrect to label stochastic

heating as non-resonant energy absorption.

b) Electric Field with Spatial Variation

i) Zero gyroradius limit

In this case, the doppler shifted frequency w’ at the
particles position is given by

Wit) = w x Kyvz (B) (2.10)

for the electric field component with the wave numbers + kz. In the

limit of a weak electric field E(t)-» O, vz(t)-—P vz(o) = v, so
that
/
wi(t) = w = W =KV, (2.11)

Using the transformation

B () -;:[,@"(w*'kz"z) +°§("°"kzvz)1 (2.12)
and summing over all kz we obtain from (2.8)

L 2 e
L 4p :T‘.Y] dkz§(k11 wc_kzvz). (2.13)
dt

-9
This is the result of Sturrock9 derived using the Fokker-Planck
prescription. This is not surprising since the Fokker-Planck
equation follows the time development of a Markov process and in-

corporates all the assumptions stated for the random walk analysis.
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The above result is derived using straightforward linear
equations with zero-order particle trajectories. The similarity

of these results with those derived from the quasi-linear theory

is due to the fact that in the quasi-linear calculations too, the

change in particle distribution function is calculated from the

zero-order particle trajectory with perfectly linear analysis.

All these remarks are also valid for the finite gyroradius
case described below.

ii) Finite gyroradius case

The only additional complication in the calculation of
E,(t) arises from the transverse field variations encountered by
the particle during its cyclotron motion. This is easily handled

by following the standard approach used in the derivation of the

hot plasma dielectric tensor. In conformity with the method employed

in that derivation, the electric field is allowed to have both

right and left circular polarizations.

The zero-order particle orbit admits of the static magnetic

field only

Ve (£) = -V cos(wet + p) B )
Vo (£) =V, Stm(wet + @)

(2.15)
X (£) = ?—? S w

(2:16)
VL*} = ?? tos twe €

(2.17)

where rg is the gyroradius. The phase angle has been dropped to

avoid needless clutter. The phase angle % of the propagation
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vector, on the other hand, has to be included in order to allow

an arbitrary distribution of wave-polarization vector. Writing

kX = K cosy
k7 = k.L SV‘f\lf
From (2.16) to (2.19)
kxx > y-& k_L Stn w .t cos ¥

kyy = ‘Y‘S_ k.\. cos wct '5""“‘7"
and k-v = kz\’zt “"Yé.k_x_ Sin (w t + L,b)

The electric field component (with wave number k) at the
particle position is
) J(wt-—k'?)
E’(t):/ E (W) € olw

-0

/
Note that while E (t) is the field expressed at the particle’s

(2.18)

(2.19)

(2.20)

{2.21)

(2.22)

{2.23)

position, the unprimed quantity E(m) is the Fourier-transform of

the actual field component E(t). From (2.22) and (2.23)

)
E,/C‘E) =/ g(u.s) QKPJ

-0

[wt-k, v, T k| sinfw t+ q-)] dw

_vg

(2.24)
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Using the Bessel function identity

ex‘,[(} wrak_l_sm(wcta—@} =:Z: T..,,,(kﬁ,_\"%) o_.xF[J‘m(tuct+ 9)_]

we obtain from (2.24)

(=]
7 = J- kT g{ ex '(w-mw-kv)t -'M‘f’ olcu.
E)=2Z wm C .L%)[ Wy P[J < Jmrd (2.25)
Writing the first-order particle orbit as
Vel(t) = - v (t) cos we T (2.26)
- v, () stnuw.t
L+ ) = (2.27)
\;)t’ C't) - WEXC“:) + UJLVy (t)
(2.28)
; s 1 By (3 = bl ¥y [
vy (£) = 9 By (t) e Vy (£) 5 550
From (2.26) to (2.29)
d'wct __cht
[y / /
| : E () e
v (6 = ?_Y][Ey,(t)e +E (1) ] . B
where

We treat the random electric field El{t) as an aperiodic function
if we consider the particle motion as an initial value problem with
the field extending from time O to t for a duration T = t. On inte-
grating (2.30)




= 18 =

T jue T ) _cht;]d
_— ’ (t £
Vl_ct’) = -ir]/ [ E, (t) e + E, ) e 5o5)
0
Since E/(t) vanishes outside the limits of integration
@0 dwct ...'LU(_t
A ;(t)e 4—E/(Jc)e, ]cL‘L‘
v ()= -3 LE; e (2.32)
Combining (2.32) with (2.25)
(= v]
~a . _ _k
VL(t)T____ii,] E\ J"m(kJ_Y*g)/{Er(w) exF[J(w +w, —mw, sz)t
- o0
™ y,] +'§£(w) exra[d‘(w-wc—m W=k, vy )t = ‘f_]f cdw dt
(2.33)
On w integration
(= 7]
- (W= MW, kv )t m g
v (9 =-4nZ Im(k.LTg)/{Ev(t) exp [4 (e )= m ¢]
- o0
+ E{L'E) exP[g(-wmew,_—l<zvz)t —d'm w]f ot ; |
«34

Note that in the above equation we have secured the goal of ob-
taining the results in terms of the actual electric field E(t)
instead of the doppler shifted field E/ft). Integration with respect



w LT =

to t yields

=, [(m=1 \ o
= -NHw,. - kv
Vl(ft)—.-ﬂ”r]ajm(ki.vg){t‘f'[m < z 7‘,] e
._d,mq,
+ g{ [(“"*4) We — k,_\/,_] e }
(2.:35)
oY
o 4 (m+1) g
. =g =) g
+J‘M*’1(k-l_v3) ELCW\ W, - kz"z) e } (2.36)

On taking magnitude square followed by ensemble averaging (2.36)

gives

=1

- "z { Ty (R59) T ()

*T 24t
[;é;e (v“(gc-szé)gg +.j§;e wauk_—Pazvij)e. J

(2.37)
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T
where the asterik denotes complex conjugate and j; (w) is the
energy density spectrum of E(t). In the limit T —+° and on inte-
grating over all possible values of k finally yields the result

(the arguments of J and £ have been dropped)

(2.38)

where jfii(m) is the autocorrelation power spectrum of Ei(t) while
f'ij(m) is the cross-correlation power spectrum of Ei(t) and
Ej(t). Except forlglgebraic corrections (2.38) is the result of
Hall and Sturrock™~ who derived it using quasi-linear techniques.
In the zero-gyroadius limit J, = 1 while J_, = O and the result
of (2.13) is immediately obtained. For k — O, the result of (2.8)

follows similarly.

Hitherto, only the turbulent electric field has been con-
sidered so that the results are valid only if the fluctuating
magnetic field has negligible contribution. This would be the case
for electrostatic turbulence or for relatively low frequency fields
produced between capacitor plates. Hall and Sturrocklo have tried
to include the effect of the fluctuating magnetic field. Although,
their analysis is correct in principle, the results are erroneous
due to the neglect of correlations imposed by Maxwell’s equations
between the longitudinal magnetic fields and the transverse elec-
tric fields and vice-versa. This is easily seen by considering
particle motion in a uniform solenoid driven by a random current.
The particle experiences random electric and magnetic fields and
the results of Ref. lo would predict stochastic acceleration. But

due to the conservation of magnetic moment, the particle could not




- 19 -

extract energy from the random fields. This is another example
of integral constraints rendering a process non-Markovian and
closely resembles the earlier example mentioned in the introduc-

tion,

If, in addition, the particle is paraxial, it can be ri-

11 that it would forever encircle the magnetic axis

gorously proved
and can not possibly suffer diffusion due to the random electro-
magnetic field in the solenoid which is once again in contradiction
with the results of Ref. lo for reasons already described. Precisely
the same error vitiates the enhanced diffusion results obtained

by Purilz.

The situation can be remedied either by including the cross
correlation terms between longitudinal and transverse electric and
magnetic fields or by writing all magnetic field quantities in
terms of the electric field using Faraday’s law as has been done by

Kennel and Engelmannl3.
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IITI. STOCHASTIC HEATING IN A MAGNETIC MIRROR SYSTEM14

In this section the heating rate of a particle contained in
a magnetic mirror and subject to a transversely applied random
electric field is derived. Unlike the case of a uniform magnetic
field where exact heating rates were obtained, we shall be content
to derive approximate bounds on the heating rate. The results ob-
tained in this section have the important significance that they
are capable of experimental verification, because a laboratory
plasma in order to be confined must exist in inhomogeneous magnetic

fields, the simplest among them being the magnetic mirror.

Before we start with the actual analysis, it is instructive
to make some guesses as to the expected outcome. It is obvious that
the electric field spectrum should contain the cyclotron frequen-
cies existing in the mirror system. If _f(wq) is the maximum value
of the maximum value of the electric field power spectrum and
_@:(mc2 ) its minimum wvalue where woq and w,, are two gyrofrequen-
cies somewhere in the mirror, we may expect that the actual heating

rate would lie somewhere between the two values

2 cle vy ® (
2R (W) » ==L > 27T P (wey)
1 At | (3.1)
provided the actual detail of the magnetic field variation is un-
important. The following analysis would confirm these observations

provided certain conditions are fulfilled.

We consider an externally applied fluctuating electric field
in a direction transverse to the magnetic field. The electric field is
assumed to be uniform in space and stationary in time. The effects
of the first order magnetic field as well as the reaction of the

particles is neglected.

The method of derivation would also necessitate the assump-
tion that each particle experiences an independent realization
of the electric field ensemble. This assumption is too stringent
because the spatially inhomogneous magnetic field acts as a "thermo-

dynamic stirrer" as was pointed out in the introduction. The extent
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of this randomization is hard to calculate but its plausibility
would be demonstrated both analytically and with the aid of nu-
merical calculation of the particles’ trajectories in an ideal

parabolic mirror.

The important new assumption is that no marked correlation
exists between the applied electric field and the static magnetic
field at the instantaneous position occupied by the particle. This
is reasonable if the time taken by the particle between successive
reflections from one of the mirrors exceeds the electric field

correlation time, i.e.

41 /v, > VOV

(3.2)
2
?_‘-'Jc,za- Ll R=1
or & & m———s R +1 (3.3)

wlere 8, is the parallel temperature, - is the average value of
W L is half the distance between the mirrors and R is the mirror
ratio.

a) Formal Solution

Let Bx(x,y,z), By(x,y,z) and Bz(x,y,z) be the magnetic field
due to the magnetic mirror used to contain the particle. Let

B, [x(t),y(t),z(t)] , By [x(t),y(t),z(t)] and B, [x(t),y(t),z(t)] ,
henceforth referred to as Bx(t), By(t) and Bz(t) be the magnetic
field at the instantaneous position of the particle. Then the non-

relativistic equations of motion are

\;\r Cf):-d' W, (t)Vy () +J’ w, ., (t) Vy (£) *’JY) E)’ (t) (3.4)

where W (t) =) B, (£) and we, (¥) =n [.3, (e) ) By (—t)] :
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The analysis is at once simplified if one neglects the second
term on the right-hand side of (3.4) by considering the paraxial
particles only. However, the analysis need not be so restricted for
it can be shown that this term produces a negligible contribution
towards particle acceleration, compared with the electric field’s
contribution. This term represents the back-and-forth energy ex-
change between the parallel and perpendicular motion of the par-
ticle; both wcr(t) and vz(t) vary at the frequency of the longi-
tudinal particle motion of the particle already assumed small
(see (3.2)) in comparison with the gyrofrequency. Hence, the con-
tribution towards particle acceleration from the term jmcr(t)vz(t)
may be neglected compared to that of jY\Ey(t), if the electric
field is applied near the cyclotron frequency.

Once again, we may treat the random electric field as a
transient function if the particle motion is considered as an
initial value problem with the fields extending from time O to T.
Then the solution of (3.4) is

+ i ]
= {f:*] Ev(t)e"P[jgw‘U‘)dt]dt% e"FH f““c Gayekt ] (3.6)
(o)

]

Since Er(t) and mc(t) can be made to vanish outside the limits of

integration we may write (3.6) as

v, LT = {_/ F“)“F(J@t)d’t]ex'j H[m‘(t) dt] (3.7)
- oo
where w_ (t) = v, + o (t), v, = 3y B, _ (3.8)
A A
g, (£) = " B, (B)
il

G () =exp[‘j/ Cx\)c_(t)d,t:]
© (3.9)

and F((t) = d"[ Ey (%) G (%) - (3.10)
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We refer to G(t) as the "spectrum selection function" and presently
show that it has the rate of determining which part of the electric

field spectrum contributes towards particle acceleration. From (3.7),

v, (T) = 27T F (o) e"F['J / g dt] (3.11)

where F(wc) is the Fourier-transform of F(t). Proceeding as before
we obtain from (3.11)

oLO<Lv1> _ erj_fp"F (%) . (3.12)
.t

Since F(t) involves a product of two independent functions Er(t)
and G (t)

2 (T
?F(’r) =N SOEY(T) ?a ) (8,13)

where ?EUU is the autocorrelation function of G(t) defined as

T
¢.(T) = GG (E+T)> =<C°5[ D (k) dt > (3.14)
+

From (3.12) to (3.14) one finally obtains the formal result

=)
PR e
clev®> =2mn / P b E'E (@ - w) cleo . (3.15)
cdt o

The effect of the inhomogeneous magnetic field as compared to the
constant magnetic field is best seen by comparing (3.15) with (2.8).
Instead of_@ér the particle acceleration rate in a changing magnetic
field depends upon the quantity obtained by convolving gEr with
9(3. Although the actual acceleration is produced by the energy
imparted by the electric field to the particle, the relative con-
tribution of each frequency component towards particle accele-
ration is assigned by the "spectrum weighting function" EFG, the

Fourier-transform of the autocorrelation of the spectrum selection

function G(t).
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b) Role of the Magnetic Field in Particle Acceleration

We shall show how the role ijRE' in assigning the relative
contribution of each component of the electric field towards par-
ticle acceleration, becomes increasingly critical as the electric
field bandwidth becomes narrower in comparison with the width of

gyrofrequencies.

i) White noise electric field

Integrating fG(m) over the entire frequency range we

obtain using (3.14)

eQ
/ -@-c, (w) dw = 996. ey = 1 (3.16)

- o0

Hence the area occupied by jFG(m) is an invariant equal to unity,

a change in the magnetic field merely changing the shape of _ég(w).
An interesting consequence of this property of _§E(w) follows,
namely, that the particle acceleration rate in an electric field
possessing a "white noise" spectrum is independent of the magnetic
field. Since -fér(w) is a constant, one readily obtains from (3.15)

devE:> o =5 3T zf (o) = constant {3.17)
At 1 “e,

ii) Broadband electric field

Whenever the electric field half-power spectrum spans the
particle gyrofrequencies, the upper and lower bounds of the sta-

tistical acceleration rate are given by the inequality

> GL(.V1> > w)
(We) 2 —ty  a T g (we) ,
2rrr] EEw 0) 2. ) E. (3.18)
provided
A
Wt ow Z Wo T |We ‘ﬂlqu (3.19)

axid we sy v, (3.20)
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where 2Aw is the half-power bandwidth and.‘éémlwo) the peak value
of the power spectrum of the random electric field; lac(t),max
and ‘Vz are the maximum value and the average zero-crossing fre-
quency, respectively, of the time varying part of the particle

gyrofrequency at the particles position.

Proof:

From (3.14) one obtains
A
T » w™/2 :wc{tnmx (3.21)

where T is the time at which the autocorrelation function '?G(’T)
has its first zero. Hence from (20) and (21), the maximum angular
frequency Bc associated with ,@é(w) is

A

R, =& o | we (8] (3.22)
47T s ”

i.e. the maximum frequency associated with the spectrum selection

function jﬂs(m) is the maximum value of the time varying part of

the gyrofrequency. From (3.15) and (3.22) using (3.19) one obtains,
A

"n"f—
2 F 3
-,

Using (3.22) and an approximation of (3.16) one finally arrives
at (3.18). This result is readily extended to include the case when
the n™Tth power bandwidth of the electric field spans the particle

gyrofrequencies in the mirror, and one obtains-
2
- v =1
21'rr] ¢ (wo) Z aEyv 2 Z, 21T n "] Z (we) (3.24)
E, oLt E,

Approximating
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we finally get

L 2
LB 7
3_____,__. Z, ot (3.25)

- N oW

iii) Narrow band electric field

We derive a lower bound for the statistical acceleration
rate for the case when the electric field bandwidth available is
smaller than the width of particle gyrofrequencies. For this case

(3.15) gives

e +AW
2 —
olev®2 z ™ ) (ouo)/ B (3 -w) clw (3.26)
oLt Er AW

From (3.16) and (3.22) the average value of QG(w) is given by

A
Q;cw) ~ % | e Ct) | (3.27)

W ax

If in (3.26), g is adjusted to maximize the integral, using (3.27)

we obtain

% oW
e vy 2 T & (wo) (3.28)

ot | Lo t8) |

W‘\O\.}’

c) Particle velocity distribution

In this section the evolution of the distribution function
of a plasma consisting of noninteracting "test particles" with all
the particles experiencing the s ame spatially uniform elec-
tric field will be studied. It will be shown that, quite unaided by
the randomizing influences of interparticle interactions and elec-
tric field spatial decoherence, a nonuniform magnetic field tends

15 has

to Maxwellianize the particle velocity distribution. Seidl
shown that (in the absence of an externally applied electric field)

mo(t) for paraxial particles in a parabolic mirror is given by
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o) ~ o, A CUSCPt-!'H“)

where A = (R-1)/(R+1l), R is the mirror ratio, p = (av,, /L),

o = (R—l)L2. L is the mirror half-length, v,, is the perpendicular
velocity of the particle on the mirror axis. Although the exter-
nally applied electric field would change mo(t) in a complicated
manner, we shall assume the form of mo(t) given by Eg.(3.29) to
establish the thermalizing properties of the magnetic field. It will
be evident from later analysis that a more complicated variation

of wO(t) will lead to a more marked Maxwell-ionization.

From egs.(3.4) and (3.29) the approximate eguation of motion,
of a particle in such a magnetic mirror,

Vo LEY =) S A cos(pt + ¥)] Yy () v jn Ey(t)

(3.30)
has the solution
v, (%) = Vo exp[-jﬁbt - son (Pt + ) +4p S 4 ]
a—e;}o[-é w, t —d‘/s Swns (pte 4):{/ d‘r] E, (+)
O
- 2P [J w, t + dﬁ Svn (Pt+ t}—)J dt ,
(3.31)

where g = Amc/p. Since Ey(t) vanishes outside the limits of inte-
gration, eq.(3.31) can be reduced to the form

{3.28)
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Ve (£) = Vyo exp[-) W t SRS (Pt H B se g ]
2y e (-] Bt ~jf s (pT+ 4)J{:r°([s) E (we)
-] ~ s ;
N To(p) [ E (W +np) exP(§ny)

+ g (‘:c -Y\F) exp (-J“V’ -r-YﬂT)]}

(3.32)

where E]w) is the Fourier transform of E(t).

In the case of a uniform magnetic field, R =1, Bp = 0, and
eqg. (3.32) becomes

Ve (£) = Vo @XP (- W t) + 7.rrJ'r] € (We)exp (-f O t) . (3.33)

The second term on the right-hand side of eqg. (3.33) represents

the increment in particle velocity due to the electric field, which
would be independent of the initial position of the particle in the
magnetic field.

In contrast with the above situation we note from eq.(3.32)
that for a mirror magnetic field, the particle velocity at time t
consists of an infinite summation of "quasi-independent" modes if
the particles are assumed to possess independent initial positions
along the mirror axis given by angle Y . The central limit theo-
rem predicts an approach toward the Gaussian distribution for the

probability density of vr(t) under such conditions.

A complex magnetic field variation as opposed to the simpler
sinusoidal variation would cause a greater randomization of a
vr(t) as may be confirmed by using the new variation in eq. (3.30)
and following the above analysis.
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To measure the extent of randomization,particle trajectories
were followed exactly by numerical integration using a computer.
The magnetic field was taken to be an ideal parabolic mirror of
(3.29) and all the particles were at rest at t = O, but occupying
random positions along the magnetic field axis. The electric field
was uniform in space and in the direction transverse to the mag-
netic field axis. The resultant particle distribution was indeed
close to being Gaussian which should lend support to the arguments
of this section. In this manner it is now possible to relax one of
the most irritating assumption in stochastic heating theories namely
that each particle should be subject to an independent realization
of the electric field ensemble.
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IV. EXPERIMENTAL VERIFICATION

A great many experiments on turbulent heating with impressive
results have undoubtedly been described already in this meeting. In
keeping with the objectives of this paper, we restrict our attention
to the experiments where the stochastic heating occurs due to exter-
nally applied random electric fields. Of the two experiments dis-
cussed in this section, the first one is aimed at checking the theo-
retical results of the previous section while in the second experi-
ment it is sought to heat a plasma significantly to demonstrate the
effectiveness of stochastic heating.

a) Stochastic Heating of a Tenuous Plasma16

In this experiment the plasma density is kept low enough

4 cm_3) to approximate the theoretical requirements of a colli-

(lo
sionless, test particle model. The electron-electron collision time
is 500/usec which far exceeds the particle containment time so that
collisional heating effects can be assumed to be absent. We expect
the plasma to heat at a rate calculated from the test-particle
theory until the average particle has been lost and replaced, at
which time the temperature reaches its equilibrium value.

7 cm™3) in thermodynamic equilibrium is

A tenuous plasma (lo
created by contact ionization of hot (2140 °k) tantalum surfaces
shown schematically in Fig. 3. The half inch diameter cathodes are
spaced 5 inches apart. The low background pressure of 3 x lo'-7 mm Hg,
coupled with low plasma density, precludes interparticle interactions
and the plasma is "collisionless". The mean-free-path for electron-
electron collisions is several meters, so there is no heat conduction

between the plasma and the end plates.

The plasma is situated in a magnetic mirror of mirror ratio
1.5; the mirror regions roughly coincide with the location of the
cathodes. The rf voltage for heating the plasma is applied trans-
verse to the plasma column by a pair of copper plates situated out-

side the vacuum envelope. The rf signal generated in a voltage
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tunable magnetron operating in a noisy model7 and amplified by a
travelling-wave—-amplifier has the noise spectrum of Fig. 4. A
combination of balun, taper line and terminating resistors are
used to match the source to the load. The plasma absorbs only about
10-8 W and has an effective shunt impedance several orders of mag-
nitude larger than the impedance of the resistors shunting the

copper plates.

In the absence of any loss processes we can assume that the
energy given to the plasma by the external fields goes entirely to
plasma heating until the particles are lost. Our task is then to
measure the electric field strength, its spectral shape, and the
rate of change of temperature. The applied voltage was measured with
an rms voltmeter and the field strength then estimated from the
geometry of the plates. With the maximum available noise power, we
were able to create an electric field of 0.25 V/cm. From Fig. 4, the
3 db and 6 db bandwidths were 2.1 x 108 and 3.2 x 108 Hz, respectively.

The plasma heating time was measured in two ways. In the first
measurement, Langmuir probe curves (Fig. 5) were obtained on an
oscilloscope. The probe voltage was swept from - 2.5 to + 2.5 V in
20 sec as rf noise source was pulsed on and off at a frequency of
700 cps, with a pulse width varying between O and loo/usec (pulse
rise time < o.l/usec). The probe trace alternated between the
"heated" and the "unheated" plasma and the lower and the upper
traces in Fig. 5 correspond, respectively, to the cases with and
without the applied noise field. As the pulse width is gradually
increased, the temperature rises steadily, as indicated by the de-
creasing slope of the lower curve. This trend continues until the
duration of the noise pulse reaches 30/usec. A further widening of
the pulse produced no additional change in the plasma temperature.
The experiment was repeated at several values of the applied noise
field strength. Each time, the plasma temperature reached a maximum
for a noise pulse duration of 3o/usec. The final temperature
attained by the plasma increased, of course, with the increasing
field strength of the random electric field. This would imply that
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the plasma particles stay in the interaction region for 3o/usec
and the small noise input does not alter the existing particle
loss rate. The ion transit time, from the center of the column
to the ends, is also of the order of 39/usec, hence an electron
might be admitted every time an ion reaches the electron sheath

and is swept into the cathode.

In the second method of measuring plasma heating time,
loo/usec pulses of rf noise were applied across the plasma. The
probe current monitored on an oscilloscope (at a fixed probe
voltage) saturated in 3o/usec, as shown in Fig. 6. The same re-
sults were obtained on repeating the experiment with several diffe-
rent values of the probe voltage and noise field strengths. The
plasma starts "cooling" as soon as the loo/usec pulse switches off.
It may be seen from Fig. 6 that the plasma cooling time is 30/usec,
supporting our conclusion that the plasma particles stay for 3o/usec
in the interaction region.

Having shown that the plasma temperature reaches its final ‘
value in 3q/usec for all power inputs, we can measure it more
accurately by using continuous signals on an x-y recorder. Figure 7
shows a set of Langmuir probe curves for different wvalues of the
applied rf noise field (the curves are staggered for clarity) using
a mirror ratio of 1.5. The magnetic field varied between 230 and
340 G. The plasma temperature and density near the center of the
tube determined from the uppermost curve, taken without a noise
input are 0.2 eV and l.o0 X 107 electrons cm_3, respectively. The
plot of temperature vs. field strength is shown in Fig. 8 and is
linear as would be expected. From the slope of Fig. 8 and the
heating time measurement of 30/usec we calculate the plasma heating

rate,

5
d6, v = 1.0 x 10 <E_1(*.r/cm):'7 EV/Sec,.
aT

(4.1)

The theoretical heating rate using (2.9) is

£ @ s
17 x10 LB P < i% <6Fx10<E > eV/sec 42D
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which is in satisfactory agreement with (4.1). In deriving (4.2)
use was made of the fact that the 6 db (1/4 power) band width of

the electric field spans the gyrofrequencies in the mirror.

b) Stochastic Heating Using Larger Power

In this experiment we do not seek a verification with theory
but demonstrate that an electron plasma of ~~ loll cmm3 density and
one liter volume can be heated to a temperature of several hundred

electron volts with loo watt applied noise power.

Part of a 6 cm diamter quartz tube is inclosed in a multi-
mode copper cavity 39 cm long and 15 cm in diameter as shown in
Fig. 9. Gas is admitted into the quartz tube at one end while the
other end is evacuated by a molecular diffusion pump. Gas pressure
is continuously monitored with a Penning ionization gauge and the
output signal is used to regulate the pressure in conjunction with
an automatic pressure controller. A 34-cm-long magnetic morror with
the field strength varying between 3 kG in the middle and 4.5 kG
at the ends is used for confining the plasma. A set of four Ioffe
bars (not shown in the figure) can produce a minimum magnetic field
with a well depth of 1.25. Plasma formation and electron heating
are accomplished by feeding loo watt of broadband (8 - 12 GHz,
corresponding to the electron cyclotron frequencies in the mirror)
microwave power. The microwave power is derived by amplification of
noise from a gas discharge tube using a travelling wave amplifier.
The power spectrum of the output of the TWA is shown in Fig. lo.
There is also a provision to heat the ions by applying a broad-band
rf noise (spanning the ion cyclotron frequencies in the mirror)
across the plasma to a pair of copper plates. Both the electron and

ion heating sources can be either pulsed or used continuously.

The principal diagnostics to date have been performed with
an 8 mm microwave interferometer and a movable diamagnetic probe.
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The diamagnetic probe consists of two copper coils of loo
and 20 turns respectively, electrostatically shielded from each
other and enclosed in a thin stainless steel can. In order to cali-
brate the diamagnetic probe, current pulses of known shape and
magnitude are passed alternately through the 2o-turn coil and through
a solenoid (of the dimensions of the plasma) placed inside the
quartz tube. On integrating the signal from the loo-turn coil, the
original pulses are recovered. This procedure allows the calibration
of the diamagnetic signal independently of the eddy current losses.
During the actual operation of the experiment, it is further necessa-
ry to remove the low-frequency pickup due to the ripple in the mag-
netic field using a combination of high pass filters and averaging
the results of several thousand shots using a signal averager.

The experiment is performed in the pulsed mode with the
pulse frequency between loo and 250 Hz and a pulse duration of
500 - looq/usec. The gas used is hydrogen and the microwave power
is loo watt. Fig. 11 shows the plasma density and electron tempe-
rature as a function of pressure read directly on the penning
ionization gauge. Remembering that the plasma pressure at the
pumping end is typically one=third of this value and on applying
the correction factor for hydrogen, the calculated ionization
degree is typically hundred percent at the lower gas pressures used.
The plasma density decays within ZQ/usec at the higher pressures
and somewhat more slowly at the lower pressures. A simple energy
balance shows that all the incident microwave power is fully ab-
sorbed by the plasma. The variation of density and temperature is
shown in Fig. 12 and typical plasma buildup and decay signals in
Pig. 13,

The use of Ioffe-bars is rather critical in this experiment.
The Ioffe-bars reduce the density fluctuations from over 30 % to
practically zero. Without the Ioffe bars it was in fact quite
difficult to perform the experiment at all with hydrogen. The results
using argon are given in ref. 18.
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V. DISCUSSION

The principal theoretical result is that in a uniform magnetic
field stochastic heating is proportional to the power spectrum at
cyclotron frequency of the electric field seen by the particle at
its instantaneous position. Further theoretical effort boils down to
the determination of this doppler shifted field in terms of the
actual field in the stationary frame. If only the zero-order particle
motion is considered for calculating this doppler shift, then finite
gyroradius and wave number effects lead to an absorption spectrum
that is reminiscent of Bernstein resonances. All the theoretical
results derived in this paper follow from perfectly linear analysis.
The resemblence with quasi-linear theories results due to the fact
that the quasi-linear theoreis themselves employ only linearized
equations to calculate the change in the distribution function due
to a spectrum of waves. Although, the effects of fluctuating magnetic

1lo,13 as was

fields were disregarded, they may be readily included
pointed out in § II. Similarly, the extension to higher order par-
ticle orbits in calculating the doppler-shifted spectrum presents

19'20. But to quote Orszagzl,

no great formal difficulty
"The essential difficulty does not involve

finding an exact mathematical description of
turbulence but rather involves extracting use-

ful information from a formally exact solution."

This precisely defines one of the directions of future research
in this field.

An even more inportant effect that must be included in a more
sensible treatment of stochastic heating is the collective effects
due to interparticle interactions. This effect is intimately linked
with the question of penetration of externally applied rf fields
into the plasma. Apart from modifying the cyclotron absorption

(particle resonance) results, the interparticle interactions would
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introduce collective resonances like the hybrid resonances as
additional absorption mechanisms. This is simpler than may, at
first, appears to be the case. In Fig. 14 let I(t) be the current
supplied by the generator for a duration O to T. Then
oo Jwt
T(t) =f I(w) e dw (5.1)
-0

In principle, it is a straightforward exercise in algebra, to deter-
mine the response of the linearized system consisting of a waveguide
partially filled with a plasma which is homogeneous in the longi-
tudinal direction. Far away from the source, assuming that only the
fundamental waveguide mode is excited, the response

may be written as

Wl
J(wt- Kov) - - ¢
E(W)e— = I(w) Z2(w) € (5.2)
so that
o0 quft -k v)
E (t) '=/ T(w) Z(w) e clw (5.3)
- o0
Using Maxwell’s equations we get
Ry = €Wy E W) (5-4)
If
~ " o
Py oee (W03 = -g/aﬁr V. ( Elw) X H (W) (5.5)
then the total power dissipated using Parseval’s theorem is given by
¢ = | (5.6)
= P . w d.w el
?Olf.ss f d’““( )
‘ )
Writing Pdiss(w) in terms of I (w) and Z(m) and on performing an

average over the electric field ensembles, it can be readily seen

that the total power dissipated may be written in terms of the




= ¥7 =

power spectrum of the driving current and no phase information is
necessary. In case, the plasma was collisionless E(w) will diverge
at the resonances. The situation is easily remedied by using the

Landau approach in evaluating the integral in (5.5).

Although, the actual evaluation of %}w) is not easy, it
can be shown that the energy is readily coupled to and absorbed
by a plasma contained in a waveguide even in the presence of ex-
tremely weak absorption processes e.g. collisions at thermonuclear
temperatures?lThe penalty for this weak absorption mechanisms is
the buildup of enormous electric fields, dissipation densities and
volume forces in an extremely narrow region of the plasma. An ob-
vious bid to avoid such a situation would be to use broadband
noise sources in order to enlarge the volume over which the energy
absorption occurs. Another instance where stochastic heating may
be important in thermonuclear research is in the broadening the
class of particles gaining energy from the field as has been sugges-
ted by Hall and Sturrock23 in connection with transit-time magnetic
pumping.

In the absove treatment including collective effects, as
well as in all the previous results derived in this paper, the
stochastic field was treated as a transient function with a well
defined Fourier spectrum except when performing ensemble averages.
It is then at once clear that the problem of rf penetration into
the plasma, contrary to the earlier expectations expressed by this

14

author™ ", is exactly the same whether the field is stochastic or

sinusoidal.

Thus, the only possible thermonuclear application of sto-
chastic heating using externally applied rf fields is in broadening
the resonances or the class of particles being heated as was quite

correctly concluded by Bol24 as early as 1966.
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APPENDIX A
DEFINITIONS OF SPECTRUM FUNCTIONS

We define below the various spectrum functions used in

this paper . These definitions are consistent with the ones
used in ref.25.

a) Aperiodic Functions (or Transient Functions)

For an arbitrary function E(t) of finite duration (0O to T)
satisfying the condition

a0
/ |E(t)] dt < oo (a.1)
~ o0
the following pair of Fourier transforms may be defined
) dudt
E(t) = /r E(w) e aw
= (A.2)
o
T X e
~ A t
E (@) 1rr/ )
0
] 'J.Wt
s 4 / E(t) e dt (A.3)
2w

The autocorrelation function qu(Tﬁ and energy density
spectrum .@'T(m) of E(t) are defined as

.
/ Ect) E(t+T) dt

0

¢ (T

>0

/ E(t) E(t+T) dt
P (a.4)

1l
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w T

o0
P 4
ET(w)=;T‘T/§0 (T) e dT

It can be shown that

Py
§7 (wy = 27 | E (W)

.

b) Random Functions

Autocorrelation function @(7T) and power spectrum
of a random function E(t) are defined as
" T
pLTy = T z-r/ E(t) ECL+T) dt

-7

o _Juu'T
ig(“’)=2‘1;./§('r)e AT
-0

(A.5)

(A.6)

fg(w)

87

(Ar.8)
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Fig. 14 A plasma filled waveguide driven by a current source.



