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Abstract

We investigate the effects of plasma flow on axisymmetric, self-consistent
equilibria in toroidal geometry. The investigation is of considerable
interest in relation to hot plasmas confined in toroidal systems with
longitudinal current. On the basis of the one-fluid MHD plasma model,
we use a concise formulation to elucidate important features of the
equilibrium. In contrast to previous flow calculations which were treated
almost exclusively in the low beta approximation, we retain, together
with flow, all beta effects.

As in the treatment of the full flow problem at low beta, we find
conditions for equilibrium. The form of our description allows a quite
general discussion of its nature and existence for finite beta. This shows
that there is a close relationship between the solvability conditions for
equations arising from integrals of the system, and the nature of the
characteristics of the partial differential equation describing the radial
force balance. In the case of large aspect-ratio these considerations lead
to a generalized Bennett relation and to an expression for plasma

displacement exhibiting beta and flow effects.




Introduction

One of the central problems of the theoretical study of toroidal
confinement is the calculation of the rate of plasma loss from a magnetic
confinement region. Fundamental to this study is the investigation of
plasma equilibrium.

In magnetohydrodynamic equilibrium the radial plasma flow, which is
necessary for the occurrence of plasma loss, is in general coupled with
velocity components in other directions. Thus, to understand plasma loss,
a discussion of plasma flow and the nature of this flow coupling is
unavoidable. In stationary equilibria, this coupling is accomplished
linearly by Ohm’s law, and nonlinearly by plasma inertia. As static
toroidal equilibria already exhibit nonlinearity, the additional consideration
of flow effects further complicates the problem.

Previous discussions of toroidal equilibrium concern limiting situations in
which the simplifications involved ensure mathematical tractability. Most
flow calculations profit by the restriction to axisymmetric solutions. Some
tractable situations originate in the appropriate choice of physical
properties. Here the plasma beta, the ratio of flow to sound speed,

electrical conductivity and aspect ratio are convenient parameters.

Because of the complexity of the problem it can happen, that the
calculation of particular cases results in a conflict with previous
assumptions. The evaluation of the resistive mass losses for a low beta
plasma in toroidal equilibrium /1/ gives parallel flows which can become

very large. This casts doubts on the validity of the result, which was



derived on the understanding that the equilibrium is always such
that plasma flows are sufficiently small for inertial effects to be

neglected.

Inclusion of plasma inertia in the same low beta situation with large
electrical conductivity /2/ fortunately allows the resolution of this
conflict. The somewhat surprising result is that the nonlinear coupling
of flow components considerably restricts plasma losses in a stationary
state.

In the above-mentioned investigations the plasma is placed in a
toroidal axisymmetric model of a magnetic field to simulate a true

low beta situation. This magnetic field is thought to be produced by

a toroidal current which does not interact with the plasma. The
justification of such an approach has awaited the solution of the
appropriate finite beta problem.

Recently the increasing interest in toroidal systems with longitudinal
current /3/ has encouraged renewed discussion of the small-flow
equilibrium with self-consistent fields and its losses /4,5/. The results
show that for large aspect-ratio the correct incorporation of the toroidal
current does not drastically alter the results of the small-flow
calculation with artificial current. Naturally the question arises how
the nonlinear coupling of flow components affects the finite beta
equilibrium.

The present paper discusses both the effects of plasma beta and flow on

the behaviour of a highly-conducting axisymmetric toroidal plasma of



arbitrary aspect-ratio. We can establish general properties of the
equilibrium without restricting flows or plasma beta. For small
toroidicity we solve explicitly and give analytical results, exhibiting
the combined effects of the self-consistent magnetic field and plasma

flow.

Basic Equations

As is well known, the determination of axisymmetric magnetohydrostatic
toroidal equilibria reduces to the solution of a single elliptic differential
equation in which the plasma pressure and poloidal current distributions
appear. Prescription of these distributions as functions of the poloidal
magnetic flux, and prescription of appropriate boundary conditions
provide this problem with its most concise formulation.

The determination of stationary toroidal equilibria even with axisymmetry
seems to be much more difficult to reduce. The introduction of flow not
only converts the static force balance to an equation of motion, but also
demands the consideration of other equations viz., Ohm’s law, the mass

continuity equation, an energy equation and an equation of state.

The MHD equations corresponding to all but the last two mentioned above

are:

pvVv = JxB -Vp (1)

rotB = J (2)
divB =0 (3)
E+vxB=nJ (4)

divpv =Q (5)



where all symbols have their usual meaning. The source term Q. is
introduced to maintain a stationary equilibrium by restoring mass

into the toroidal confining region. This is necessary as resistivity
leads to a radial loss of plasma. A general energy equation would
include an ohmic heating term which is due to the externally induced
electric field. However, at high temperatures, this energy equation
simplifies because of the tendency of the plasma to become isothermal.
Also, for a given ohmic heating current and increasing temperature,
the resistivity and the external electric field become small, if we
can reach a source-free state of plasma. In such a situation we
include the equation of state for an ideal gas p = ?cz, where the
sound speed ¢ is a constant to be specified. The full set of
equations for the magnetic field, flow, electric potential (E = -V )

and mass density are then:

ov-Vyv JaorothB - c*Vp (6)

vxB

Vo (7)
divB =0 (8)
divpv =0 (9)

Because of the existence of integrals of these equations it is possible

to reduce this system /6,7,8/.




Exact Integrals and Radial Force Balance

To proceed we consider a set of nested toroidal magnetic surfaces.
From equation (7), ® is constant along magnetic as well as flow
lines, so that the flow is everywhere tangent to magnetic surfaces.
From equations (8) and (?) magnetic field and mass flow are

divergence-free. Thus it is convenient to introduce

G=\BdS , I={pvdS (10)
F F
where F is a surface bounded by the magnetic axis and any closed
curve, not encircling this axis and lying on a magnetic surface.
In this way G and I are the poloidal fluxes of magnetic field and

mass flow respectively. Further, in the case of axisymmetry we have

B = ;=(VLxVG + AVL) (11)

1

pv = F=(VCVI + LVC) (12)

which, with arbitrary functions A and L, are the most general
solutions of the equations (8) and (9) and so replace them. & is the
angle about the axis of symmetry. Beside the equation of motion we
have not as yet used the normal component of equation (7). The
latter with equations (11) and (12) relates the function A and L as

follows

L = Al - 4n’p dR? (13)



We denote by a dot derivatives of surface quantities with respect

to the poloidal magnetic flux G. R is the distance from the axis

of symmetry.

The state of our considerations can be summarized as follows:

specify any surface quantities [" and ¢ in terms of the poloidal
magnetic flux G, then with any functions A p and G magnetic
and velocity fields (11),(12) satisfy all equations, except the equation
of motion, from which we naturally expect to determine these last
three functions. To treat this equation it is most convenient to
investigate its components in toroidal direction, parallel to B and

normal to a magnetic surface.

Using the equations (7), (8) and (11) one can prove that with

axisymmetry the following two relations hold

B-(v-Wv) = 1B-V(v2-v2) + div(‘%_? Bx(v»csﬁ (14)
divy(B=Vo) = BV(yoA) (15)

where T is any scalar,

With the help of equations (12) - (15) the components of the

equation of motion are:

B-V{%(/\l;' -4m*R*pd) —/\} =0 (16)

B-V{E’)_ZDPT - L R*®* + c*n pl} =0 (17)




weﬁdsv%% ; _.ve VA + 4me*p VG Vp +
2
+4T[2}.Lop{R [ll\’lggl VIVGI dle:g’} ;—%V%VR T} 0| (18)
where v=vM+vT B=B, +B;

2T[p VE VG BM=5]?[:V§XVG

1

= Inp (AT - 4m*R*% $) V¢ B.= 77 AVC

From equations (16) and (17) the expressions in brackets are surface
quantities, so that the physical quantities which appear there are
related. We can consider the first of these relations as an equation

for A, and the second as an equation for the mass density P .
Assuming that single-valued solutions exist, we see that they have

a dependence on [VG| and on four arbitrary surface quantities viz., r,

®  and those arising from the integration of (18) and (17).

The dependence of these solutions on [VG| is important in relation
to the radial force balance (18), for the derivatives of A and P
which appear there, provide second derivatives of G, and thus
influence the nature of the second order differential operator. The
nonlinear dependence of A and o on IVGl contributes to the
quasi-linear character of this partial differential equation. Any
solution of this equation for G will depend not only on the boundary
conditions, but also on the previously mentioned surface functions,

whose physical meaning we now briefly indicate.




By definition [ is the poloidal mass flux, and ® is the electric
potential so that there is no difficulty in interpretation here. The
remaining surface functions can be related to the density and poloidal

current distributions on a reference line which will be introduced.

To do this let us fix in any meridional plane the straight line R = R
o

which passes through the magnetic axis and traverses all magnetic

surfaces considered (see Fig. 1).

— N

|R=Ro

) NI

7

i G =const.

Fig. 1

Then the quantities G, " and A will be divided by 21tR, which
guarantees finite values for the resulting quantities in the limit R,—= 0.
Unless otherwise stated we now refer only to these specific quantities,

in former notation. On each magnetic surface the values of all the
dependent variables will be related to their values at the intersection

of the particular surface and the chosen straight line. These latter

reference values will be denoted by a subscript g.
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B o= £ A=A R- R
i Po A Ao R"Ro (19)

The reduced functions A and R describe the variation on a magnetic
surface of p, A and the distance R from the axis of symmetry. The
specification of the directly identifiable quantities 0, and A, as
functions of G can then be seen to be equivalent to the specification of
the surface functions arising from the integration of the magnetic

differential equations (16), (17).

The introduction of p; and Ajmakes the relationship between stationary
and static equilibria readily comprehensible. These quantities whose
distribution on the reference line is arbitrary, in static equilibria retain
their value following a magnetic field line, whereas in stationary
equilibria flow causes p and A\ to vary on a magnetic surface. This
variation is described by § and A and governed by equations (16) and
(17). On the other hand flow is unrestricted to the extent inherent in

the arbitrariness of the functions ® and [ .

For the subsequent discussion we wish to translate our freedom of choice
for P ) /\o y G‘p,F into a convenient dimensionless form expressed by
the four equivalent functions BM )BTI MJE . The first two are
the obvious resolution of the local beta on the reference iine into

meridional and toroidal parts
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By

1 _1 1
P2 — B T By By (20)
The dimensionless functions M and E

B,
M = e F

0le-

(21)
are once again (see /2/) useful in the discussion of flow effects.

To summarise our previous discussion of the logical structure of the

derived system of equations, and assuming for the moment the mathematical
feasibility of each step we can state the following procedure for solution.
Choose any betas and flows by prescription of BM : BT j M and E .
Calculate p and A by (16) and (17) in terms of |VG| and use the

results to solve, together with boundary conditions, equation (18). Without
even considering the difficulties with respect to the solution of the partial

differential equation (18), such a procedure encounters some problems.

Before we investigate in more detail the global properties of the expressions
determining § and A we indicate some local characteristics. In studying the

appropriate relations we naturally do not consider that spatial dependence

of P and A which is of prescribable nature, but that which is determined

by equations. As can be seen by (16) and (17), such dependence occurs via

Ivg
R

respect to these functions the following differentials for p and A

R and BM‘—'— only. On the reference line (R = 1) we find with
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(22)

P = e | (E et - 2EE)oR - B, |

-(1-BMH)dA = 2(BB)*MEJR + BM*dp (23)

Here D s
o

(24)

taken on the reference line. Whereas zeros of denominators appearing
n (22) have their counterparts in numerators of D0 and so are harmless,
Do itself has genuine poles for certain betas and flows. With the knowledge

of the existence of these poles we can make the following points:

1. When we take, say for e the differential along the meridional
projection of a field line starting somewhere on the reference line,
equation (22) constitutes the complete variation of 0 whose rate of
change becomes infinite at a pole of Do' Closer investigation shows
that for ME > 0, for example, this point in a F—?uplone is of
parabolic type, so that for R <1 no solutions for ¢ can be found.
Thus, we must expect solvability conditions which will restrict the

possible choices for flow and beta.
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2. For differential variations of P' and A normal to a magnetic
surface, where dBM involves normal derivatives of G, these

poles will be important in the determination of the characteristic

manifolds.

With reference to this lctter point we write down the characteristic

condition for (18)

M? BMZ)} (VG-Vy)*
1—E:—)VL|JVL|J +iD -~ % = 25
1= 10 -0- 5 ) Bgge- -0 @
where we once again encounter D. In Fig. 2 we have plotted the
characteristic determinant on the reference line DO(I-BMZ) as a

function of M.

' D, (1- pM?)
|
hyperbolic
1 L
W L »/E u M
il I
elliptic
,30 |
Fig.2

Nature of the Partial Differential Equation

With vertical lines we have separated the regions where Do(l-BMZ) is .

alternately positive and negative i.e. where the partial differential equation
(18) is correspondingly elliptic and hyperbolic. The particular M values of

the poles and zeros of the characteristic determinant correspond to certain
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critical speeds. These are: the acoustic wave speed, and the three
hydromagnetic wave speeds (slow, Alfven, fast), all affected by
rotational transform and beta. Their significance to toroidal equilibrium
recently has been noted by Taniuti et al /9, 10/. Characteristics for a
different model of toroidal plasma flow have been discussed by Dobrott

and Greene /11/.

We now investigate the analytical structure and the solvability range
of equations (16) and (17), which in integrated form with reduced

quantities are

A - 1-BM’- (BB)"ME(R*1)
v (26)

Inp* + MB" _ M2 4 prRey) (27)

where

+ BA (28)

The appropriate forms of these equations in the low beta approximation
which we treated previously /2/, can be immediately recognized. In
this limit A "'1, -B""l/ﬁ we have discussed quite generally the

resulting Bernoulli-type equation for p .

Here we have to try to find

p(VGI,R; By ,Br,M,E) (29)

P

A

I

/_\(|VG|1§I BMIBTIMIE) (30)
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For the discussion of such solutions we prefer to introduce new

variables x,z to replace pand A:

x =x(p,N) = MSB
_ MB

N
I
N
o
>l
I

P
Here S is defined by

S = exp{—%(Ez(F_?H) +M1-1)}

This together with the following cuxiliary. functions

N 1

- BMS
i - (B mss,
yo ]

K =1-pM*-(BB)2ME(R*1)

transforms the equations (26) and (27) into

x = z-exp{-4(z*-1)}

ax + v (1 _'E‘)""Z

X?.

Z

(31)

(32)

(33)

(34)
(35)

(36)

(37)

(38)
(39)
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For a particular choice of o .,V the curves corresponding to these

equations appear as shown in Fig. 3.

Fig.3

While

3(x.2) _ S|

s

2
X.z) BM*S B

we can investigate the structure of (26) and (27) in the new variables x and z.
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Analagous to the low beta case /2/ where to solve for variations of pona
magnetic surface we considered the intersection of a straight line and a fixed
curve, intersections of the curves (38), (39) represent possible solutions.

Here "possible" has the restricted sense that we can find functions as indicated
by (29) and (30 ). This does not mean that these solutions guarantee a solution

of the partial differential equation (18). Indeed limitations stemming from the
solvability of this equation are additional to any which come from the solvability

of the equations for x,z (or equivalently ¥ A ) which we now discuss.

The manner in which we introduced the reduced quantities ensures that on the
reference line (R = 1) there is always a solution. Although in general there
will be several intersections of these curves for R = 1, the particular value

of M chosen determines which point X Zg is to be considered:

Xo= M-exp{- 2 (M*~1)} (41)
z, =M 42)

We choose this point and try, proceeding along the meridional projection of a
magnetic field line passing through this point, to find solutions everywhere on
this closed curve. The resulting variation in R depends sensitively on XS and z.s

that is on M.
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On the curve @0 which is not affected by this alteration in R, we recognize
three special points whose abscissae are M| , ’1/\/5 and M;; . The lower and
upper values for M are characterised by the fact, that for these the variable
curve @1 for R =1 is tangent to the invariant curve C, . At the intermediate
point ’i/\/ﬁ' , Y , as can be seen by (36) and (37), vanishes as we reach the
reference line and curve @1 degenerates to a straight line which separates
solutions of different character. v =0 is implied by the vanishing of By ,
thus condition (40) represents a somewhat intricate case. Here we exclude

this point from consideration but remark that it might well be that transitions
and reflections at the v= 0 line lead to interesting branched solutions.
According to these critical points we distinguish for R-variations of

intersections P, four regions of possible initial points
= . A Z_
P, = {M,M exp{- M 1)}} (43)

We investigate these region separately:

0 <M< ML\: For this case we can derive a sufficient condition

for no solution to exist. Consider the straight line tangent to @1 atz= 0

which is given by

Vv
X =g b =X (h4)
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If this line has at most one point in common with (, because of the
convexity of @1 no intersections of {:o and C1 will exist. This

is the case, if
3
Yl < (1 + L) exp{%(z*z—])} (46)
where z¥ is the positive root of
z3 +vyiz? —v'r?’ =0 47)

Using the further inequality that
A
2> YT (48)
1+vy?
we obtain the simpler condition
telq <1+ 4vy® (49)
21 VT

which reexpressed in terms of flow is

exp{" EX(R? 1)} < MS, {Tl + 1 gr,t } (50)

BT ﬁz nz (51)
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This indicates that for given M there are possibly severe restrictions
on E for a solution to exist. This is seen by the fact, that for R <1

the left hand side exponentially decreases with E2 , whereas the right
hand side at least for not strongly variable B”?' is only linear in E.

Indeed, at low F:’, this inequality exactly goes over to that given

elsewhere /2/.

For ME > 0 it is possible to show that for sufficiently large E2 pointg
P={x,2} of intersection always go upward in the x - z plane if

we vary R in the direction of R o+ This has the consequence that
limitations on continuous flow solutions are to be expected on the inside

of the torus, and then discontinuous solutions, as discussed in /12/, become
possible. In the considered flow range we see from the differential of P

(22) that for increasing R the mass density increases if E2 is large enough to

dominate effects arising from the Em variation.

M < M= ’1/\/3 : Naturally, the sufficient condition for no solution to

exist is unaltered from the previous case, because in both cases just the
variable curve @1 is important. Whereas in low beta the modified sound
speed (M = 1) separated this region from the former, at finite beta this
function isassumed by M| < 1.

With the same comment as above on the largeness of E and for ME > 0 the
variation of § here is such that for increasing R the density diminishes,

as in the low beta supersonic situation.
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M > ’l/\’ﬁ : For super-Alfvenic flows we can derive a corresponding

sufficiency condition for no solution. We do not present this result here.
In this flow range with ME < 0, for the case M < MU the density variation

on a magnetic surface is as for M < M, and for M > Mu as for

VB > M >M

Large Aspect-Ratio Limit

To exemplify our considerations outlined above we now give some results
for the case of large aspect-ratio. As in the finite beta, quasi-stationary
problem /5/ a coordinate system is introduced which anticipates the form
of the magnetic surface and which has sufficient freedom in the form of a
built in function, to satisfy the conditions of the problem up to first order

in inverse aspect ratio .

The appropriate coordinate system is shown in Fig. &

A Z

Fig.4
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For convenience we have altered slightly the notation which was used
in the general discussion. For instance, Ro is no longer the distance from
the symmetry axis to the magnetic axis, but is the major radius. We will

introduce the coordinate system given by X = (x,y,z) and
x =R(r6)(cosge,-sinle) +rsinbe, (52)

R(r,8) = R, + A(r) + rcos® (53)
A=A(r), r and @ are defined in fig.% . For completeness we give the

metric tensor

1 +2ANcos® +A2  -rA'sin® 0
g= ~rA'sin® r2 O | (54)
0 0 RZ

Plasma quantities taken at 8 = ", will be identified by the subscript o
which previously indicated the reference line values. These, together with
the new RO lead to a redefinition of the reduced quantities. Assuming in
zeroth order a cylindrical axisymmetric equilibrium then in this order all
reduced quantities are identically one. To find p and N in first order we
replace in (22) and (23) the differentials by the corresponding first-order

quantities (denoted by the superscript 1). Up to first order G is independent

of 8. Then .
By = - (A" + ¢ )cose (55)
R”= L coso (56)

Ro
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From (22) and (23), we now find

= _ D, r g2 + BZ BBT)%'ME B } S
P= 1 —(1+B)Mz{§o(E +MZ(1 Br 1-pM? ))A Bm -

T Do M:'-(E +M*) +2( BT)1/2ME( M?)
A= aaavaa (R, i )

qu

M

A

}cose

As is to be expected from the general considerations P and A
depend  on VG| ,i.e., A' and the characteristic coefficient D0

appears in these expressions.

All that remains is the partial differential equation (18) which reduces
in zeroth and first orders to two ordinary differential equations. These
must be solved with the appropriate boundary conditions. It is interesting
to note that even with flow they can be directly integrated. Because it
will occur frequently we introduce the average for functions A (r):
v
CA) = 1V & AdV | V=2nR, mr

In lowest order, assuming the absence of line currents on the axis, integration

leads to the Bennett Pinch Relation generalized to include flow effects

B, = (ML) - ((B2)-B) + 2u,((p)-p) en. (Vi)
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where I(r) is the total longitudinal enclosed in the surface of

radivs r.

In passing we recover the well-known results (see for example /13, 14/)
in the quasi-stationary case concerning plasma diamagnetism.
2
(S’M <1 implies d“B%r< O, which is a paramagnetic situation,
2
>1 implies dB, >0, which is a diamagnetic situation.
M P dr
The effect of flow can now be clearly seen. For given pressure and
toroidal current profiles the poloidal mass rotation pVy tends to make
the plasma more diamagnetic. It acts as an effective kinetic pressure
to push toroidal magnetic field outside of the plasma region. We note
that toroidal mass flows in no way affect the zeroth order radial force
balance.
In first order we obtain a second-order differential equation for A which, as
noted above ,can be directly integrated. After elimination of B. , using
the zeroth order relation, we obtain
(PVa)
A= Ll _r_(&a_ (<pv">—pv2)a HaP
R, B:

2 2

- R (4 0-e2))

where A'¢ is the result obtained in the static case (see /3/):
S

v BT 2 1_5?}

2
M
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This represents a generalisation of the result for the plasma displacement
with negligible nonlinear flow coupling /3/. The last three terms in brackets
and the departure of Do from 1 represent the effects of flow. Do as a function

of M is shown in Fig. 5.

§ s
Bu(1+B)~~—
P
1 e
VB .
1 N\ (ML My M
Vi+g
Fig.5

L

Not only do the local flow values appear in the expression for A' but also

the flow profiles. An investigation of the radial behavior is difficult because

of the freedom involved in the choice of the functions of pressure, meridional
magnetic field, poloidal and toroidal mc;ss fluxes. However, a direct result of
this freedom is the interesting possibility of having A =0 which with the
condition A(a)=0 imply A=0. The four functions above can be chosen to
satisfy this condition with the additional constraint, that they also satisfy the

generalised Bennett relation.
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