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Abstract

For general 2-dimensional MHD equilibria it is possible using complex functions
to obtain the solution of the vacuum magnetic field which fits the boundary
conditions at the plasma surface. The solution allows to distinguish between
the geometry governed and plasma magnetic field governed singularities and
stagnation points. Several examples, particularly the elliptic plasma boundary

case, are discussed.




It has been proposed for toroidal plasmas with circular cross sections
that more general cross sections be considered in order to achieve
more favourable stability behaviour. The investigation of linear con-
figurations with appropriate cross sections will yield valuable information
in this respect. This paper therefore deals with the MHD equilibrium
of such cylindrical plasmas by determining and discussing the magnetic
field outside the plasma for arbitrary plasma cross sections and current
distributions in the plasma. There already exist very elegant methods in
the case of surface currents
If the cylinder axis is in the z direction, the vacuum field can be
represented by

§=V$XV2 + B, V=
where BZ is space independent and ¢ is the flux function for the
azimuthal field components.
At the plasma boundary it holds that =4, = const.

v satisfies the Laplace equation (in Cartesian coordinates x, y, 2):

Ay = (% +33:)y =0
with the general solution:

Y = Tm ff[j) 5 = x“.}
where  @(8) is an analytic function and Fm denotes the imaginary

part of the function. Thus, it also holds that
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In order to satisfy the boundary condition ' =4, = const on the
plasma surface in a suitable form, orthogonal coordinates u and v
such that v=v, corresponds to the plasma boundary and v >y,
to the vacuum are introduced instead of x and y. This transition
can be performed by a mapping that is analytic in a non-vanishing
region vzv, of the w plane:

S = f(w) w= W+lv
which otherwise has only a finite number of singularities in any finite
region of the w plane. Since the intersection of the plasma boundary
with the x,y plane forms a closed line, hlusiv) must be
periodic in w .

From the definitions
dlw) = ghew) = ¢(5)
and i )
gluv)= | o | = H’(“’)’
it then follows that
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where B, is the u component and B, the v component of the
magnetic field.

As the plasma boundary is a magnetic surface, it follows that B = 0
there. The u component 8. tu) = B, (« V) depends at the

boundary on the particular equilibrium and is treated here as a given

function. At the boundary one thus has

‘#’{“““’-3 = gluw) Bq Cu) and the analytic continuation of
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” {#flu+iv) - g.(uu'(v-v,), v,) B:'(Uﬂ'(\"%]) = %(‘\HV)(BH'L.B,)

After rearranging ( % denotes the tfransition to the complex conjugate ):

ylurib-vly) HM)_)*J 2
3luv) hilusdn)

one gefs :

%’(U‘L'(V-ZVQ)

1,
. ) .
(4) B, +:8, = [ 2'tusiv) J B, (u-itv-w)

With egs. (1) - (3) the flux function Y in vacuum is :

Yeclv-v,) ast(p b, )
\.}J = Lf’o + j‘“’li j 3,(_\;'. V.) BJ(W') d.wl; = (‘h " ;4_: f gﬂwfv,] BuCW’)CLw’
° u-dleary

Formula (4) shows that the magnetic field is given by a product of two
factors one of which is determined by the shape of the plasma boundary
and the other by the distribution of the magnetic field on the plasma
surface.
In particular, it can be seen that the singular points of the magnetic
field in vacuum that are governed by the shape of the plasma boundary
are due to odd zeros of & (u - (v-2u) or to zeros of

%’( u+iv) or to singularities of both. Singularities due to the
magnetic field distribution on the plasma surface are given by
singularities of B:(M‘t'(\"‘»’.)) . Singularities of individual factors
however may again disappear when the product is taken. Depending on
the type of singularity, there must be line or surface currents present.

Surface currents flow along branch cuts according to the magnetic field




jumps present there. The paths of the branch cuts are restricted by
the condition i ( ¢3+( w) — CP‘KW)) = ool | 4; and ‘#-
denote the values of 4:’ in adjacent sheets of the Riemann surface.
This condition is equivalent to continuity of the field component
normal to the branch cut.
Pure stagnation points of the magnetic field in vacuum, i.e. singularity
free points at which this field vanishes, are given by even zeros of
ﬁ,'(q-;(\,-zv.}) or by even poles of Blu+iv)
in so far as they are governed by the geometry of the boundary.
Odd zeros of L'(q-;(p-zv.)) and odd poles of 4&'(u+iv)
are stagnation points and, at the same time, branch points where the
surface current density vanishes. The magnetic field at the boundary
yields stagnation points at the zeros of B:U'iﬁv-v,)) . The
zeros of individual factors may also be cancelled when the product is
taken. The paths of the separatrices are often of interest. These are

given by the magnetic surfaces connecting stagnation points.

A few examples are given as illustrations. Gajewski 2 investigated the
magnetic field for elliptic plasma cylinders a) with surface currents and

b) with constant volume currents in the z direction. Using infinite

series he obtained the result that with the same boundary in both cases

the stagnation points are the same despite the different current distributions,
which at first glance is surprising. This situation can readily be explained

by formula (4), which contains a factor determined solely by the geometry



of the surface. The elliptic coordinates u, v = ( 05w <27 ; 0 <y < oo )
that have to be used here are obtained with  f,(w) = £ sim (w)

where 2 ¢ denotes the distance between the foci. The field at the

e}

boundary in case a) is Bu0 = b = const and in the case b) BU = c.g (u,vo);

c = const. The zeros P], P‘,2 of £ (a-ilv-2v))  that are solely

governed by the geometry of the plasma surface are located at

w

v = 2v0; g =g, ;Tf symmetric to the origin on the extension of the

major axis of the ellipse v = Vo In case a) the stagnation points P], P2

are at the same time branch points whereas in case b) they are pure

stagnation points since Buo(u - (v-vo)) also contains the factor
b (i 2
[ (u—l(v—2vo))] .

The fact that stagnation points lie on the curve v = 2Vo is not a matter of
chance either. Quite generally if the function h, which is given by the
shape of the plasma boundary, is real for real arguments, apart from a
possibly complex constant factor, then zeros of the magnetic field on the
curve v = 2vo are given by h’(u) = 0. Because h(u) is real and periodic

h’(u) must always have zeros.

The presence of a pure stagnation point in case b) is due to the coincidence

of zeros both of the geometric and magnetic factors. An example of pure
stagnation points due solely to the geometry with the property that
h'(u—i(v—2vo)) has quadratic zeros for v = 2\/0 and u = 0, T is given by

the function
—lw (3w cSw

4 4
- 3e < 9 e
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%Lw) = eL



1 ; . . ;
For v 7 5 In 5 this function yields singly closed curves v = v .
A : G e :
The curve v = 3 L5 is shown in Fig. 1. Much simpler maps do
not seem to lead to magnetic fields with such stagnation points.

Other examples can easily be constructed for surface currents using

Merkel’s and Gorenflo’s ) method.

We are grateful to Mr. Steuerwald for the computer plotting.
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This IPP report is intended for internal use.

IPP reports express the views of the authors at the time of writing and do not necessarily re-
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on the subject.

Neither the Max-Planck-Institut fiir Plasmaphysik, nor the Euratom Commission, nor any person
acting on behalf of either of these:

1. Gives any guarantee as to the accuracy and completeness of the information contained in
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