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Abstract

Macroscopic equilibria of relativistic electron beams in plasmas, with
return current and with or without an external magnetic field parallel

to the beam, are investigated in cylindrical geometry. BENNET-

type identities and general solutions are derived, and special examples
are considered, in particular low=-net-current, quasineutral configurations.
A general expression for the current screening factor is obtained. Because
of screening relaxed versions of the ALFVEN-LAWSON conditions
determine whether beam propagation is possible. These conditions are
easily satisfied for low perpendicular temperatures and sufficiently diffuse
density profiles of the beam; they do not limit the beam current. Only
equilibria with zero total charge, nonzero total net current, and beam
profiles without sharp boundary, can be obtained from the equations and

boundary conditions used.




1. Introduction

Properties of straight, relativistic electron beam equilibria partially
neutralized by ions, but not surrounded by plasma, have been extensively
studied by many authors (among others BENNETT, 1934, 1955, 1958;
LINHART, 1960; BENFORD et al., 1971; YOSHIKAWA, 1971). As far
as relativistic electron beams in plasmas are concerned, theories of
charge neutralization and return currents exist (COX et al., 1970;

LEE et al., 1971; HAMMER et al., 1970; RUKHADZE et al., 1972;
KUPPERS et al., 1973); but, to our knowledge, equilibria with return
current have not been studied so far, except in planar geometry by

IVANOV et al. (1970).

Information about beam plasma equilibria may be of interest for
diagnostics and for studies of stability and heating. As the most simple
case, we consider relativistic electron beams of cylindrical symmetry in
infinite, nonrelativistic plasmas. We take into account the plasma return
current, but omit questions of stability and heating. An external magnetic
field &0 parallel to the beam may be present; it does not influence

the beam plasma equilibria considered. Only macroscopic equilibria are

investigated, by using collisionless, isothermal fluid equations for the

beam, the plasma electrons, and the plasma ions. From calculations
without return currents it is well known that a large class of beam
equilibria is described equally well by macroscopic and microscopic

theory.




In view of the difference in the mass of the ions and electrons we

investigate two different classes of equilibria, viz.

A) two-component equilibria, i.e. equilibrium configurations of plasma
electrons and beam electrons only, with a fixed, homogeneous
plasma ion back ground;

B) three-component equilibria including the plasma ions as well.

[t turns out that the systems of equations permit two functions to be
chosen arbitrarily. From the physical point of view one would like to
specify the density and velocity profiles of the beam, viz. ’h’(w") and
\)"(wr)) with '\"I'}(, const. Mathematically, it is advantageous to
formulate the general equilibrium solutions in terms of given beam and
ion density profiles (in the case of three components) or in terms of
given beam density and radial electric field (in the case of two
components). Among these general solutions we find special equilibria
that satisfy the experimental requirement \J’(‘f“):: const, either as
special cases of the general solutions or, alternatively, by using the

approximation of low-net-current, quasineutral equilibrium.

Section 2 concerns general properties of the equilibria studied; in
particular, BENNETT-like relations are obtained from the virial theorem
and from asymptotics at large radii. Equilibria without and with electric
field are considered in Sections 3 and 4 respectively. In section 5

low=-net-current equilibria are obtained by assuming electric and magnetic




quasineutrality; this approximation may possibly become invalid in some
cases at the beam edge. In Section 6 the results are summarized, and

modified ALFVEN-LAWSON conditions for beam propagation are derived.




2. General Properties of Equilibria

The equilibria studied have currents, velocities and the external
ﬁ-ﬁeld/\go parallel to the z-axis, they have radial gradients and
E-fields, and azimuthal, selfconsistent, B-fields. We shall omit

the pertinent indices, i.e. write B for B? , E for E., efc.

Cylindrical coordinates w“,’f,z are used.

The following equilibrium equations are used:
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with

f = Q(VL;——MR—VL’).

The total kinetic pressure is

(2.2)

(2.4)

(2.6)

(2.7)




The ex’rernulﬁli:FieIdNB\O parallel to the beam does not enter the
equations. The beam quantities are primed, otherwise the notation

is standard. While v’ and y, are functions of the radius, the
temperatures are taken as constants. Equations (2.1) to (2.8)

describe three-component equilibria. For two-component equilibria
eq. (2.3) must be dropped and m; put equal to a constant. One
notices that the time-independent relativistic equation of motion

that describes the beam equilibrium, eq. (2.1), does not contain
relativistic factors and is, in fact, indentical to the nonrelativistic
equation. All quantities are measured in the laboratory system.

The temperatures entering the equations are kinetic temperatures

that refer to components of the pressure tensors perpendicular to

the z-axis. Maxwellian distribution functions have not been assumed,
merely isotropy of "perpendicular" pressures. The assumption T’=const
in the laboratory system is not equivalent to _EL‘ const in the beam
rest system if W(+) ¥ const. It appears, however, that there is no
special reason for assuming T;lz const; hence we prefer the assumption

T’=const, which is mathematically much simpler.

The equations obey the following rules of similarity:




AN, AN, , T,Q, T ~ N
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Here N / Q/ AN4 ) ANQ are the line densities

of beam

particles, electric charge, and variation of plasma particles with
respect to the unperturbed, homogeneous background density, e.g.
oo
AN’\‘-,{ = 27 (M‘!Ie_ - /hc.oo) v dv /
0

I is the total net current, and R is the "beam radius".

We postulate the following properties of our equilibria:

a)N’,ANi/ ANQ / Q, I finite. It follows that 2/

J

v e ; + — :
(MWL [ €741 Ve all go to zero for oo
b) All fields, densities, velocities etc. finite.
c) \'\7’1%(_ / ]UL! == T i

d M << M, .

e) All temperatures nonzero.

(2.9)

(2.10)




The following additional properties then follow:

uﬂThe beam density "r{(-r) cannot drop to zero at finite radius ¥ .
This is seen in the following way. When W goes to zero at finite
v = v, then the logarithmic derivative /a,. v must
diverge at ¥ =, . This means that one of the quantities

E, B [ \)" of the left-hand side of eq. (2.1) must also diverge,

in contradiction to assumption b).

b’) The line density @ of electric charge is zero. Otherwise the ion

density could not go to a nonvanishing constant, since l[eq. (2.3)]

M, = Mg, eXp (* %(Qb »d%)}, (.10

and P~ L r for large radii. From Q =0 it immediately

follows that
AN; = AN_+N', (2.12)

Because Q and E are related by

Q = %,&M (fE)/ (2.13)

N> 02
the result Q =0 also means that E(-r) drops to zero faster than
-
¥ for large radii. This result holds for two-component equilibria,

too, because it can also be derived from egs. (2.1), (2.2), (2.5),

and n, = const.,

C') The total net current I is nonzero. Otherwise the line density of

beam particles, N’, would diverge. This follows from considering
P




eq. (2.1) at large radii and observing Q = 0. Because

1 = %‘ —Q/-.% ("‘“B) AL

Y- oo

it follows that B ~ + "1 for large ¥ . From this consideration

one also proves that

v =1 Hewm V) F 0. (2.15)

+~ > oo

Of course, these properties hinge on the special form of the
equations used and will not necessarily follow from a microscopic

theory.

Now various exact relations will be derived that are satisfied by

the equilibria. These relations contain the total net current I, the
total beam current 1’, the line densities NJ! Zth / ANC) the
temperatures, and the beam velocity UC; 3 = ﬁ; at ¥ = oo,
They are generalizations of relations derived by BENNETT (1934)

for a beam in vacuo. Some of the relations hold only for two-
component or three-component equilibria. When nothing is said a
relation holds for both cases. For some of the relations the

derivation makes use of an asymptotic profile of the beam density, viz.

/
o

']ﬂ,((*f') - "\P’_- for ~ — oo ) (2]5)

! - !
where o >2 to guarantee finite N .




The asymptotics of the beam equilibrium [eq. (2.])} for large ¥
together with Q =0 ‘and eq. (2.15) yields an expression for the

net current:

oL T
L = T LR
e B,

If the beam velocity ' = ¢B’ is a constant, then the beam
Y

current is given by

I} = = f\/fev’

and the shielding factor, i.e. the ratio of the beam current and

the net current can be written down exactly:

T 2Nt

I - o(’ TI

For three-component equilibria the following additional relations can

be derived. Total pressure balance, viz.

,a,I:v = g ’af(TZEZ-—TZBZJJ

I v2

yields on account of eqgs. (2.13) and (2.14) the virial theorem in

the form

T¢ = 22 AP

with

AP = 2TI(F—P«;)T dv.
0
Because of eq. (2.12) and

AP = T AN, + T AN, + TN

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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[compcre eq. (2.8)] , €q. (2.20) can be written

T> = 2¢ (T-TON' + 2¢(T+T ) AN, @2

or

I—2 - 2CZ(T/+7::)MI +2CZ(E+7;)ANQ . (2.24)

Eliminating the net current by means of eq. (2.16) yields

o(}Z T"Z T’_T /
o S S | 1 (2.25)
=gy~ ¥
and
12 -/
M, = s = g 220
© R (TdT)  TieT.

The formulas simplify for electrically neutral equilibria, because

for them E = AN,‘ —3

For two-component equilibria the E-field must be considered partially

/
due to "external sources" (i.e. the ions). Then one has for p = Tl Te'he

Up + M, ek = 2 BE - TZBZ)/ (2.27)

fr~*

and the virial theorem reads

I° = 2 (AP - V)/ (2.28)
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with

oo od

\’J — Tem, JE (¢) v*dy = - ZJTZehmff(w' - o(\f'}

o 0

where the integrals are required to converge, and
/[ pq! - l
AP = T'N'+ T AN, = (T'-T)N".

The homogeneous ion background yields, of course, A N{. = O ]
ANQ = - N’ . Eliminating the net current again by means of

eq. (2.16) one obtains

o(l?. T’Z

; [
Yoo (TN -

oo

For electrically neutral equilibria V=0 , and the formulas agree

with the three-component case.

In the case of constant beam velocity v’ eqs. (2.16), (2.17), (2.25)

or (2.31) can be combined to give alternative formulae for the

screening factor: For three-component equilibria one has

T /T 282 AN T
_— = - 7 / ' T - /
T 4 (T'-T,) ' T | T -1,

and for two-component equilibria:

T °<{T___f + M
T 7 41T «T(T-T)

(2.27)

(2.30)

(2.31)

(2.32)

(2.33)
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If, in addition, the equilibrium is neutral ( AN: =0 p -\}f

1

I
O

respectively) then the screening factor is

I« T
T - «(T-T.) e

The above relations almost all suffer from the difficulty that the
asymptotic exponent ! of the beam density profile is not known a
priori. An exception is the case of neutral equilibrium (E =0 )
with v'= const, where it can be shown that ' =4 (Section 3).
Nevertheless the relations may be of some use in discussions

(Section 6) and for checking special solutions.
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3. Equilibria with Vanishing E-Field

Electrically neutral equilibria, E = 0, 9= 0, with AN&. _ O}

M = const, are treated first since this case is especially simple,
and the distinction between two-component equilibria and three-

component equilibria no longer obtains. Equations (2.1) to (2.7)

then immediately yield

MM, = m; = . (3.1)

and
T B _3_’_ B M/ _ T’ 25
i 4 n'v 4 v P / {8-2)

i.e. the ratios of the current densities j;, je/}' are all

constants,

The general solution for equilibria with E =0 can easily be obtained

in terms of a given beam density profile:

B - — 87(3;-7:) fs-z 9: v'(s) ds ) (3.3)
0

/VQQ = M —_— /n! (3.4)
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e <l 9, b n, . (3.6)
e B

In keeping with the conditions of Section 2 singular B-fields are
excluded from consideration. In order for B to be real- valyed the

condition

<
S st 0 M'(s) ds = 0O (3.7)

0
or
NI('Y‘) = rria(~) (3.8)
must be satisfied, where N’(‘f) is the line density of beam

particles inside a cylinder of radius v .

The solution given can yield unphysical values (profiles) of '
and/or \j , however, if fh!(wrj is chosen inappropriately. (We
should characterize profiles v'(7) as unphysical if, for instance,
v'>c or v were to change sign.) This difficulty is avoided by
specializing to W/(+)= const. Then, comparing egs. (3.2) and

(2.34) shows that when v is a constant the exponent of the beam

density profile satisfies o(.}= % : hence egs. (2.16) to (2.26) are

readily evaluated. Further consequences then are, for instance,

that T /> T{' and

12
N' = 2 T , (3.9)

- Qtﬁfz (T"Te,)
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On comparing egs. (3.3) and (3.5) the following differential

equation for ’n/(ﬂr) is derived:

12
! A L.
’hw + - e = ™

+ kw2 = Q (3.10)

with
K = QW(T’*E)(‘%E—I)Z- (3.11)

According to KAMKE (1944) the solution satisfying the boundary

— / .
conditions (O) = ) ) /n/(oo) = 0 is of the
BENNETT type, viz.

| N' 2

(3.12)

m = - 212 )
1(+*+d)
with NI given by eq. (3.9), and d arbitrary, characterizing the
radial extent of the beam. The other quantities then are
[ 2
Ylg B Mgy = [\i d 22 ) Eals)
r(+i+d?)
’ oo YT + (3.14)
B = —9%tun = - : ) '
BT -&fg/ i d?
I U U P (3.19
Ve = R~ — = T -
T g Moo
The condition ]\}l{ << C is satisfied automatically since
/
m' << Ny, ) [} >T, .
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4. General Equilibria

From eqgs. (2.1) to (2.7) the following general equilibrium solutions

subject to conditions a) to e) of Section 2 can be derived.

a) Three-component equilibria

The general solution for given fn_(w‘“) and M. (v) reads:

B = E

br (11, fs" & m; () ds
0

¥
T
E = =2, bumn )
2
E
/h-l?_ = /n't — /'yl’ - ;af_(_'t——)—- )
Yrer
C
v s (D b v E)
B | <
= JeL ik
Vv, = B (—j“’a‘,@u’ht —+ E).
2
The functions 1. and W ; must be chosen such that B 20 )

| |
v<c, m.>0, ad vV x<c.

(,a e T) o (T- T}fza h}(fjo{s

(4.1)

(4.3)

(4.4)

(4.5)
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Special solutions with '\Jlx const and E small are obtained with

the ansatz:
2
W
- 7!’((3{?—4'#‘2)? 4
|2
M = Mo + % ANﬂ'

1t zy2 /
7[(:3[ +1~2' 2
with /_\.Mt given by eq. (2.25). For E small, viz.

|ON;] < xd*m,,

and

Te

g
1

AN, | << 1d M,

one obtains

4T AN, d°r

E 7E'-Q'V!w (olzwf-\rz)‘g
and
i HTR v LT AN, _d'r*
~ 41‘3/2 (ol.z-f _‘_z)z 7""‘2’“;‘» (dl_*f?)‘f

2
In deriving eq. (4.11) the term £~ has been neglected in eq. (4.1)
by virtue of eq. (4.9). The second term on the r.h.s. of eq. (4.11)

will also now be neglected, assuming

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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AN, [ << rd m, 3T T.

In eq. (4.4) for v the E/B term can be neglected if Debye lengths

are small compared to d and if

lAN_‘, < Otzf?le_m

Then

ﬁ!

which agrees with the exact relation (2.25).

1-/
‘ﬁ‘ '

For the plasma electrons one derives

M,

and

Yo
.

I~
~

~4

My T (AAL "NI)

d?.

% -VZ LIN(TETL) + 4N (T+7,)] 2

.

N g oo

’r(ol?'-f Yz) :

) b

The screening factor is nearly constant and given by

=

1 ~

;

N!TI

N'(T-T,) + IN; (T:+T,)

N'e? B2

2

(4.12)

(4.13)

(4.14)

(4.]5)

(4.16)

(4.17)
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b) Two-component equilibria

The general solution for given 'n,(-r) and E(f} is given by
=
27, §x(T-T.) (2
B = B+ Zh(3p - £ _J_(:l__e.zfs A’ de
M)

ﬁ-

é 2
— fLE R | S Es) ds | (4.18)
.i"
0
(4.19)
M, = New )
and by eqgs. (4.3) to (4.5). The same restrictions must be observed
as above.
Again special solutions with ' 2 const and E small are obtained,
this time using eq. (4.6) for ’Vl,/(‘rj and
2
_ E.r 4 dJ° Y
E = T 2|3 / E, = ‘ 4.20)
(T+~%) T Moy
For small Eo compare egs. (4.27) to (4.29)J the ’E\-_-Ffield is given by
2
2 [ ! all 4.21
B~ [8N (T 'Te.) - 2_?2 LNop EoJ 7. 2] el
(ul» +-r)

and ' by

A
2

(gfg,_ _ E:T_i [gN’JZ(T‘—TQ)— 2ren,, EJ . (4.22)
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The latter equation agrees with egs. (2.29) and (2.31). Equation
(4.22) can be used to write

“T' -
Qﬁr d2+~r2

g ~ ) (4.23)

where eq. (2.16) and sign B =sign I have been observed. The electron

quantities are given by

!l 12
N'd (4.24)
M. = W '
e eoo 7?"((12‘!‘1"1)2 ]
E% ~ -Qg’ (('N,C{LE . E o (4.25)
c ¢ T TeM,, Cdz NOE )
where T m,, wos used. Again the screening factor is
approximately constant:
Ny /] 12 / I 2 /12
4 ;“V,d T _ Ne BZ s
4 YN'AZ(T-T,) = Tenes B, 2T
The conditions for eqs. (4.21) to (4.26) to be valid are: n’ small
compared to M, , and
2T, |4
E,| < —)*=d, (4.27)
4T 4
E. | T ~ 4 (4.28)
T
|E.| < —Lg: d . 4.29)
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5. Low Net Current Equilibria

We consider equilibria with near compensation of the beam current
by the plasma current and with nearly vanishing charge density,

i.e. low=net-current, quasineutral equilibria. Equations (2.4) to (2.7)

are replaced by

—e(fheul-wn’v’) ~ 0, (5.1)

. .
Il

_ o  Hull S
g = e(mi-n.-n') = o0,
while E and B are kept nonzero. The equilibria are then given,

essentially, by algebraic formulae.

a) Three-component equilibria

/ ) . e
If 'h.(-r) and ¥ (‘r) Az const are given, the other quantities are

given by the following expressions:

T-T. (5.3)

. i e n
o _I:'_"(" TQ_ A

THT. | (5.4)

%g_ % ’M = S0
- Te+T, '

E = L9, 5.5
- b i v )
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/ LT T!-E; y I ;171
B%-El[’! 1Tl ) ”4 Q—ELL] Y (5.9

() T e | |7 (T2 ) e

Lot
iy (5.7)
'\)g‘ % — "

Mo

As to the general relations of Section 2, egs. (2.16) to (2.18) remain

valid, AP and 11 become small and hence, for T/ not nearly equal

to Te
=T,
AN«. ~ — ;I. +T{' Ni ) (5.8)
1 e
{
BN, m =458 (5.9)
- T, +To
! 2 nli =
2 AN;  Ti+T.
'TL ~ — \f;%:,;—]_—,—;—\,_— \ (5.10)
- Q

It follows that E+#0 for 9, M # 0.

The approximation will be valid if the net current and the charge
density are sufficiently low and if the Debye lengths are small
compared to the radial length scale. The approximation may possibly
break down at the beam edge, i.e. for small 'YLI(-r) , but this
is not necessarily so . In fact, when eqgs. (5.8) to (5.10) are

satisfied and the square brackets in eq. (5.6) are nearly equal to



23
J . ) i
each other (7; < T) , the special solutions given by
eqs. (4.6) to (4.17) are of the low-current, quasineutral type,

i.e. satisfy egs. (5.1) to (5.7) for arbitrary radii.

b) Two-component equilibria

5 ! .
For given ’VLI(-P) and VU “x const the low-net-current, quasineutral

solution is found to be

Ty = M ) (5.11)
—1
M—Te A
E =~ - < %en (5.13)
2M,,,
/ /
cl T-Te) n/
B ~ — [/I ( . Y, b P15
e %eoo v )
{ J
U-Q, % - LAl [ (5']5)
Mo
As to the general relations of Section 2, egs. (2.16) to (2.18) remain
valid again, and for T" again not nearly equal to T, the other
relations become:

(5,.16)

()

AN,
Y

— N’ )
(TLT&) N = 4P (5.17)

0
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I . 2247V

T =~ W@k

Again it follows that E +Q for 'a(‘h_’:f: O . When egs. (5.16) to
(5.18) are satisfied and the square bracket in eq. (5.14) is nearly
equal to 1, then the special solutions given by eqs. (4.6), (4.20) to

(4.26) are of the low-net-current, quasineutral type and satisfy egs.

(5.11) to (5.15).

(5.18)
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6. Summary and Discussion

The isothermal equations used describe a restricted class of beam
plasma equilibria of cylindrical symmetry with return current, viz.
equilibria with total charge Q =0, net current L # O , and a
diffuse density profile of the beam. An external B-field MB& parallel
to the beam may be present; it does not influence the equilibria.
In order to see how critical the assumption of isothermality is, an
adiabatic set of equations was also investigated, viz. with vahzl T~4q_,
Then for E =0 spatially oscillating solutions were obtained, with
the oscillation length of the order of the beam’s Debye length.
Hence the choice of different equations of state may have a strong
influence on the type of equilibria derived. Whether such oscillating

solutions should be taken seriously remains an open question.

In Sections 3 and 4 we have derived exact and approximate equilibrium
solutions for given density profile of the beam. In the case E = 0,
v = const, a BENNETT-like solution with return current obtains. When
E éﬁ O , the condition %= const can be taken into account by
employing the low-net-current, quasineutral approximation (Section 5).
Special solutions with Ex0, /2 const were also found by choosing

appropriate profiles for ' and M, or W and E.

Generalized BENNETT relations have been derived in Section 2. They
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relate particle line densities, currents, temperatures, the beam velocity,
and the asymptotic exponent of the density profile at large radii. The
: . / I 2 »/2
screening factor for the beam current is always I/I = (2 Ne ﬁ
o y . .
/o( T ). In order for it to be large, the beam’s perpendicular
temperature ought to be small ("parallel motion of beam particles") and

the beam density exponent o<, ought to be small ("diffuse beam").

/
On account of screening the ALFVEN (1939) criterion for propagation

of an unscreened beam,

N &

m 2 3/, ) (6.1)

is modified to become

/ I 2 512
N' e2 ) I 2N e By’ 2
A c* I o T
/ /
This is no longer a restriction of N" and the beam current L , but
191
rather for & T /J’l/ viz,
T /2
<
— =~ 1. (6.3)
2w c ¥

If a divergence angle B of beam particle velocities is introduced:

T; = /‘Mczd}/} <92> ; (6.4)
then eq. (6.3) becomes
_é.il< 92> < 4 : (6.5)

This is easily satisfied if the beam particles move nearly parallel and

the beam is sufficiently diffuse. These two conditions are quite different
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from the one condition resulting from the theory of return current

(KUPPERS et al., 1973) for the initial phase of beam injection.
‘ /

There Ee> R vyields instead the condition /heﬂ}/’//h’ > 4)

which is satisfied whenever the plasma density is larger than the

beam density.

/
ALFVEN’S condition and eqgs. (6.2), (6.3), (6.5) originate from
the requirement that the gyroradius of the beam electrons be greater
/
than the beam radius, viz. Re, > R . These conditions can be
refined by taking into account the electric field also (LAWSON,
)

1957, 1958) and requiring that the radius of curvature Pc of the
orbits of the beam electrons, be greater than the beam radius R.

/
When V' is chosen perpendicular to E, Rc,Is given by

J £

R; :%J:(%‘B ‘E(

Then eqs. (6.3) and (6.5) are replaced by

o(}T_J 13 = A
Ty JB-gl R Tl

and

! 2 1
T <8 < 1¢'-5]

with j = E/B . Comparing egs. (6.5) and (6.8) one observes that

eq. (6.8) could be less restrictive than eq. (6.5) only for = 2~ const.

B

(6.7)
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Because E/B & const for the equilibria derived above and since E/B
is usually small, eq. (6.5) remains, in our case, the relevant

condition for beam propagation.
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