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Abstract

This paper describes a method of solving the Liapounov
equation (1) HM + M*H = 2D,M in upper Hessenberg form,

D diagonal. Initialising the first row of the matrix A
arbitarily, one can find (by solving equations with one
unknown) the unknown elements of A such that

(2) AM + M*A¥= 2F, where A differs from a Hermitian matrix
only in that its diagonal elements need not be real. F is

a diagonal matrix which is uniquely determined by the first
row of A. By solving equation (2) for several initial values
one may generate several matrices A and F (in the most un-
favourable case 2n-1 A's and F's are needed) and superpose
them to get n linearly independent Hermitian matrices Hj
and Dj respectively for which HjM + M*Hj = 2 Dj is valid.
Then one can solve the real system f%} ?,ij = D to obtain

J=1

n
the solution Hi=zz p- H;: of eq.(1).
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1. Introduction

In [1] it is shown how the stability problem can be
solved for real n x n matrices. How this method can
be extended to complex matrices, is described in [3].
The program is running with satisfactory results, even
for matrices with orders ¥ 50.
A central point of this method is the solution of the
Liapounov equation

HM + M¥H = 2D,
where M is a matrix in special upper Hessenberg form,
which is similar to the matrix ﬁ, given initially, and
D is diagonal.
When a Hermitian solution H has been found and D is
positive definite, H has the same inertia as M. (seefz],

Theorem 1).

2. Preliminaries

Let R Dbe the field of real numbers, d: the field of complex
numbers. Let MeL(C"™), i.e. a complex n x n matrix, and
let ;\1, ""’An be the eigenvalues of M. The following

theorem is then valid ([2), § 4, p. 78):
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Theorem 1: If A (M):= “ (R + A)) / 0O and P is a given
L.&:l 1 J

Hermitian positive-definite matrix, then there exists an uniqgue

H satisfying HM + M*H = P, and H is Hermitian.

Remark: HM + M*H = O has only the trivial solution H = O
ire A(M) £ 0 is valid ([2), § 2, p. 75).

For the sake of simplicity we will specially choose P = 2D,
D diagonal, in the following. D is then real because D> = D.
The following definitions and lemmas are direct general=

izations of the results for real matrices in Eﬂ, 5 2

Definition: A Hermitian matrix H and a real diagonal matrix

D are called a Liapounov pair with respect to M if they

satisfy the equation

(1) HM + M*H = 2D.

Lemma 1: Two matrices H and D,H = H*, D = D"'t diagonal, form

a Liapounov pair with respect to M iff there is a complex

matrix T,T> = =T, such that HM = T + D.

Proof:

1) HM =T + D=p HM + MH = T + D + (T + DJ* = 2D because
T + T - 0. H,D form thus a Liapounov pair.

2) Let HM4 M™ = 2D, T :- HM - D T®- MXH - DY and T + T
- HM - D + MkH - D = 0.




Lemma 2: Let A (M) # 0. If {Hj, Dj], 3 =1,.¢., m,

are Liapounov pairs with respect to M, then

if Hl"“ Hm are linearly independent in R, so too are
lecnn Dmn
Proof: Let us assume that Dl’ & 5w Dm are linearly
dependent, i.e. there are Ayr eenes aniém, (al,....,am)
M
# (0O, «ee., 0), such that Z a.D. = 0. One then has
J=1 J°3J
2 o a.D % a. (H.M+M*H.) (£ a.H YM+M ¥ (2= aLH.)
2 D. = p 5 M ” = Z s His = o H
5 i3 Ti%a 5 g 3 T4 933 71937

O. According to the remark following theorem 1 this
means, however, that the Hj are linearly dependent.

Lemma 2 has thus been proved.

We will now confine our attention to marices M in special

upper Hessenberg form (i.e. mij =0 if i»3j + 1 and mi+1' i

#o0; i, =1, ...., n). For the solution of the stability
problem, this is no constraint (see [i], psl £ or[ﬁ} 8 3
If one wants to solve the Liapunov equation for other purposes,
the situation is quite different:

Let S be a unitary matrix such that sMs* = M is in upper
Hessenberg form (for instance S may be constructed by
Householder's method).

If all elements in the subdiagonal of M are non-zero, then
the solution can simply be transformed back: Let HM+M*H=22%
then H: = S*HS satisfies

HM + M*H = s*¥(HM + MYH)S= 2 S*DS.

But if some element in the subdiagonal of M is zero, M has




to be split into blocks.

My and M3 are upper Hessenberg

2 matrices, for which the Liapunov

M
0

solution of the complete problem in a simple manner. In

T equation can ce solved. But if M, # o,

|
|
I
l
I
| 3 these two solutions do not induce the

this case the method is not applicable.

In the following we shall reduce the solution of the Liapounov

equation (1) to repeated solution of the equation
(2) HM = T + D, T¥= -7, D¥= D diagonal.

For this purpose the solvability of eq. (2) has to be

studied more closely.

Lemma 3: Let M be an upper Hessenberg matrix with non-zero
elements in the lower co-diagonal, and let

hi= (a1, a, + ib2’ e ees Q. F ibn). There then exists an unique

n
complex matrix A with the following properties:
(3.1) A contains h as the first row

: n
(3.2) A = B + iC, B¥_- B, ¢ = diag (0,02, cn)e L(R ).

(3.3) AM =T + D, ¥ - T, D*z D diagonal matrix.



Proof: Let A = (ajk)’ B = (bjk)’ AM = (amjk). As the first
row of A is given, we can calculate the first row of

AM = T + D. Since B is Hermitian and T anti-Hermitian, the
first columns of A and AM are then known, hence 8nq and ams 4

in particular. ans is now calculated from

anqMyq + apofyy = amyy = = amyse

The other elements in the second column of A are calculated

accordingly. By means of (3.2) it is now possible to use

the second column of A to complete the second row of A,
etc.
If the (j - 1)-th row of A is known, j =2, ... n, the

j-th column of A is generally obtained from

{1
(3) a, ;= - NS - Z_ a m + am, ), L== Jy v wn g 1
(A my ya le=t Lk "k,J-1 i B

since all the elements on the r.h.s. of eq.(3) are known

and it was postulated that my o Z 0, j=2,+..,n. The Jj-th
row of A can then be determined.

At no stage of the calculations are known quantities

changed. One thus obtains uniquely determined A, T, and D,
which by virtue of construction have the required properties.
This then allows the basic theorem of the method to be

prove d:




n
Theorem 2: If M€ L(C ") is a matrix in upper Hessenberg

form with non-zero elements in its lower co-diagonal and
it A(M) # O, there are at least n in R linearly independent

Liapounov pairs with respect to M.

Proof: Let h1, .oy hn be linearly independent vectors from

€™ with vanishing imaginary parts and h s saiy A

2n-1

o
linearly independent vectors from C whose real parts and

+1°

first components vanish.

For convenience the vectors (1, O, «.ey, 0), ceess

(B senes Oy T)s (05 By Dy wd@) pud By ooy @, A1) WELE BE
selected.

By the method Jjust developed one obtains matrices A1, "'A2n—1’
where Aj contains hj as its first row and has the properties
(3.2) and (3.3). The object now is to superpose these Aj 8541
such a way that n linearly independent matrices with real
diagonal elements are obtained.

One gets Ai’ = Bﬁ + iC?-, Cq-_ = diag (O, Cyps wees Cjn)GL (R“),

Gy i= (032’ cees Cyp) s J =1, 4eee, 2n=1.

¢y Chy1? **t2 Copoqe j € {ﬂ, csees N}, are n (n - 1)=-dimen-
sional real vectors and are thus linearly dependent. There

are thus real numbers a1(3),....,an(j)e[R such that

(a1(3),....,an(j)) £ (0, ssss 0) and



(3)

If for some J a, is equal to zero in every such
representation, there is some ko, 2 & ko & n - 1, with
i)
aéi # 0. In this case one may permute the subscripts
. (3) (J)
ol a,I CJ and ako+1 c
scripts of the related A,T and D must be permuted, these

n + ko Accordingly, the sub-

permutations being maintained in all subsequent calculations.

ED

can thus always be set equal to unity.

+ .%éf a(j) A J =1 n are then Hermitian
J J k1 k+1 “n+k’ pEm LS ¥

matrices which

H.:=A

(a) are linearly independent since their first rows are
linearly independent and

(b) solve eq.(2) since

=)
HJM = AJM + EEH aLtd An+k M
=1 ()
=Ty By E&a a4t (Togk * Doy
L () A=)
= T+ ait Tnak * Pyt & 2k Pk
d k=1 0 ket i
. pld) . plJ)
(3% _ _ (3 p(3)% _ p(3) . — ak(‘j)
are all real.
In accordance with lemma 2 the D(j), J =1, eeeey, Ny

are then also linearly independent. Theorem 2 has thus been

proved.




3. The method

The Liapounov equation (1) is now solved in the following
way:
By the method developed in the proof of theorem 2 one can

generate n Liapounov pairs {}EVI}“} s JE15 amess 0w

If A(M) # O, the linear system

n (j)
(5) F Py B =D
it
is nonsingular and thus has an unique solution (p1,....,pn).
™
H:i= %él PjHj is then the required solution of eq. (1)
because

-
HM + M¥H = 2. -ijJMJrM*% p.Has

§= 1 J¢
"
- :&.Z::l .PJ(T(J) 4 D(J)) + xzhi ?j(-T(j) + D(J))

(3)
2 2 P: D
iai J

2 Dl



If A(M) = o, two cases may occur:

1y oM, ... p

. are linearly dependent, but (5)

) n CJ‘)
has some solution (pl, o & pn) Then H: = ?’-_4 ‘PJ—3
is a (not uniquely determined) solution of eg. (1).

2) (5) has no solution. ?hen eq. (1) has no solution too.

As the following example shows, this method is more cumber-
some for small n than the known direct methods of solving
eq.(1). If, however, n is large (e.g. n = 50), it is more
advantageous to solve only systems of equations of order g n
than a system of equations of order n2 - n . Number of
equations to be solved:
(1) In the most favourable case (the diagonals of the first n
calculated A, are real):
Equation (2) has to be solved n times and a system of
equations of order n once.
(2) In the most unfavourable case (the diagonals of all AJ
contain non-real elements):
Equation (2) has to be solved (2n-1) times and (n - 1)
systems of equations of order n - 1, and a system of

equations of order n have to be solved.




10

+ s

N\ i
Solving eq.(2) once means solving (n-1)+(n-2)+1 = Eig—ll

equations with one unknown.

Ikxamples:

Let us illustrate the method by two examples, a favourable
one and a more unfavourable one. The first one shows that

permutations of subscripts may be necessary.

1) Let M := (1 _ ;) y B &= (é ?
21,:4 Jéi-(?

The eigenvalues o' M are given by L o= -

hence A (M) # O
o (19) e (5) L me(2).

3 D, = diag (1, =2), D, = diag (=1, 3).

Pyt PP =T P =, Py =3

_ 4 34
H=1y Hy TPy g = (-31 1)'

1 i (1 o0 B i/ 4
2) Let M = (1 T)JD_ (O 1) ) 1412‘-1'{'

The Aj are computed to

1.0 o 1 [0 i
By = (o i) s By = (1 -2) ’Aj(-i2i)’
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H, = a1(2) A, = (

p.0l") + pp(® -
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