MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

A Simulation Study
cof a CPU Priority Task Dispatcher

R. A, Pocock

IPP R/4 January 1972

Die nachstebhende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

IPP R/4 R.A. Pocock

ABSTRACT:

A Simulation Study of a
CPU Priority Task Dispatcher

January 1972
(in English)

The central processor priority dispatching program SMOOTH,

introduced by IBM to
central processor to
multitask system, is
GPSS/ 360. A variety

schedule allocation of the 360/91
separate data processing tasks in a
simulated using the simulation system

of task mixes is considered, with the

computer running with and without SMOOTH. The advantages

and limitations of the dispatcher are discussed.

1. Introduction

This study is designed to determine the effect of the priority
dispatching program SMOOTH on the allocation of the 360/91 central
processor (CPU) to separate data processing tasks in a multitask
system. Since the allocation of input/output facilities (i.e. 1/0
channels) to particular tasks is dependent on their CPU scheduling,
I/0 channel allocation is also considered. The aim of an efficient
dispatcher should be to overlap as much as possible the use of the
CPU by one task, with the use of I/O channels by other tasks. The
priority dispatcher SMOOTH attempts to do this by using a simple
algorithm to reduce the dispatching priority (DP) of CPU-bound
tasks (i.e. jobs which spend much more time using the CPU than the
I/0 channels).

The running of the computer for various job mixes has been simu-
lated, both with and without SMOOTH, by use of the General Purpose
Simulation System GPSS/360. Comparison of the CPU/I/O overlap for
the two cases shows that in general SMOOTH increases the efficiency
of task scheduling. In certain cases, however, the SMOOTH algorithm
shows certain limitations and these are also considered.

2. The Operation of the Priority Dispatcher SMOOTH

The Priority Dispatcher SMOOTH is a resident system task of
high (system job) dispatching priority (DP=236), running in a region
of 6 K bytes, with effective core utilisation of 1500 bytes. SMOOTH,
although always present in the system, is usually in the wait state,
but takes control of the CPU every 500 msecs. to scan the Task Con-
trol Block (TCB) chain for CPU-bound programs. If a CPU-bound task
is found, its dispatching priority may be reduced using the 0S/360
CHAP macro.

Whilst SMOOTH is scanning the TCB chain I/O and external in-
terrupts must be supressed in order to avoid alteration of the
chain. The time of supression is of the order of a few milliseconds.
During its scan SMOOTH ignores the TCB's of system jobs and problem
subtasks as it does not attempt to alter the DP's of these tasks.

Every problem (job step) main task has a table in core from
which SMOOTH can determine its stepname and "remaining" CPU time.
This "remaining" CPU time is not the actual CPU time left to run,
but the difference between the CPU time used so far and the CPU
time requested by theé programmer (or by default) for the jobstep.
Thus, if after a scan interval the step is still active, the CPU
time used during the interval can be calculated from the difference
between the "remaining" CPU time at the beginning and end of the
interval.

SMOOTH scans the TCB chain from highest to lowest DP, and ends
its scan with the penultimate TCB or with the last TCB with dis-
patching priority DP‘>11. It should be noted that dispatching priori-
ties are calculated from selection priorities (the job/step exter-
nal priority allocated by the programmer or by default) according
to the following algorithm:

DP = (selection priority)X16+11.
Thus the program with the lowest DP or with DP{l2 is not subjected
to change of priority by means of the CHAP macro, even though it
may have monopolised the CPU during an interval.

A simplified flowchart of the SMOOTH scan loop is shown in
Fig.1. SMOOTH scans down the TCB chain until it finds a job step
TCB which was in existance at the last scan (new names imply new
jobsteps and are ignored). During initiation of its scan SMOOTH
sets an initial comparison interval (INTO) of 500 msecs., and
compares the CPU time used by the highest priority task with this
time interval. If the task has used 75 % of INT it is considered
as CPU-bound. Otherwise the interval is reduced by the CPU time
used by this task:

INT.t = IN'I‘O - CPUo

and the CPU time used in the next lowest priority job step TCB is
compared with INT1. This interval reduction is repeated until a
job using CPU_2 75 % of INT _, is found. If in this case

INTns INT_ /4 (i.e. 125 msecs)

the step is ignored since it shows too little resolution. When a
CPU-bound job step is found , a flag is set and SMOOTH does not at-
tempt to find other CPU-bound tasks in that scan.

The aim of a priority dispatcher is to schedule the use of
computer resources efficiently by overlapping as far as possible
CPU and I/O activity. This is achieved by various dispatchers in
different ways, but all work on the basic principle of allowing I/O-
bound tasks higher DP than CPU-bound tasks. Since the CPU is needed
to initiate I/O activity, I/O-bound tasks must have high priority
access to the CPU if they are to run at all. When such a task be-
gins to transmit across the channel the CPU is released to the
lower priority tasks. When the data transmission finishes, the task
again has high priority access to the CPU to initialise its next
I/0 operation.

SMOOTH is programmed to reduce the DP of CPU-bound jobs as
follows: having found a CPU-bound job step, as described above,
SMOOTE compares its DP with the wvalue 12 (A step of DP=12 has al-
ready been found to be CPU-bound by SMOOTH and has had its priority
reduced using the CHAP macro). If it is not of priority 12, the
DP is set to 12 using the CHAP macro.CPU-bound job steps of DP=12
have their "remaining" CPU-time compared with 5 mins. If the re-
maining CPU time is less than 5 mins.a flag is set telling SMOOTH
to wait until the task again becomes CPU-bound before using the
CHAP macro to move its TCB to the lowest position in the DP=12 group in
the task queue. Otherwise it is moved to this position immediately.
If the remaining CPU time is also less than 1 min. the flag is set
to indicate that SMOOTH should wait until the task becomes CPU
bound twice again before pushing it to the bottom of the chain.

Thus a form of self-adjusting time-slicing is achieved for all

tasks which have been reduced to DP=12,.

The time slice is:

J 3 SMOOTH intervals for job steps of small remaining
CPU time (1 min.)

) 2 = " for job steps of medium remaining
CPU time (5 min.)

) 1 " e for job steps of large remaining

CPU time (5 mins.)

The actual time slice for each task is variable and depends upon
the whole job mix.

It should be noted that once a step has had its DP reduced
to 12, it has no way of increasing its priority. It may, however,
by virtue of no longer being CPU-bound, remain at the head of the
DP=12 group, which is equivalent to an increase in priority. DP=12
is the lowest effective priority in the dispatching system, and
thus I/O-bound jobs which have never been CPU-bound will run with
higher dispatching priorities than this. Those which have also been
CPU-bound at any stage, but which are now I/O-bound will remain
at the top of the DP=12 group.

3. The Simulation Program

The flowchart of the program used to simulate SMOOTH is shown
in Fig. 2. The program is rather complicated due to the fact that
GPSS/360 is designed to simulate running systems. It cannot readily
be adapted to stop such systems and reorganise them at fixed in-
tervals, as required by SMOOTH. The simulation of SMOOTH is effec-
tively two simulation problems combined:

1) A priority system in operation on a running computer
(CPU and I/O priority schemes being different)

2) The computer in a "static" condition with SMOOTH
examining priorities at any one instance in time

and altering them as required. The system must
then be restored to state 1) without disturbance.

The program is divided effectively into two sections to deal
with this.

3.1 Simulation of the computer running between SMOOTH scans
(Fig. 2(a))

At the start of the simulation a number of transactions is
initiated by GPSS to simulate the jobs running in the system. (n-1)
of these jobs represent problem jobs and 1 represents the SMOOTH
job which is immediately put into a wait state on a User Chain.

For the sake of simplicity it is assumed that each job consists of
a single job step, with initial "remaining" CPU time equal to the
default system value for the execution step of a job of its select-
ion priority.

The following parameters are assigned to each job as it is
initiated:

1) A DP. This is dependent on the job-class. For example
a mix might consist of

a) 2 F jobs of pty. 8o say
b) 2 2 jobs " " 7o say
c) 1 C job " " 60 say.

The actual values of DP assigned are unimportant as long
as they are consistant with the system priority scheme and
greater than the priority 12 of a CHAPed job.

2) Total number of SMOOTH intervals the simulation should
run. 3000 intervals were simulated, representing 25 mins.
of real-time running of the computer.

3) An initial "remaining" CPU time as described above
e.g. lo secs. for F jobs, 3 mins. for A jobs, lo mins.

for C jobs etc.

4) An initial actual remaining CPU time, representing
the actual amount of CPU time the job will run, cal-
culated from 3) above by multiplying it by a random
factor o€ f<€ 1.

5) The time-slice flag (number of SMOOTH intervals to wait
before CHAPing CPU-bound jobs) is set to zero.

Fach job is then put into a queue waiting to gain access to
the CPU. Jobs are allowed to take the CPU according to their DP.
2 jobs of the same effective DP in the real system, e.g. 2 F jobs,
are simulated as two jobs of DP=81 and DP=8o in order to retain
the FIFO structure of the TCB chain. Thus priorities 80-89 all re-
present F-jobs, 70-79 A jobs etc., the highest priority in each
group representing the first job of this class to enter the system.
When a job ends and a new job of this class is initiated it takes
the lowest DP of its group (e.g. 8o for F jobs) and other jobs in

the group have their priorities shuffled upwards as required.

The highest priority job in the queue takes the CPU and holds
it for a certain length of time, depending on a random time funct-
ion assigned to this job. For example, the CPU interval allocated
might be random within the range 300¥50 msecs. The job relinquishes
the central processor after its assigned time, goes to queue for
the I/0 channel, and the next highest priority job in the queue
takes the CPU. However, if whilst it is in control of the CPU, the
real time elapsed becomes an exact multiple of 500 msecs., the job
relinquishes the CPU and is queued onto a User Chain by DP, to-
gether with all the other jobs in the system, so as to simulate
the stationary TCB structure at this time. The CPU interval left
to run for the jobs is stored, so that the next time it runs it
will take the CPU for this time.

A job, on using up its CPU interval, goes to queue for the
I/0 channel. In the simulation only one channel is considered for
the sake of simplicity, although in the real system there may be
more than one I/O channel in operation. The channel is allocated

to tasks on a strictly FIFO basis which does not depend on DP.
This is the case in the 360/91 system for almost all I/O channels,
including the tape channels. The same considerations as specified
above for the CPU apply to the I/O channel. Each time SMOOTH runs
the job holding the channel releases it, and is queued onto the
same User Chain as the job holding the CPU and the jobs in both
the I/0 and CPU queues. The User Chain then reflects the TCB chain
in order of DP. I/O left to do is noted, so that this job can con-
tinue its I/O (as if uninterrupted) after the SMOOTH scan. When a
job releases the I/O channel it returns to the CPU queue to initiate
its next I/O action.

Running totals are kept of the total I/O and total CPU per-
formed by each job in each SMOOTH interval, and totally throughout

the job.

3.2 The SMOOTH Scan

Every 500 msecs. the SMOOTH transaction (job) is removed from
its special User Chain and allowed to run. It unlinks the problem
jobs one by one in order of DP from their User Chain, as shown in
Fig. 2 (b). The CPU time used by the job during the previous in-
terval is examined according to the rules specified previously in
the description of SMOCTH (Section 2), and the first CPU-bound job
found has its DP reduced to 12 unless its time-slice flag is set.
Subsequent jobs, and the lowest priority job are always ignored.
The jobs are then queued again on another User Chain in the new
order of DP.

Fig. 2(c) represents necessary DP manipulation so that the
TCB priority structure can readily be handled by GPSS. As previous-
ly described two Fjobs must have different DP's in order to reflect
their order of initiation. Similar considerations must apply to
CPU-bound jobs which have had their DP's reduced to DP=12 by
SMOOTH. If each of these jobs is allowed to have priority 12 in

the model, GPSS handles the jobs incorrectly, without retaining

the task queue structure. The job last CHAPed must take dis-
patching priority 12, and other jobs in this task queue group must
have their priorities incremented to make room for it at the bot-
tom of the queue. Priorities 12-20 are reserved for this purpose.
Thus 3 jobs, all of which would have DP=12 in the real system are
simulated as having DP's of 14,13 and 12, reflecting the order in
which they were CHAPed and thus their real order of priority. The
last part of the program deals with priority shuffling, both for
CHAPed and ended jobs, and the reinitialisation of ended jobs.

At the end of the SMOOTH scan, jobs which were either holding
or waiting for the CPU are returned to the CPU queue, the job of
highest DP (which may not be the same one as was highest before)
taking the CPU. The job which was holding the I/O channel is al-
lowed to take it again to finish its I/O, and the I/O queue is re-
stored to its exact condition before SMOOTH ran. In this way the
I/0 system is undisturbed by the scan.

4, Results

Initially the simulation was run with 3 jobs assumed to be

running in the computer. These were defined as follows:

1) F job, DP=80o, initial "remaining" CPU-time = 10 secs.
2) A job, DP=70, N " " " = 3 mins.
3) C job, DP=6o, " " " " = 10 mins.

Comparisons were made between the system running with and with-
out SMOOTH. The same program was used in both cases, but in the
latter case the effect of SMOOTH was supressed. This represents
the system running without SMOOTH but with a time-slice every
500 msecs. The effect of this time-slice is, however, minimal in
the system simulated, as CPU intervals chosen for the jobs were al-

ways substantially less than 500 msecs.

Table 1 shows the results of a series of simulations of the

computer running with and without SMOOTH. The number of jobs

passed of each type is shown, together with the percentage CPU
and I/0O utilisation as a function of real-time for each job class.
The figures for the number of jobs passed are only given as a
guide, since job lengths in terms of CPU-time are randomly as-
signed. Thus when only a few jobs have been passed (A and C jobs)
the values may be misleading. The CPU and I/0 figures are an ac-
curate guide to the use of the CPU and channel by a particular

job class.

Also tabulated are the average queues at the CPU and I/O chan-
nel over the whole real-time running of the simulation. Similarly
the total average CPU and I/0 utilisation as a fraction of tbtal
real-time is shown. The CPU/I/O overlap is calculated for each
sirulation, followed by the increase in overlap produced by SMOOTH
as a percentage of the overlap without SMOOTH.

Initially all the jobs were run with the same CPU and I/O
functions:

e.g. CPU intervals random within the range 300-480 msecs.

I/0 " a = t " 1 =100 msecs.

These functions were varied to simulate different cases:

simulation number

1 all jobs CPU-bound but not I/O-bound

2 & i I/0-bound " " CPU=-bound

3 " r CPU-bound and I/O-bound

4 " " neither CPU-bound nor I/O-bound

None of these cases shows any increase in I/0 and CPU over-
lap as a result of the use of SMOOTH, since I/0 and CPU utilisation
is quiteefficient without it. However, it should be noted that in
cases 1 and 3, SMOOTH does have a considerable "smoothing" effect
on the allocation of the CPU to different jobs. The lower priori-
ty jobs are allowed more access to the CPU than without SMOOTE,
and the higher priorities less. As would be expected, in cases 2
and 4, SMOOTH has negligible effect, as there are no CPU-bound
jobs in the system.

..-.“Io_

Secondly comparisons were made with each of the jobs having
different I/O and CPU functions, each job being eithef CPU- or
I/0-bound but not both or neither. The results are tabulated in
simulations 5-10. "CPU" and "I/O" written in the seconé column

imply:
a) CPU - CPU-bound job, where the CPU function is
random between the limits 300-480 msecs.
and the I/O function is random between the
limits 1l-loo nsecs.
b) I/0 - I/O-bound job, where the I/O function is ran-

dom between the limits 300-480 msecs. and
the CPU function is random between the limits
1=100 msecs.

Amongst simulations 5-1lo, numbers 6 and 7 are the most in-
teresting. Simulation 6 shows that SMOOTH fulfils its task of al-
lowing a low=-priorityI/O-bound job access to the CPU to initiate
its I/O even though CPU-bound jobs of higher initial DP exist in
the system. The C-job, which has about 8o % of the total I/0 to do,
is allowed to take the channel when required, whereas without SMOOTH
it had very little access. The CPU/I/O overlap is increased by 3oc0 %.
Simulation 7, shows the same effect for the A-job. In this case
the increase in overlap is less, since the I/O-bound job had much
better access without SMOOTH than insimulation 6, due to its higher
initial DP. The other simulations show very little effect due to
SMOOTH, and on careful consideration of each individual case this
is what would be expected. In case 5 the I/O job already had high
DP and in cases 8-1lo the CPU is not loaded so that the I/O-bound jobs
do not have to queue long for it.

Simulations 11-20 show an additional feature. Here
jobs may be both CPU- and I/0-bound. (Jobs which are neither CPU-
nor I/O-bound have not been considered as they represent no load
on the system and are rarely affected by SMOOTH). In the second
and third columns are given the attributes of each job (F, A, C
in order), implying:

a) CPU = CPU function random between the limits
300-480 msecs. (CPU-bound)

b)sCPU - CPU function random between the limits
1 =1oo msecs. (not CPU-bound)

c) I/0 - I/0 function random between the limits
300-480 msecs. (I/O-bound)

d)=I1I/0 - I/0 function random between the limits

1 -1o00 msecs. (not I/0O-bound)

Simulations 11 and 17 show a marked improvement in I/0 activi-
ty by an I/O-bound C-job when SMOOTH is running. In the first case,
however, the highest priority job, an F-job, which is both I/O- and
CPU-bound, shows a decrease in CPU and I/O activity. This is to be
expected, since SMOOTH reduces the priority of any CPU-bound job,
regardless of whether it also has substantial I/0 to do. Simulation
also shows an improvement in CPU/I/O overlap, this time due to the
C-job, (which is both I/O and CPU-bound),gaining more CPU and I/O
time. The set of simulations shows that in general a low-priority
I/C-bound job improves its I/O activity when SMOOTH is running.
This is most noticable when the job is not itself CPU-bound, and the
other jobs are. When all the jobs are I/0O-bound, the FIFO action of
the I/0 queue makes any improvement negligible. The improvement is
less if the I/O-bound job is also CPU-bound. I/O-bound jobs of
higher initial priority show no improvement, as might be expected,
since both with and without SMOOTH they have high priority access
to the CPU.

Simulations 21-28 show that although SMOOTH often increases
I/0/CPU overlap, there are certain cases where it may be a disadvan-
tage rather than an advantage, and other cases where perhaps a more
sophisticated algorithm would have a better effect. All these cases
involve jobs which SMOOTH considers to be CPU-bound, but which also
have a reasonable amount of I/O to do. These jobs are reduced to
low priority by SMOOTH, and thus may have less chance of getting the
I/0 channel than without SMOOTH. It should be noted, however, that
a strict comparison of the system with and without SMOOTH does not
necessarily show the full picture. The system without SMOOTH re-

presents the worst possible case. The real aim of SMOOTH must be

19

- 12 -

not only to make an improvement in I/0/CPU overlap relative to
this, or at least not to make things worse, but to distribute the
CPU and I/O activity relative to the percentage needs of the dif-
ferent jobs, so as to maximise both I/O and CPU utilisation.

Simulations 21-28 show the limitations imposed by SMOOTH on
jobs which it considers to be both CPU- and I/O-bound. In these
simulations I/O in column 3 implies that the I/O function is random
between the limits 450-480 msecs., except in simulation 22, where
it has been increased to 600-900 msecs. All these simulations in-
clude two CPU-bound jobs, and one which is both CPU- and I/0-bound,
or one of the former and two of the latter type. Several of the
simulations show that the CPU/I/O overlap is actually decreased
by SMOOTH when the jobs which are both I/0- and CPU-bound start
in the higher priority F-job and A-job positions. This is be-
cause they are CHAPed by SMOOTH without consideration of the 1/0
activity they have to do. Case 23, which shows an improvement
is still not as efficient as it might be. The A-job has 8o % of
the total I/O to do. This total is 50 % of the total CP to do.
Thus in the case where all jobs were given equal CPU access, the
A-job should hold the I/O channel 40 % of the time for maximum
efficiency. If it were given highest priority, by an improved
SMOOTH algorithm, this utilisation would be improved. In fact,
SMOOTH only allows the A-job to hold the channel 23 % of the time.
Similarity in case 25, the A—job and C-job should each obtain the
I/0 channel for at least 4o % of the time. In fact they obtain on-
ly 35 % and 3 % respectively. In both these simulations the I/0
channel is consistently underutilised, and the other simulations

in this group show the same effect to a lesser degree.

It should also be noted from simulations 26-28 that when all
the jobs are A-jobs which run for a long time (DP always in the
DP=12 group) I/O wutilisation is even worse. Jobs with long "re-
maining" CPU time do worse than, say, F-jobs, from this point of
view, as they are CHAPed every time they are found to be CPU-bound
due to the time-slice effect described in Section 2. They also

always have long remaining CPU time.

Thus simulations where the I/O channel utilisation is low re-
lative to that possibkle (depending on the ratio of CPU to I/0 re-
quired) show that the SMOOTH algorithm is not optimum in certain
cases. Efimulation 23, for example, shows only 30 % use of the I/C
channel even though for maximum efficiency the channel should be
used at least 50 % of the time (more if the I/O-bound job were given
highest priority). If the A-job were using a tape channel, the tape
would appear to move in jerks, an occurence which has been noticed
at IPP.

Simulations 29 and 3 show that a job which changes from being
CPU- to I/O -bound may not be treated any worse than if it had al-
ways been I/O-bound. In these simulations the A-job and F-job, re-
spectively, started as CPU-bound, but became I/O-bound as soon as
they were CHAPed. However, they soon rose to the highest priority
position in the DP=12 group of the task queue, and so managed never-
theless to do their I/O. The CPU-bound jobs in the mix were conti-
nually being CHAPed and so stayed in the lower positions of the
DP=12 group.

Finally, for the sake of completeness, simulations were run
with 5 jobs, representing 2xF-, 2xA- and 1xC-job. These results

showed exactly the same trends as for the 3-job mix, and so have

not been included.

5. Conclusion

This study of SMOOTH shows that in general SMOOTH performs its

functions well by:

1) Sharing out the available CPU-time for CPU-bound jobs
2) Discriminating slightly against the longer jobs (time-
slice feature)

3) Allowing low initial DP I/O-bound jobs access to the
CPU to initiate their I/O even though there may be
CPU-bound jobs of higher initial DP in the system.

The algorithm does, however, have a disadvantage when jobs
which it considers to be CPU-bound are also relatively I/0-bound.
Such jobs have bursts of CP greater than about 300 msecs., and
bursts of I/O of greater than 4oco msecs. If the CPU is busy proces-
sing other CPU-bound jobs in the system, the job which is also I/O
bound finds it difficult to obtain the CPU to initiate its 1I/0,
since it has low DP (it is CHAPed when SMOOTH finds that it is CPU-
bound). Such a job may obtain the I/O channel much less often than
it requires it, and this effect has been noted on the tape channel
at the IPP. SMOOTH might be improved by reducing jobs which are both

CPU- and I/O-bound to a higher priority than those which are only
CPU-bound.

Although SMOOTH represents a considerable improvement in some
cases over a system running without it, a more sophisticated al-
gorithm which considers both the I/O- and CPU-requirements of a
job would be preferable to optimise the priority dispatching on the
360/91.

FIG. 1
FLOWCHART OF SMOOTH ANALYSIS LOOP (slightly simplified)
ENTER
Set 500 msecs. interval for CPU comparisons
. v“
rd . =
Has the whole TCB chain been scanned? e
¥ no
il Is this TCB a system task or INIT TCRB? CHAP any CPU bound job
A yes to pty 1?2
Is it a job step TCB?
g 4o
‘-9&- Is Termination in progress?
ho
—4-&‘2 Is it a new job in thi;{;CB position? EXIT
A (since last scan)
$. ad
—§19£' Is this the last TCB (i.e. lowest pty)?
no
._—_.(_gﬂs_ﬂas a CPU bound job already been found?
¥ no
Reduce the saved interval by CPU time used by task
no Was275 % of previous igt;rval used?
]
s o
e little_#—was £ 25 % of basic 1nter:$.l (5c0 ms) used:
Eesolucion Indicate CPU bound task found
: , no
Is the task of pty 12 (i.e. lowest possible)? B =i
Is the remaining CPU time to run S5min. ’5“
Set double no ¥ no
<& CHAP Is a multiple CHAP interval set? T
interval $ ¢
Is it a triple interval? B‘ i 4 é_,
le i ini +n° i 1 i 9+5L
If double is remaining CPU time min. ? Sat CEU wEkGE

\rﬂo JOB found switch
Set ptyl2 for CHAP
Set multiple int.sw.=0

Set triple CHAP interval

F1c. 2 (a)

FLOWCHART OF SIMULATION OF SMOOTH

Initialise 4 transactions to represent jobs

(e.g. 3 jobs - 1F, 1A, 1C and SMOOTH) 535
Is job SMOOTH? e o
Assign priorities, total CPU times to run (for job class) Put 1oL
and actual CPU times to run (& job class CPU total) Eﬂ A Sh‘-l‘\'e
on User Chain 2

Assign no of SMOOTH intervals to run
(1 SMOOTH interval = 500 msecs)
Set time slice switch = O

Assign an initial CPU interval for job

4

Assign an I/0O interval to run after CPU interval

Queue for CPU
Take CPU 96
Is it 500 msecs since SMOOTH last ranm —,

AG
Run for CPU interval OR

until 500 msecs up. In latter case

save remaining CPU time for next run

Releavse CPU
Is it now 500 msecs since SMOOTH last ran? ,—a%

Bssign CPU interval for next loop

Queue for I/O channel on FIFO basis

Take I/0 chan‘}el 2

Is it 50c msecs since SMOOTH last ran?

ne
Run for I/0 interval OR

until 500 msecs up. In latter case
save remaining I/0 time for next run Y

Release I/0 channel
¥ 425
Is it now 500 msecs since 'smooth last ran?) -

S G e
f -~
SMOOTH to run (sec intervals)

Release SMOOTH from user chain 2

Ta(b)

From (A)

Put the other jobs onto User Chain 1 by priority
Set initial CPU testing interval to 500 msecs.
Clear CPU-bound job found switch
Clear ending job found switch
Unlink highest priority job from U C 1.

Put SMOOTH back in wait state on USER CHAIN 2

14

Wait 1| msecs. i.e. assumed S!JIOOTH processing time/TCB element

(b)

Has this job ended in last 1/2 sec. _)H"s
L.C) - Has a CPU-bound job been found? ———
1;———u-q-?—G—-—Is this job the last J.n TCB chain (lowest pty)? total % CPU
i $ I/0 of
rﬂ"{, Has it used 25 % of 500 msecs. job
4”-4—— Has is used 75 % of t!he test interval (INT) Reset job
‘b 4 4 £ 4 constants
v Set CHAP CPU—’ ound job foun set ended job
Is this job one that has been previously CHAPPED found.
(pty represented as from 12«p18?)
pty rep T
.) . 5
Ao Has it)5 m:.n.’CPU time left:?)H“ J’
F‘—Is MULTIPLE interval set in TIME slice switch?
i (3]
Is it triple? #—ﬂ
sef Double [Y
ntervad Is 1 min. CPU time left to go _’.ﬁf_.,.Set pty=12
. R Ll . . Set TIME SLICE sw.
3 * Set triple interval for time slice =0
. = g _‘_ — V
4 Set INT=INT-CPU time used in last 500 msecs.
”~

Release next job from user chain 1 at
BBB (or at END i'f last on chain)
Link the last job onto UC3 by priority

END

wait 1 ms (wait rime for last job)
Release SMOOTH job from UC 2
Put last jcb onto UC3 by pty
Release each job from UC3 at intervals of 1 ms by pty
Put SMOOTH back on UC2

Y

T &)

LOOP2

(page (@)
(i.e. seize I/0
channel)

- 18 -

From (o)
(c)
Has any job ended = o
Is this the Lndea job ? b3 Yo s
—6—” Is this pty'12 - 18 ? Sk 1M
Is it a lower pt§ than that ended? P :
\} Is there a CHALPED job as well®? o N
Reduce saved pty 9f chapped job by 1
Set {pty of this ;job tc;ﬂ:y—l)
Is this job of pty)’ than that to be
assigned to ended job ’M
915 Is this job in éhe same pty gromﬁ ’WQU
F—‘——Was ended job o¥ low pty (12-18)? Y
Is this pty lower té;n the ended job had? .)Ano
> Is there a CHAPPED job as well? no
Increment saved éFy of chapped job+ }
Increment ptytof this job _j‘
a0 Is there a CHAPPED job?)—&
—-——df;;—-ls this job in the l?w pty group (12-18)
Was chapped " " " " " " SR v
N f— > Is this pt{r lower? ‘} no
Increment_ﬁhis pty >
Is the CHAPPED job'on low pty group? P a‘s
Is this pty lowér than chapped?)7 ﬁﬂé
Is this pty in same group as CHAPPED? 3 4L Y
Decrement ghis pty
et
Reset total CPU time used in interval to O
Loop n times Is there any I;O left to do
D LOOP n t!mes ———-—> LOOP1 (page(@))
+ (i.e. Seize CPU)

END

19

(e) L @1qey
0/1 nnjl
o= OTL" L69"] 66° 66" | TL® ©OL*}Z2°T C°Tf°oT* ©O1° KE PE ¥ ¥ 1 ZE 1€ €€ 2€ L € |ZE 1E ¥E ¥E ¥6 G6 JO/I ndo Z1
0/I ndo
0/1 Nd B
A GLL® 848°|L8L" TP6" |LL6" 806" |1Z" €8° [EO°'T 62" BC LV £ 9 T S G € Zv S ¥ |Pb oF 9 ZF 9£1 9Z1|0/IM NdD 1
0/I ndgo
ndo
o] £9G"° €9G°|066" OBB " |B9G" BI9G |E"T E€°T| Lo* ([(o® ¥k S PP PP T ov 9% €V Z¢ 1 T 9% 9% 9 9 81 81 M“w o1
o/I
- £€8G° 19G°| 686" O66° 88G" 99G° €T €T 809" Lo OF 9% 9 9 T S § 9 9 6 L |97 9% 9 9 91 81 nd 6
0/I
0/1I
A LBG* PLG°| 986" 066" |P09° 6LS°JE"T €°T| ©1° 80" sk 9% ¢ 9 T 9 9% 9% ¥F 1 19 S ©S L¥ CPT £E1 0/1 8
ndo;
Nndo
£C 8G9 P6L"| L99" 118° 286" L96°|ST" €Z°| 2°T Le6° 2 9 61 LE T 9% 69 9 9 T T8 9 1L 19 661 971 0/1 L
ndad
o/I
oof | PLT® ©OCL| PBT" LOB |O66" 896°|2C" ZZ* | 8°T B8B6" 29 69 © 6 1 £ S L 6 ¥ 88 9 oL 8% ¥61 PET ndo 9
ndao
NdO=3
o 66L° Zog8° 918" 618°|996" 996°)zC" €T | L6 96" j€ SP S 8t T L 9 8Z oF ol gjoeL oL 6 6 9T GC DmUﬂM c
0/1=
ooT1 ool
o Q9L ¥9L°) P¥8° ZP8°|PP8° ¥PB|P9" ¥9° | ¥9° ¥9° JE€EC GT €T SZ 1 62 LZ 62 LZ L €] 1E 1€ Z€ 1€ 98 68 o -1
» 2 § : ogv o8
T vZ6* O£6| ¥¥6" BY6T| 096" €967 29 £9 a4 €7 vz 62 ¥2 62 1 VE CE PE CE ¥ € | ¥E CE LE SE 90T 66 Loog | -ood ¢
ogb 00
o €ZT1° €211 166" 166°)82T" B8Z1°§G8°T G8° © o EE EE ¥ ¥ T Z¢E CE ¥ 74 T TREEEE T ¥ P1 ¥1 L oog |u z
00T OB
T 121° 22171921 LZT°j166° 166°|900° ooy #8°T S8 T§J0 ¢ ¢ ©0Z 1 € v LZ 9€ € 8|6 S OL £V 661 2C1 -1| —ood 1
AL
s slsc] sls— els-| ¢l s s I sfs+| < +|sfse| s[s+] s Js-] slet| s |5+ s [L
INND wap /I N&2 | | wn S wn | M awm nm_v@aﬁ y mw
w a K 04 # O mm r) P) 19
O v owverys | vouwryin s i b [P\ #| 1% o |l wl o | s | Joon]; °3
o |0 | o : ; £ §[E
%o 047 | Jowvmy | sbmimy FoLd gogy gocd |a
Lt

20 -

(q) L @19®L

o/I nan
OZ1 |8YPT* 6ZEL |gST" SE€€"f166" 886y 10" (O 18°T 9°T |z €22 6I T T € ¥ LZ 9 8 T S OL ¥v S6T 921 |0/Ike] Ndd
0/I=j§ Ndd £9
00— ©009=
L= 199" €19°)169" OF9°|6€6" 9¥6°| LE° PE-|JO°'T ©o°T ¢ € tzoce I T |p ¥ €€ €€ ¢ 09 65 €€ ©°f €6 ¥8 | O/I aIng
12 e 23
O/Ilef 0QdD
oT- |€1S" 89v°| 125" 9Lb"|€86" G867 06" E€°T |V T ¥o°T (2 € 6182 T T |S ¥ 6 9€ ¥ £V LE OF EE 9TT 66 [O/Ik=| NddD 12
0/1 ndo
o/It. | ndo |
O JL6T" L6Z°|Z86" T86°]S0L" g0 9°'T 9°T| 60" 60" |oT ©oT ©T ©T T T |OT o1 oT ©oT T LL LL OT ©T1 62 62 |0/IL 0dD L
O/I | NdD bl
0/1 ndaon
Z1 J€LL" 948|518 SE6°|0Z6" 60677 8€° 9L | 98° LE" |zZ 8E ZZ BE T T [1Ss 6P 9 9 1 L S €9 9% 081 ZET| O/I } Nd te o1
O/Itey 0DdD
o/L { add
T- |LB6"° C8B6] TIE6" 6P6°|0OCZ6"° 9067 6L €8 | CE" BZ |8t o BE OF T T |9 S 8% €% 6 og 8% 9 9 81 61 |0/I} NdD
87
0/I | ndou
O/T | Ndot—
0G [PLS" Z6B°|€6° ¥6° |L6° OB | €2 LL°|8T'T SE€E" oz 8v 2 9 T T |Oo€ 6€ O OoF ¥ L S €9 GF 18T 82| O/I | ndd 1
O/Ik=f{ NdD
o/1 | ndd
O |L69° ¥69°|66° 66° JoL® oL fz°T T1°T] 60" 60° |1€ 2 1€ 26 T T |ec vE ¥ ¥ T ZE 1€ € ¥E ¥6 ¢6 |O/I ndot
9m
o/I | ndd
o/Id ndd
T {zss" 168°|v6" 16" | 16" T6°| €8° ¢€8°) 62 62°|S S o oF 1T TSP LP S 9 1 EV OF S¥ TV TET 92T| O/I | NdD
0/1 | nao s
0/I nas
o] ¥89° 989"} ¥6° 66" | 69° 69°| 2°T <Z°T| 80* 8o° | I€ ¢€ 1€ ¢€ T T |2€ ¢€ €€ ZE 9 £€E PE ¥ 72N S A ¢ 0/1 ndon
0/1 | naoke= 4
o/ ndo
T |898" 518796 G6° |o6° ©o6°| 98" ¥B°| 92 8z |S S 6£ ¥ 1 T |ZF I¥ ¥ 1V L Ly 8% 9 9 LI 8T | O/I| ndd €1
0/1 | ndot=
St s|s| s|s—| S{s| s|st| sy sp-|sst|s[s]s] s sfst s $|s+] S
- /T | A | yom | wom |l |79 | o w | wm mumw_wm wt.u,, wms
- AN ! \W\) o
| g bousmoys pownan oy | oy (V2| 0A T A s xlok il o] Joon |3 | S
u..sso:_ "oz | pa) -4 4 ag- nM.
9% sy ey | oy gacy oL 4

21

(2) L @19eL
0/I é~0dD €0rd
¢ |6z sog- |zee- L96° |sog: zzetlo T 9T feo €1 foT 0T 0T ©T T T|OoTOoToT OoT T T|LL ZLOT %1 62 2€ wite g |
B oz se
0/I =NdD €0rY
oog |1LT* oze* (181" Lo8" |o66" 896°|2o zz* [8'T 86" |9 690 8 1 I|€ S 8Z6E ¥ ¥[8 § OL 6V vel opl| wTM 3nq |
9 se
sdor ¥
of leve: Leve |Lse: v |L86” ve6°|90 w1 |9t T v T |T ¥ 6 v€ € T|szsei1zoe T 1|8 ¥ L9 1T T e ang |
Y4 se
sdor ¥
81~ o6 €L |1s6° 8L |eser eL6°|eet werlect 8z v LT wE T T|9v ey 6€ 1€ T T|9v S€ 66 OoE T 1 e g |
yz se
sdor ¥
6z- |ocs: zivlove: 617~ |186° 98601 z1°|v'T v°T]z ¥ 61se T T|Ss ¥ e6c€€ T T|9v 1€ 66 92T 1 1Te Ing
1z se |oz
0/1 ndo
of |eve* Lev:|ose wwb- [L86* g6 9ot TT-|9'T ¥ T |T € oTcz T T|9zZ SE Tz 6z € |8 § L9 ¢v LBT 1gl| O/I | ndd |,
O/I%= | ndd
0/1 k= | Nad
o1- | 906 ozg-|oze* ves- |196° o6 cer ge|oLt vt |z € cL18z 1 1]|9v 6€ 66 €€ ¥ €|2zv 6€ 66 SE 9IT €01 O/I | ndd |,
0/I ndon
s ol scf-sls]s|oTs (s slt]s|o] slsfs|sv sioH| slsH s[sHs|sH s|st] s
oM
heedum ﬁ«\ﬁw« \mumu | wm “Jmhu Fadd AL TR B mwmmmww .mw/ Mm
ﬂd&y ga (a\._‘_a\.\._“..m.sz% MY | oo «sés\a& 0% | N0z 0% | on oA 9|0 o] So oN)
9 0 0N u*m:as)x ~bovm .
% v g0 goov 9004 &

