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ABSTRACT: Some theoretical ideas are investigated to better
understand the results of numerical simulations of the
1=dim. = two-stream instabllity. The observed relation
Varift = Vthe implies a principle of maximum dissipation.
On a microscopic level it is shown that the quasi-linear
solution 1s inconsistent with v

= Vv and the

drift ~ "the’
assumption of an adiabatically growing BGK-wave cannot

explain the observed similarity behaviour. It is proposed
that the anomalous resistivity be due to an instabllity of
a BGK-wave. Speculations on the multi-dimensional case are

made in connection with preliminary results of 2-d imensional

computations.

I. Introduction

The instability excited by a sufficiently strong current in

a collisionless plasma, is a fundamental phenomenon which

has been studled extensively theoretically as well as
experimentally. It is generally believed to cause anomalous
resistivity and turbulent heating in many plasma devices.
Though it is rather simple to make an analysis of the linear
stability properties, assuming shifted Maxwellian distributions
for electrons and ions for instance, only recently progress

has been made, using numerical similation techniques, in

understanding the nonlinear behaviour, especially in the




practically most important case, when an external electric

field 1is applied to drive the current. For 1-dimensional
plasmas sufficlently large systems (~ 1000 initial Debye
lengths) can be followed over sufficiently long times

(~ 1000 od;;) to give a rather accurate picture of the
longtime behaviour. The main features of the development
of a plasma submitted to a constant electric field E, are

(see Ref. 1, 2):

a) The energy supplied to the system is used predominantly

to accelerate and heat the electrons. The kinetic energy

of the ions is small; in particular the ions do not

resonate with the waves, i1.e. are not heated irreversibly.

b) The system seems to evolve in a self-similar way, va ~ T

7

the electron distribution function remains similar.

!\.2 il
cmt }<E ?/Fn:h-f; 2~ const, (é) ’*—f « In particular,

¢) Drift velocity 1§=‘(v> and electron thermal velocity Vihe?

z 1y _ -
T¢h¢ = (7 — (v) are equal, V4 = Vines With an un-
expectedly high degree of accuracy, apart from oscillation

both perform about each other.

In the present note we try to understand these features
theoretically. We start from a macroscopic point of view
giving a simple principle which "explains" the experimental
fact Va ™ Vypas We then discuss the dynamical process which

continuously regenerates the instability on a microscopic

level. Two convenient approaches which have been discussed
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previously to explain the behaviour of the two-=stream
instabllity are proved to be incorrect. In the last
section we shall briefly report on some numerical results

of 2-dimensional computations we obtained.

IT. Principle of maximum dissipation.

In a 1-dimensional system, the ion-sound instability with

Va & Vine (for T, 527: ) is easily stabilized by plateau forma-
tion. Thus, only the (Buneman-) two-stream instability with
V3 ?‘Vthe can effectively prevent the electrons from being
freely accelerated by the external field E, . The exact
equality Va = Vine * however, 1is rather surprising since,
considering the actual distribution function fe (see Fig. 1),
Ve does not seem to have a simple meaning. We therefore

first consider the problem from a macroscopic polnt of view.

The energy balance relation is the only macroscopic equation

containing only Vgr Vv and the driving field Eo’ since

the’
A
the contributions from the ions and the fluctuation field E

are small and will not be considered here. We therefore obtailn

=

2

2 e

(1) ‘U:((f)/?_ + 7/1',;&(1‘//2 = ;&E, fV;/ﬁ'ydf’.
o

We have neglected vd(O), vthe(o) since we are interested in

the long-time behaviour, where Vthe(t)’ vd(t).2> vthe(o)’

vd(O). If the system evolves in a self-similar way, the

ratio ¥y /Z;ﬁt is constant, and from Eq.(1) vg4 ¢ t, v o t.




We can now introduce a simple variational principle,
asking for the maximum thermal energy produced by a given

z

e
E,. Writing 7y = @ oy &, t and varying Yehe /2. with

respect to @ , one obtains

e 2
J‘ -—@E’) — --e— L_-é__ - J = &
(2) [ > (MQ'E,,) S [/ 2a ) da
which gives

(3) CL=21 » hence 7/;( "'7/:543
Thus the observed relation Y5 = Yihe implies that the
two-stream turbulence driven by a constant electric field,
maximizes dissipation, i.e. the plasma is heated most
efficiently. The variational principle (2) can be generalized,
so that the self-similarity has not to be assumed but appears
as a consequence, and time dependent driving fields Eo(t)
can be included. Introducing the natural time scale
T = E:E;[%Qoaf/ , Eq.(1) can be written in the form:

o

T

W W, ()= g2 = (ve)d - v/

[~

We require 1Q[t)to have the property that at any instant

T, 0 £T £ 0_(, the ratio of thermal to input energy,
=

R[(;) = Mh / gv;"“{-c! be a maximum. This can be
o

written in the form

(5) I R)dr =0
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where the variation is taken with respect to Vs with
the boundary condition f?}a [0) = J?,: [‘C‘o)

Using the expression (5), the condition (6) leads to the

equation
¥ 3

6) i .o w! = -

( < 2 { < O VEZLL/CQ eZLc
fv’firi rf ) o '
Sy Va'“dt‘)

with the solution U& =t?2_ . From Eq.(4) one obtains

again Y3 = Yihe

III. Discussion of different microscopic approaches

To understand how the plasma manages to stay at Va = Yihat
to achieve maxlimum heating, one has to investigate the
nonlinear behaviour of the two-stream instability on a
microscopic level. Considering our very limited knowledge
of strong nonlinear plasma dynamlics, 1t does not seem
possible at present to give a complete answer to this prob-
lem. Here we only intend to discuss a few points. The ions
are not really heated and hence do not play an important
role in the stabilisation process. Since the turbulent
field energy is small, it is tempting to assume that non-
linear corrections to the dispersion relation are negligible
and that the quasi-steady state of the system will be

described by the marginally stable mean distribution function

fe(v). A typical form is shown in Fig.1. However, it is
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easy to see that fe(v) cannot be a solution of the quasi-
linear equation. The quasi-linear problem has recently

3)

been investigated, and a similarity solution has been
given for the asymptotic state. Since there are no waves
with positive phase velocities (in the frame indicated
in Fig.1), all particles with v> o 1in Fig.1 can be
freely accelerated)so that for t — o2 the v >o part of
fe has vanished. The asymptotic solution will have the

form shown in Fig.2. Here the particles freely accelerated

(==
v - "’_H;E"t

o

are represented by a J\-function at v
with density Neree? while the square-shaped part at
Lt [ S, represents particles resonating with waves

(ion waves and plasma waves) with density n = l=n

trap free®

The presence of a quasl-steady state implies that the

distribution function is marginally stable. From the dis-

persion relation, with 'L;h = wlk )
2
2 Gy, z
(7) @ = __.f;:— . Co/” / "?free. lqm
%, > 2T = 0
(Vo - V3)

% (v V)
one easily obtains in this case nﬁnp Q:Z{]kjmdyi_. This

means that for W&/mﬁ-stﬁ all electrons are freely accelerated
7h1-/u?4 — 0o , Which is in eclear contradiction to the

e
numerical results. Since the similarity solution is essentially

unique, the quasi-linear description is inadequate.

Electrons trapped by the ion waves (vphC! 0) apparently

play an important role. The width of the distribution
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function for v> 0 1s Jjust given by the trapping range
Ay y 'é""'ed""z‘—‘ e?_S_ , where 93— is the average amplitude
of the ion waves. The actual distribution (Fig.1) suggests
the model distribution shown in Fig.3 (instead of Fig.2).
Again free particles are represented by a <f—function
(which is a good approximation as is obvious from phase
space plots of the electrons 2) ), while the
rest 1s assumed to be trapped by ion waves forming a
symmetric, square-shaped distribution. As in the case of

the distribution Fig.2, it is straightforward to determine

ntrap by the condition of marginality. Here the dispersion
relation
9 s, z h h
ee
(8) é _ f‘tl _ Q_)P&/— Fr - t’:mf - 0
2. —
i (Y -v3) Ll
= - o~
yields ntrap = Dproer 20d V4 = 0.5 Vor Vihe 0.65 A

which is reasonably close to the experimental values.

However linear dispersion theory using unperturbed orbits,
1s strictly speaking, not applicable because of the
importance of electron trapping. This leads to the following
inconsistency. The distribution should be marginally stable
in the sence that a small increase of the drift velocity
should make the systemslightly unstable. Growing ion waves
then further increase Yihe to maintain v, = v

d the
distribution, however, becomes more stable by lncreasing

. The model

V4 and the stabllity sets in only if the whole distribution
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is shifted past the ions at v = o. This is in clear

contrast to the results of numerical experiments. Consequent-
1y the behaviour of the instability cannot be explained by
considering the linear stability properties of the average
distribution function, and it is necessary to include non=-

linear effects explicltely.

The following mechanism of reexcitation of the instability
is conceivable. Since the trapped electrons are bound to the
ion waves with phase velocity vphﬁf 0, while the untrapped
electrons may be freely accelerated, a well may appear in
the electron distribution Fig.1 between v = v and v = 0,
which would be unstable againstexcitation of electron
oscillations. These can then decay into ion waves. Since
however this electron instability 1s rather fast, any
deviation from the stable plateau distribution will immedia-
tely be flattened out so that only little energy can be
transformed into plasma waves. Indeed when investigating the
frequency spectrum E?i(lu) (a typical example is seen in
Fig.5) only a small fraction of the intensity 1is found near
LOPQ , and a closer analysis shows that even this amount
comes from plasma waves with long wave length, and phase
velocity outside the electron distribution, and not from
waves located in the plateau region. Thus the wave decay

process plasma wave-»ion wave 1s by far to weak to account

for the wild bursts of ion waves observed 1in the numerical

experiments.




Hence it does not seem possible to explain the observed
phenomena by some process based on the weak turbulence
expansion. Going beyond weak turbulence theory, 1t has
been proposed that the instability generates essentially
a single Bernstein-Green-Kruskal ion wave, the amplitude
of which adjusts 1tself adlabatically to the slowly
changing parameters of the plasma 4). However, not only
the amplitude, but also the wavelength has to change,

A X Y

the ’
the wave pattern must change in a more turbulent way.

which is not possible adiabatically. Thus

Instead of adiabatic changes, the observed behaviour seems

to be due to the instability of a BGK-wave. When the ratio

vd/vthe is growing, a certain (quasi-stationary) BGK-wave
becomes unstable to coalescence. Two neighboring potential
wells tend to fall together, which effectively increases

the wave length to twice the original value. The in-
stability gives rise to the sudden bursts observed in the
fluctuation energy and also to the sudden increase of the
average wave length, accompanied with the bursts (see

Fig.4) This instability mechanism 1s also strongly suggested

by considering electron phase space plots. The instability

of BGK-waves 1s subject to further, separate investigations.




IV. Speculations on the multi-dimenslonal case

Finally, we consider briefly the case of a 2-dimensional

plasma. In contrast to the 1-dimensional case the ilon-

sound instability effects the major part of the electron

distribution function because of the exlstence of

oblique modes with respect to the drift directions, and

for sufficiently small driving field Eo will produce a

quasi-stationary state with vd<'vthe5) (at least for a
certain period). However, there 1s a critical value Ec_ )
E. ~ %" Vihe \7‘_&- " V;;;F being the effective collision

frequency of electrons by lon sound waves. For Eo 7 E,

the majority of electrons tends to "run away", so that again

only the Buneman instability, V4 Vv , Will prevent them

the
from being freely accelerated.

Applying the variational principle of section 2, we again !
i I

find that W@h& =‘?§% . Here the distribution of the thermal
energy over both degrees of freedom 1s not specilfied.

2)

Previous numerical simulations showed that because of

mode alignment the temperature becomes highly anisotropic,

so that the 2-dimensional system behaves very similar to the
1-dimensional. However, relevant computer experiments are

more difficult in this case than for the ion sound instabllity
treated in Ref.5, since the system must be rather large, to
prevent finite size effects to influence mode growth before a
quasl-asymptotic behaviour becomes visible (this condition is

not satisfied in the 2-dimensional run reported in Ref.2).

Preliminary results of some computer experiments, performed




by us, indicate, that oblique modes are strongly excited
and temperature remained fairly isotropie, 7; /Zz ~ ;Z ,
Also in these cases we find that the relation v,%/2 = W,
is satisfied approximately. If further computations confirm
this relation, the principle of maximum dissipation,
formulated in section 2) is not restricted to 1-dimensional

systems but seems to have a falrly general significance.
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Figure Caption:
Figure 1 Typical experimental form of ch'[v') V- = £ & ’f
)} ® m, ©
Figure 2 Solution of the quasi-linear equation
Figure 3 Model distribution function including the
effect of electron trapping
. .
Figure 4 Var Vehe? (Ef,%éﬁf and )\ D> (in arbitrary

units) as functions of time, for a 1-dimensional

run with system size L = 1000 initial Debye-

e — —
length and £ E_ /“%21£MD = 0.02

e

il 1
Figure 5 Typical form of the frequency spectrum E:(Qu) .
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