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Abstract

It is proposed that multipole magnetic fields be superposed on
the Tokamak to produce an equilibrium such that the plasma is
separated from the wall by a magnetic separatrix. The
equilibrium is calculated for a special configuration with four
conductors in which small deviations from circular symmetry

are assumed.




The problems incurred in the Tokamak by the limiter can be investigated
by superposing on the magnetic field of the discharge current a
multipole magnetic field produced in external current carrying
conductors. The resulting equilibrium configuration produces a
separatrix which separates the interior region, where closed
magnetic surfaces form around the magnetic axis, from the exterior
region. On the outside the magnetic surfaces are closed around the
current carrying conductors and intersect the vacuum wall if the
separatrix lies wholly inside the vacuum wall. It may be assumed
that the plasma pressure outside the separatrix is very small
compared with that in the interior region because the plasma
escapes to the wall along the field lines. The separatrix can

thus be substituted for the limiter.

As an example of such an equilibrium we consider a configuration
with four conductors. Inside a wall of radius a with infinitely
good conductivity there are four conductors arranged as shown

in Fig. 1. These each carry the same current I_,and are a distance

e
b from the centre of the discharge vessel. R, 8, Z are a system
of cylindrical coordinates. We require an approximate solution

of the equation of the axisymmetric equilibrium [l,]‘
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As usual, the magnetic field is here derived from a flux function ‘?V.

In a system of polar coordinates
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the poloidal magnetic field can be represented by
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Equation (1) is treated for the special case
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and it is postulated that, on the boundary surface Y)= Yh = const,
which separates the magnetic surfaces in the plasma ( ?’P = const)
from those in the vacuum ( V’V = const), the plasma pressure p
vanishes, and hence the magnetic field makes a continuous transition

from the plasma to the vacuum region. For ’; we make the ansatz
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where c is the velocity of light and V% is a regular function in
the region between the plasma and conducting wall.
The boundary conditions should be roughly such that the currents
already flow in the four conductors at the beginning of the
experiment, and that, in addition, a vertical magnetic field is
applied. The total field is then assumed to be frozen into the

conducting shell. Since expansion in the aspect ratio yields a flux
function

o (8)

(/’A ~.—.£°C—l-9 £, (~r 6% 24f b‘*(,csirﬁ) +R, B, " sy

for such a field, the boundary condition is
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We assume an expansion of Y; or %6 with respect to & ='7§‘
and only take terms to first order innsg into account: a



An approximate solution of eqg.(l) is obtained by making the

following ansatz for ‘f: and Y; in the plasma and in the vacuum
[

region for L oo 1:
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When these expressions are written down, it is also assumed that

c 2 =y
e N - - — - - (13)

(«+y)

i.e. the multipole fields are not too strong.

Owing to the symmetry of the configuration (Fig.l) the magnetic
surfaces in the linear case can only contain the modes k = 4n

(n being a positive whole number) after expansion of the flux
function in a Fourier series, and so egs.(9) and (ll)constitute
the simplest possible ansatz for calculating the deformation of
the magnetic surfaces by the multipole field. The expressions (10)
and (12) state that the shape of the magnetic surfaces is the same
in toroidal geometry as in the linear case, but that the centres
of the surfaces are shifted. This displacement is not governed by

the multipole field. We therefore obtain here in first order in £




the result of Shafranovlj%], which is based on the assumption

of circular magnetic surfaces in the linear case. As it is

assumed in the following that for € = O the magnetic surfaces
should deviate very little from circular symmetry the influence

of the multipole field can be neglected in first order in £ .

The shape of the magnetic surfaces in the plasma region Yﬁ = const
is expressed by the ansatz:
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If only terms linear in Ji and £.J£ are used, this expression

yields
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0&:%L.E.L{c (uo = plasma surface) describes the set of magnetic
surfaces:
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The boundary conditions on the plasma surface u =Y,
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yvield the relation between the constants of the vacuum and plasma
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solutions which can be obtained after a simple calculation:
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Since \/: (eq.5) represents a function that is regqular in the entire

vacuum region, it can be approximated well in the whole region by
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where — &4 denotes the well-known Shafranov shift. If the
boundary condition (eg.7) is satisfied, one gets
¢ c(3+49%) 3

The quantities o and 3)' in eqz (l) can be expressed by the net plasma

current Ip and by / & drioCa ‘4 (P_being the pressure on the magnetic
axis) . P 2
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This yields the following result for the set of magnetic surfaces in
the plasma: T .3 2
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and for the flux function in the wvacuum:
b "

‘/;: %—gj—l;é.frjf _Z{;oé’)@'ﬁj/f b4 )rfﬁ o (21)

The position of the separatrix is given by two stagnation points
( f—‘: 49 ) in which the poloidal magnetic field vanishes.

For -—P— -~ O these points are located at q) = 0 and 3 =7,
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where the plus sign applies to % = 0 and the minus sign to %'—"- T,

It can be seen that a separatrix will end up inside conducting
walls if realistic dimensions are taken as a basis. There then
exists a sufficiently large region where the magnetic surfaces
deviate little from the circular shape, so that almost unperturbed
Tokamak conditions are to be expected there.

It should also be possible to solve the divertor problems in

the Tokamak using these proposed multipole conductors.
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