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Abstract.

Plasma transport in toroidal magnetic systems 1is reviewed.
The motion of single particles in nonuniform magnetic fields
is treated and a qualitative picture of plasma transport is
given. This discussion 1is followed by the kinetiec theory of
transport in the weakly collisional (banana), intermediate
and collision dominated regime. The latter regime is also

treated, using fluid equations.



Preface

This report is a corrected and slightly expanded version
of the lecture notes distributed concurrently with the
lectures at the MPI filir Plasmaphysik. Most of the material
has first been presented in an advanced graduate course

at Cornell University.

The purpose of these lectures has been to give not only a
survey of plasma transport theory, in particular the recent
rapid developments in neoclassical transport theory, but
mainly to provide the background and techniques necessary
for a study of the current literature and for research in
this area. The problems at the end of each chapter serve
the same purpose. Following the intent of these lectures,
it was not attempted to give a complete bibliography and
the detailed discussion has been restricted in general to
the simplest nontrivial case, e.g. a model axisymmetric
toroidal magnetic field in the treatment of the kinetic

theory of transport.

I should like to thank my colleagues at the MPI filir Plasma-

physik and Cornell University for helpful comments.



Transport Processes in a Plasma

I. Introduction.

Classical, Neoclassical and Anomalous Transport

To achieve controlled thermonuclear fusion, 1

plasma
physics must solve essentially two problems: heating
the plasma to temperatures of about 10 keV and confine-
ment of the plasma for times which satisfy the Lawson

criterion ntT g Z 1O14

. (n plasma density, <T_ energy
confinement time). For both of these goals as well as

for the fluid dynamical description of many plasma
phenomena such as shock waves e.g., it is necessary to
know the transport processes in the plasma. The transport
processes we shall discuss in the following are diffusion
and heat conduction across the magnetic field, resisti-
vity, viscosity and energy transfer. These processes

occur as a result of collisions between particles or

collective effects (scattering of particles by waves).

In this and the following lectures we want to discuss

plasma confinement. The energy confinement time Tg 1s
determined by the relation
<& <y Ty T @ (1)

where < is the particle confinement time,



'CF\ determines the energy loss rate due to heat
conduction and <g describes the loss due to
radiation and charge exchange. For cylindrical geo-

metry 'tD may be estimated as

i e (2%?-31 \/D (2)

where a 1is the plasma radius, D the coefficient for
diffusion across the magnetic field and a density
profile n(r)cho(E.M-né.)was assumed. A similar relation
holds for wy 1if D 1s replaced by the thermal
conductivity. To these radial losses one must add end

losses.

Heat conduction depends on the displacement of particles
between collisions., If it is assumed that a particle
may be displaced, a distance AXwith equal probability
to the left or the right, in the time T between
collisions, then the particle flux in the direction

of a density gradient is
© A @ w1 A%

Ko~ BX :
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The net flux is dP=“D T ; where

. )2
D= (Qb& > (4)

is the diffusion coefficient. Similarly, one obtains




h £l - ax 2V Ax ‘
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where
ye = v @&V (6)

is the coefficient of thermal conductivity.

In the absence of a magnetic field A%<~ T which give§
a diffusion coefficient D;‘\/z‘ T  where Ve ‘QQ{VV\) [z
is the electron thermal velocity. In a strong magnetic
field, the particle is displaced by the gyro radius,

as a result of a collision. Diffusion and heat con-
duction across a strong magnetic field are thus re-
duced by the factor ‘/@zet)x where S?"e= %B—;‘ is

the gyro frequency. The corresponding confinement times
are very large, typically several seconds. The observed
diffusion loss across the magnetic field, generally

is several orders of magnitude larger and shows a
different dependence on the magnetic field as predicted

by the classical transport theory.z’ 3, 4

Bohm et.al. > related this anomalous loss to instabili-
ties in the plasma and gave the following phenomeno-

logical formula
le X

e b

B 6 D (7)
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The corresponding confinement time is typically a

few micro seconds. It would pose a serious limitation
for controlled fusion, had it not been shown very
recently that (7) does not have the generally assumed
universal character and that much longer confinement
times can be achieved. Nevertheless, a large amount

of work on plasma turbulence was stimulated by the
ideas of Bohm et.al. In order to derive anomalous
transport coefficients one must have a nonlinear theory
for the wave spectrum which developes as a result of
instabilities and one must then be able to relate this
spectrum with plasma transport. This is generally a
very difficult task 6, T, An elementary "derivation"

of (7) may be made as follows: The guiding centers of

~ ~w
a particle X - x =YY , Y Yy -
satisfy the equations
4% . _< = &y . 2§
T ér.bpy ; pe 3 x (8)

where _\:-.: 1s the fluctuating electric field due to in-

stabilities. The corresponding diffusion coefficient is
L
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where T?Cb&& is the correlation time of the fluctuations,

R
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as seen by the moving particle. For strong turbu-

lence =< may be identified with the time it takes

Coaal

the particle to diffuse over one wavelength, since after
this time it is out of phase with the accelerating
D ~ StEY‘MS

B C
electric field. Thus, c—ét—-t—%‘\ ~ l(K and B

Equ.(7) is obtained if we take a typical value for the

. c¢\"\ﬁ'\3_ V\\ \
root mean sqguare potential 'TQ B /\G

A kinetic theory of diffusion, following these lines

has been given by Dupree 8.

It may be remarked that the experiment of Bohm et.al
found aninterpretation within classical transport
theory, i.e. making use only of binary collisions bet-
ween particles. However, anomalous transport plays an
important role in plasma physics. Anomalous electrical
conductivity and viscosity are present in collisionless
shocks. Efficient heating of high temperature plasma
may be achieved 1f instabilities are induced in the

9

plasma, which decrease the electrical conductivity”.

These topics will be discussed in subsequent lectures.

Considerable progress has been made in controlling
plasma instabilities. The unavoidable loss of plasma
in open ended systems such as the linear pinch and
even the mirror machine lead to the investigation of
closed toroidal systems, in which losses can only

result due to transport across the confining magnetic



field. It was found that these losses considerably
exceeded the predictions of classical transport
theory, even in situations where instabilities did

not play any role. Classical transport theory pertains
to straight systems with an uniform magnetic field.
The assumption that a small toroidicity and inhomo-
geneity of the magnetic field does not influence very
much the plasma transport processes proved to be in-

correct. Neoclassical transport theory which is based

upon binary collisions but takes into account the
actual magnetic field configuration gives results which
differ substantially from classical theory, both in
magnitude and magnetic field dependence. The remaining
discrepancy with experiments may be due to residual
plasma turbulence.

As early as 1951 Tamm 10 and Budker 1

have given a
qualitative discussion of diffusion and heat conduction
in a toroidal system. They found that, because of the
toroidal drift, particles suffer a displacement in a
collision which exceeds the Larmor radius.

Pfirsch and Schliiter 12

showed that taking into account

the toroidicity, enhances the classical diffusion co-
8T 2

efficient by the factor | + I i , where  1is

the rotational transform of the magnetic field.

Shafranov 13 found a similar factor for the thermal




conductivity. These investigations were done in the
hydrodynamic approximation, which is correct for a
collision dominated plasma. In the opposite limit of
small collision frequency the same problem was

14 « They found

studied first by Galeev and Sagdeev
that particles trapped in the magnetic field, so called
bananas play the dominant role in transport of a
weakly collisional plasma. Neoclassical theory of

transport has now become a very active field of

investigation.

Anomalous transport in toroidal systems, due to turbu-
lence, has not yet been studied very extensively, but

15

appears to be an important field of investigation .

Problems:
1. Derive (2)

2. Show that, more generally, the coefficient for

diffusion across the magnetic field is given
Do

D - Sere e
by o \+( <) “
Bohm diffusion is obtained as the maximum of this

expression. Does this indicate an actual upper

limit to diffusion?

5. Give estimates of the classical, neoclassical and
anomalous confinement time for a typical Tokomak

experiment.



II. Particle Motion in the Drift Approximation

In order to estimate diffusion or heat conductivity in
the presence of nonuniform electric and magnetic fields,
we have to find the particle orbits under the influence
of these fields. Since these orbits are also the charac-
teristics of the kinetic equation of transport, they

will also be very useful in a more rigorous investigation
of transport processes. The exact equations of motion of
a nonrelativistic particle may be derived from the

Lagrangian
L= W\vz/?_ i R, A —e ® (10)
or the Hamiltonian

2.
Moo (8- B) +e ® (11)
In these equations -§ is the electrostatic potential and A
the vector potential, such that the electric and magnetic

fields are given by

e )

im

(12)

R = IxA

mm—

(13)



A rigorous solution of the equations of motion for non-
uniform and time dependent fields is usually far too
difficult. However, symmetry properties of the system
lead to rigorous conservation laws which are very useful.
If e.g. the potentials @'and ;_l_. are independent of time

then the total energy

E=wmV?¥, ve (14)
is a constant of motion.

If the Hamiltonian is independent of a space variagle S
then the corresponding canonical momentum P g = T%i

is a constant of motion. A number of toroidal systems, such
as the Tokomak or the Levitron are axisymmetric, i.e.

symmetric with respect to the azimuthal angle 3 . The

corresponding canonical momentum
'Pg)ag['t'(\v§+ g“hg] E ;'s""‘li (15)

in this case. In (15), ? is the distance from the axis
of symmetry.(major axis of the torus).

We may also recall that particles in quasiperiodic motion

16, 17

possess various adiabatic invariants . The magnetic

moment of the Larmor orbit
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, where N{L is the velocity component corresponding to
rotation about to the magnetic field , 1s an important
adiabatic invariant. pm remains constant if the fields
vary slowly over distances of the order of the Larmor
radius and times of the order of a gyroperiod. In such
fields the motion of the particle resembles the superposit-
ion of a rapid rotation about the guiding center, a motion
of the latter along the magnetic field line and a relativ-

ely slow drift transverse to the magnetic field.

X = % +Z—?—_“;\__'5\ Sl — T2 n =] B
Vo= M Ee tvy LT v E2 sin< ] (7
Al . =- 28

el .

In these equations ¥ , is the position of the guiding
center, o< 1is the phase angle, To 1s a unit vector

along the magnetic field line, < is the normal
=T
(xo- )T "2V (R (19)

where Gl is the radius of curvature and

tl‘ Lo KS\ (20)

-—

is the binormal to the line of force.




Equations (16=18) hold rigorously only for a uniform
magnetic field. The presence of two timescales for the
motion in weakly inhomogeneous and time dependent fields
allows one to derive approximate equations of motion for

the drift variables‘t-{l__‘_ \’\\‘qL17’ 18.

The bar indicates

an average over the rapid motion of frequencysl.. The

drift variables differ from the variables X, Yy Vy °C

by terms of order \ISL , cf. (16=18). The differences can
be expressed in terms of the drift variables , e.g.

WV a :.'-L-\- S\IJ.(T‘IQ_\ .,\-Z\,:Z) where §W\ = D("Q_)_
The equations of motion for the drift variables do not
depend upon the phase angle and are of first order, instead
of the original second order equations. The derivation of
these drift equations is rather involved. For our purpose
it is sufficient to replace the actual particle by a
fictitious particle of mass m , charge e and magnetic
moment p» . The force on this particle is \_==:Y_§ﬂk¥/c)*3_1"ﬁq‘3
which allows us to write down the equations of motion

for the guiding center

dc

g VyTe ¥ VD

(21)

The drift velocity is

* (e v y™ 3 22
Yo T R \_ws IS (EO'V)E" X QB:_) (22)
el

where & = voc and vy v, are the average velocity components

in the direction parallel and perpendicular to 8 at the
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location of the guiding center. The various terms in (22)
represent the drift due to the electric fleld, the
curvature of B (centrifugal force) and the gradient of

B. The equations of motion are completed by the energy

equation
dw v g c —f""‘"l} o8B
= T <L 2
2
where Ve - \,“'2 A \’_\_
and the conservation law
“A‘J;F (24)
P= = QEMA’%r-
- .
For transport processes in a strong magnetic field, such
A
that the characteristic scale length L >> o and the

characteristic time | >> VSZ_ we may consider not the
particle transport itself but the transport of gulding
centers. Comparing with the case of a uniform magnetic
field, in which there is no guiding center drift, we see
that in this way we do not obtain the fluxes which are
connected with the rapid gyration of the particles. These
fluxes, however, are independent of the structure of the
magnetic field, and are not of interest to us at present.
They could be obtained by using the relations between the

particle coordinates and the drift variables 13

. However,
since the drift kinetic equations are correct only to

\ .
first order in ISL. , one cannot take into account
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corrections of the transport processes due to viscosity

etc, which are of order ‘[gfﬁ

Equation (22) can be put into a somewhat more useful form

<
Vo = 2 (E*B)+ ZERN) (R %98) (as)

g
e RY = —
For the magnetic field outside conductors CarA R = 2} é_'-‘ O

and the last term in (25) does not contribute. If further-
more, the electric and magnetic fields are time independent
then (23) becomes the conservation law for the total

energy

= ?
&= my /22 B= ""“"\11/)_4- PR '\‘E§‘=C~>—wﬂ~. (26)

In terms of the constants of motion & > and the

potential ¢5 the longitudinal velocity becomes

— \
vt (& (E-eF=pr) 2 D

Thus, with respect to the longitudinal motion Q'QE'T)Jﬁi
is the effective potential energy. We immediately see the
possibility of magnetic trapping, in addition to electric

trapping, for particles of small velocity W The trans-

“ L]
verse drift velocity can also be derived from a "potential':
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v
Yo * VyTo %N Q VSL) (28)
E:JJ ’ .
The spatial gradient has to be taken at constant EliJ.
Equ.(28) includes the drift due to the potential@ . The
drift due to a nonpotential electric field, e.g. the applied

electric field in a Tokomak, and a nonpotential magnetic j

field [; last term in (25{] must be added to (28).

Let us now consider the drift motion in a toroidal, axi-
symmetric magnetic field, e.g. in systems like the Tokomak
or the Levitron. Toroidal coordinates are introduced as
shown in Fig.1. R is the majJor radius, a the minor radius,
A=R/a the aspect ratio and r/R the toroidicity. The toroidal
magnetic field may be represented by that of a straight

wire at the axis of symmetry,

Bg - BoR® (29)
3
where
¢=RL\+ Vig s ] (30)

is the distance from the axis of symmetry. For the magnetic
field (29) we obtain from (25) the toroidal drift due to

the curvature and gradient of B,

(31)
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The drift velocity 1s directed along the axls of symmetry,
in our case upwards for electrons and downwards for ions.
The resulting charge separation would lead to an

electric field in the z direction and thus an ExB drift
which is directed radially outward. Plasma equilibrium
can be achieved by adding a poloidal magnetic field BS 3
usually @ = Q’S/g,,> « | B provides the magnetic field

with a rotational transform

= 2R B? - 2R o) (32)

L(r) is the angle of rotation in one transit about the
symmetry axis. The magnetic field lines form a system of
nested surfaces, which in our case have circular cross
section v=cowst. Particles deviate from these magnetic
surfaces as a result of the toroidal drift.

Taking components of (21-22) we obtain

o\ {aA
T = g IRl WA (33)

P%%-VSQ\:S)WS + @V, rVg -

where Vg 1s given by (31) and

e~ = od (35)
B R ST

assuming a radial electric field only and neglecting also

the drift due to BS B
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From the conservation law (26) we obtain the longitudinal

velocity

9 <
Vy= £ V| 22\ +w

(36)
where
9= (C ZFI:_%BL) " (37)
and
L. YAVECN §20) (38)

PAVER NS

We want to solve these equations approximately by treating

the toroidal drift as a small quantity. Thus, we must

require
SRV R RLrV I (39)
2T
Usually q = X = 1-10, but w_ <& ¥ | Neglecting the
toroidal drift in (34) we obtain an approximate equation
for §
A T
razié_ - @0 2R = 1vywns  +vg Q) (40)

where ¥ = Fa defines the magnetic surface.
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For the case Y g= the trapping criterion is &.24 \

The motion of trapped particles 1s periodic with period

<
T = %% ™" d S

- e N2 \(UQ) (41)
Q\\ ® > 61&2—\1w8 75-’-\\—-—_

~ v
where wa is the maximum angle, given by \=— cem SVV\ =L R

The radial displacement may be found from

ar
ar . T8 v Vg sim§
S 8 - as ? (42)

4
+ ‘i@\h-,%lé@-—\-\-mg Ve

For the case \JE=O and trapped particles aczc\' NWSNVy
gives

, (&)

The drift surface deviates from the magnetic surface by

approximately

ae = Ids oo L Cry (g2 T

V)
F E it1 ticl = 17\.“— QQ(‘F\ - Y‘L-
or trans ng particles, =~
’ 'Y a.omaqkf
r RV

@—g == #Ji__EL___ siw S (45)

M
Ay v T
The dispacement oF = ‘_“'L is reduced by a factor &IR)

from that of trapped particles. It is not
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difficult to see the form of the orbit, if it is recalled
that particles follow essentlally the magnetic field lines,
except for the toroidal drift which is always directed
along the axis of symmetry. The projection of the orbit of
trapped particles on the ( i S) plane has the form of

a banana, €0 The displacement aAr is largest

for barely trapped particles, since they have the longest

period of motion, during which the toroidal drift can act.

The effect of a radial electric field is to provide an

additional rotational transform, as may be seen from (34).
If VE’/@ 2, ~p, , then the number of trapped particles
will be negligible, since the corresponding velocities vy
are now in the tail of the distribution function, instead

of the bulk v,= 0. From (45), e.g., we also see that

the electric drift may reduce the excursion of the guiding
centers. For small rotational transform, the ion bananas

may intersect the plasma boundary, creating a loss cone,
preferentially for barely trapped ions. Because of the large
mass ratlo , the loss of electrons in this way is usually
not significant. Thus a potential well developes, which by

the effects Just discussed reduces the ion loss 21. The

selfconsistent potential ?ﬁ (v 8 ) which arises from

the guiding center drifts has been studied numerically

by Smith and Bishop 22. They have shown that the charge
separation due to the drifts is only partially cancelled

by electron streaming along the magnetic field lines, even
in a collisionless plasma. Thus, the selfconsistent potential

a3

is not azimuthally symmetric
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The driving toroidal electric field in systems like the

Tokomak produces an inward drift of trapped particles of

velocity
-C &
Ve = ,__J.
1> 2 (46)
£
. . ) -CEE%E ,
which is much larger than the drift C in a
1

straight geometry 24. This toroidal pinch effect may be
conveniently analyzed by making use of the conservation
of angular momentum Ps , equ. (15). Applying Stokes

theorem to the cross section 2z =249 = Qg we find

Sh ds=WAGT " §ewdAGlS = - By

©

= %253 &, dg = 2x RW. (47)

' QP(?) is the flux per unit length of magnetic axis and is a
constant on a given magnetic surface¥ = Y (¥). Considering
now the displacement ¥ of the banana turning points

(V§~° ) in time &+ ,we have from (15)
lgadty = gAagl Crmt)

or with (47), for z = 0 (=R, D—“*S)

- &
thus %i;;-‘ iIBS-

The electric field ES which arises from the potential Cb(\r.SJ
does not lead to a net drift of bananas. The € 8 drift is

exactly compensated by the imbalance in magnetic drift.
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The conservation laws for E'JJ\ 03» determine the guiding
center orbits in an axisymmetric system. For nonsymmetric

systems the conservation of 943 must be replaced by the

adlabatic invariance of

= @V“‘\’\\ dg (48)

where the integration is between the two mirror points on

a given magnetic field line 25. The longitudinal adiabatic

invariant 1is conserved as the particle drifts slowly to a
neighbouring field line 26. Bananas must lie on surfaces
of constant 3 . The average drift velocity of a banana

on this surface may be expressed in terms of the gradient of Q.

Introducing spatial coordinates o ¥, S such that R= R =V

and < is the length along the field line (A\'B) it has
26

been shown that the banana drift is given by
L. e PART P
<t D ¥ 5B ' (49)
: ?

e S 2
B> = eV ©

(50)

where the average is over the period of trapped particle

motion

. 23
T- g% (51)



- 21 =

In axisymmetric systems bananas drift along the magnetic
surfaces. In nonsymmetric systems the banana itself may

be trapped, thus forming a superbanana. The formation of

bananas and the trapping of bananas may be the result of
various inhomogeneities. In systems like the stellarator
or the bumpy torus one must distinguish two types of
magnetic field inhomogeneities; one due to the helical
winding and another due to toroidicity. The magnetic field

may be represented by

\3‘_ EQ §3 *Q §W (52)

= >R

where the magnetic potential §5»~,has the form

B o=yl o T na v ) siun(§ = S) (53)

for the n-winding stellarator and

B -4 By T 5 S o0

for the bumpy torus. In these equ. I:h is the modified
Bessel function of nth order, and 'acbharaoterize the
field strength and spatial periodicity of the stabilizing
magnetic field respectively. In addition to the usual
group of particles which are trapped in the toroidal field

one has now so-called localized particles which are trapped
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within a spatial period of the stabilizing magnetic field.
Trapping of particles and the formation of superbananas
can also take place in electric field inhomogeneities.

One can have E trapped (> bananas etc. 25. The appearence

of superbananas leads to intensified particle displacement.

Problems
1. Derive equ.(25).

2. Derive equ.(28) and consider the effect of an additional

nonpotential electric field.

3. Find the particle motion in a corrugated magnetic field
B=R (\~ewnX S) , where § 1s the distance along

the line of force.

4. Show that the axial fluxAV = const on a magnetic

surface.




-

For the model toroidal field 12

-8, L0, @ V] | u- =UR)ews

a) show that: div B = 0 requires 0 = o(r)

b) determine curl B (plasma current)

c) find "Wr)and the vector potential A

d) determine the additional drift velocities due to the

poloidal field, assuming an uniform current density.

a) Show that for the representation B2VYxA = NV« xWﬁ

of the magnetic field:

div =0 . A-xNB $=§B s~ §AALL

= §xap = (o P

b) The poloidal field in axisymmetric systems may be
represented by B yx = q‘\\"*qi =Nx .
Find the expressions for the magnetic surfaces, the
surface and the volume elements in the orthogonal

coordinate system formed by "PI)L; §.

¢) Show that for our model toroidal field (problem 6)
dW=-Rs0Melvr lx=B8gwndg
Show that equ.(49-51) can be written in canonical form

with the Hamiltonian H= <& Je T= €(4 B 2,0)

The magnetic field of a bumpy torus does not possess
rotational transform. Give a gqualitative discussion of

single particle confinement on surfaces of constant flux.
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III. Neoclassical Transport in Axisymmetric Toroldal Systems
Jela Elementary kinetic theory

The orbits derived above may be used to estimate the transport
coefficients in a toroidal magnetic field. The displacement of
particles between collisions 1s essentially given by the maximum

displacement of the guiding centers from the magnetic surfaces.

The diffusion coefficient due to trapped electrons thus becomes
> ~ - .
Qbf\ pn Ny K -3
SVhere r is given by (44), v o~
D vy o g y ( ) (! Ve l Q)

is the fraction of trapped electrons and the effective collision

N
time is T~ T (k 2 )2' r?ﬁgmming that Coulomb collisions

consist of a large number of small deflections., Te is the

2
90 © deflection time.

The diffusion coefficient due to bananas becomes

Dpan = :i Q?‘f‘)z (lfv)glz = %‘E e'la (55)

where ﬁ: is the electron Larmor radius in the field !SS‘

lh
For the transiting particles %\‘-’-\ ~ \| N Ve ©wwmal T T,

thus

D (“‘) o o (56)

+mm..\— Te

The banana diffusion coefficient exceeds (56) by the large factor

QN‘) =2
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However, for banana diffusion to take place, we must require
that the particles suffer only few collisions during the

period T of trapped particle motion, thus

Tem S, ()~ (B2 <

\

(57)
where L= 2% W (‘C\;‘,&) (58)
is the connection length.
\4

and7l=veﬁle,Galeev and Sagdeev have shown that the diffusion

- 2,
N L & KI ) :
coefficient in the banana regime /3 < \IR agrees with our

simple estimate (55), except for a factor 1.6.

In the classical regime §?‘> | a1l1 particles will be dominated

by collisions. Fluid equations are valid in this regime. Pfirsch

and Schliiter found a diffusion coefficient which is essentially
[ s =2

given by (56). In the rangel E:j§: 2 (EJ bananas are strongly

affected by collisions, while the bulk of the plasma may be

considered collisionless. The diffusion coefficient in this

plateau regime is independent of the collision frequency and may

be estimated, iftei~‘(§() is replaced by the transit time L/VQ

The situation is very similar to damping of waves in a plasma.
The plateau regime, e.g. corresponds to the regime of Landau
damping in a collisionsless plasma.

Heat conduction and the toroidal pinch effect can be discussed
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in a similar manner, but it is clear that a rigorous analysis
requires the use of a kinetic description in terms of distribution
functions. From kinetic theory we will also see that diffusion

in axisymmetric systems is ambipolar, whereas at first glance it
would appear that ion diffusion is (M/m)vz times greater

than electron diffusion.

5.2. The drift kinetic eguation

As discussed in Section || , in the case of a strong magnetic field
we may consider the transport of gulding centers, rather

than the transport of particles. Guiding centers may be

characterized by the position r and the velocities v. and v

1 y° For

&
the velocity coordinates one may equally use the energy E=V“‘72weEE

I
magnetic moment o - Wivi%  and the sign of v. = [l- (E—pR-< Eﬁ)} £
76 v e - ‘

We may introduce a guiding center distribution, such that
dN = -S—(_\: EI P)d»._«_ v  is the number of guiding centers in drdv,
where

av = .ZW\/L‘J\JLQ\V“ = v ¥ d & q |3/QM7-\\;“D (59)

In (59) a summation over the sign of v must be included.

\

If the drift equations (21-24) are valid, then f satisfies the

drift kinetic equation

P - D '
% + vy T v gl —5‘? + ;‘—% ’%—{; = &g\; (60)

where EE is the collision term. In the case of potential electric

and magnetic fields we may substitute (28) for Ygand AL _ o
ak ‘
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We may allow for an additional toroidal electric field E.

The drift approximation requires E &« (v/c)B. Equ.(60) becomes

-

D Loy vy L 2%
6%*\’“@ 58 TN ‘r-( /Q)v:vs

e o% 95 » LF
wwirsg (ML) 5¢ *eE v, 5t St -

(61)

From the solution of (61) we may find the flux of guiding centers

through a magnetic surface r = const.

F=aRe (35 a5 ws)non gyp v v 8)>. (62)
2% ='valiir'r—
Using (28) for the radial drift velocity, we have

-~ (48 v o L9
An integration by parts gives L & * s /C \*'fﬁ”"g)j

2

%
Ywoy °f (63)
S C Rn§ ) (v S~ 5% .
E_% 61 . v .
For BS we may substitute from (61). Noting that Dy is even in v“

8§

=13
and f approximately even in Vu , we obtain approximately

(c.f. problemIII.3) and (6'7)]

re (3B Qe @ms)gdv(/eg) —eEx 9%643

The first term in the square bracket gilves a contribution to the

flux which is proportional to the momentum transfer in collisions.
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Since collisions between particles of a given species
do not change their total momentum, self diffusion does
not exist in our order of approximation and the fluxes
19, 21, 293

of electron and ion charge are equal

(ambipolar diffusion). Performing the velocity inte-

gration for the second term in (64) gives — %EC
&
An additional contribution to the toroidal pinch effect
5 &3
arises however from the -y Cterm

5.5. Solution of the drift kinetic equation.

The problem of neoclassical diffusion has now been

reduced to the solution of (61) and the computation of
the flux from (63). The solution of (61) may be written
as an expansion in terms of the small parameters of the
problem. The drift approximation already requires that

the Larmor radius is small compared to the scale length

of the magnetic field, téfac\ . We also assume that

the toroidicity « -~ "|g«| and that q=1%= OV, i.e.
By yr - ;
= a~_ =0(€). The displacement of a particle
O} T B ) p p
from the magnetic surface 1s also assumed small
v
Pa=y N (\J
2C. b qu_"_l <<\ . The effect of collisions is

characterized by the parameter ?\(\_ ,cf. Sec. 3.1.
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The zero order distribution may be taken to be locally

Maxwellian.

N ()
=~ )2

Sog ) = e E(TS (65)

wherexJH“-‘T/vv\ . The corresponding density is

v = N(v*) wo\p(s‘ Q‘b/‘tS (66)

The drift terms in equ.(61) are smaller then the free streaming
terms by the factorﬂa? . Equ.(61) to zero order in the

Larmor radius prescribes T = T(r), N = N(r) in (65) but allows

for arbitrary @ = t#(r,S ). Quasineutrality to zero order
A
requires o = Po (¥) . Equ.(o1) to first order in ~ becomes

8, i -~ 9% . &
®““\?§i§ _'\’“—\\F%g (W/Sl)?%- rekvy5e C ;‘;t—‘ (67)

where égl. is the linearized collision term.

Because diffusion is ambipolar it is sufficient to
calculate the electron flux. However, equs. (67) for

electrons and ions are generally coupled by the collision

term

$£5\e
ésk\ = Cee oo, Fie) + Coi (o 500 ) (68)

+Cei(§'oe, &'1'\) -y

. fli is essentially determined by the driving term T« .
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Requiring that j55-=CO to lowest order in /Vﬂ
decouples the electron and ion equations. It

DS
must be recalled that F¢ is to be taken at

constant EWlJ , thus from (65-66)

"%—Ejlglp; [-‘\" Dh -~ _'E_%@_l %Q‘

PERNEN
Requiring ?TFf”"t) , means that a frame is chosen
in which the mean ion velocity in the & direction

vanishes. For the electrons we obtain then

Hoe \ (\ 1%

e da \ _\

9\ £ (T \n‘av- Toe ) (69)
For simplicity, it was assumed that Te’ Ti are indepen-

dent of r.

The parameter /L. determines how the collision term
compares to the terms on the left hand side of (67).
In the banana regime of weak collisions the left hand
side is dominant. Thus (67) becomes to two orders in

the collision frequency

9 g
®V\\ 555—‘- - \t-—— C\’h/ J 85.0 = Rd (70)
and

\ le]
@D\Jﬁ9§\ ye & vugﬁﬁi = ESS

wye

PN ‘D& St

(71)




The solution of (70) is

Y-
§V = ;3,\9_ Bﬁr ~ (& p.v)

(72)

where ;§€%4=() . g must satisfy the solubility

condition for (71) which is obtained by integrating

this equation over S . In the case of trapped particles
the integration is between the turning points. g may

be determined from the resulting equations if the
appropriate boundary conditions are known. These can

be obtained by considering (67) in the transition

region between trapped and transiting particles. A

very similar problem appears if one considers the effect
of collisions on the damping of a finite amplitude wave.

The resulting flux in the banana regime is 29

o 98 9N e
ra - \G: (Y‘lg\ \_ S/ce a v - %S 1

where (73)
9&2'-‘- VV\Cz(TQ"'T'\ )/Qa" 3&2)

and the second term describes the toroldal pinch effect.

3
In the plateau regime Q[Q\ fz< %’4\ slow transiting
particles \&? < \{¥L play the dominant role in trans-

port. We may replace the collision term in (67) b«« —”O%\
where ¥ is the effective collision frequency. It is

also convenient to change from the P coordinate to
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the coordinate v . Considering only the effect of

\
toroidicity we obtain

LI B'ED
SN “Y-'ﬁ:g' - S v -—\-)-E-l (74)

2
where . . YAf2otNu

Equ.(74) has the solution $, - .S_;T % ﬁ_r'
where
9%« x1v &
T
v = (75)

i tievwo |,

For small y we have the usual resonant denominator, thus

£, _va'%% Lx S sins - P (G w8 | 576)

£, may be substituted into (62) to compute the flux.
Only the term o< sin§ contributes, since Voo™ Vo S

The result is
&
. \( T re Ve A 7§V1
= -Q!z\ L\~ It)) —— \/R\ Sw_ (1)

The contribution from the toroidal electric field (pinch
effect) must be added to (77) 29.
In the classical regime of large collision frequency LLAJ}; \

(67) may be expanded as foliows 28, 31
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§x (78)
Q
@V“-L—?—il = &“-S-:
o e (79)
and
5y v OF) ,
SV 5C “\’*“\F%E(V“/ )ag,, . 885 o

The solution of (78) is

S = NP8 ¢ (81)
Wo (W

where §o 1is a Maxwellian distribution (65).
Equ. (79) for-?i is essentially the problem solved by

Spitzer and Harﬁlkor the electrical conductivity.
Integrating (80) over velocity space eliminates the
collision term. One obtains a differential equation for
N Cr ) which depends only on the longitudinal
electrical conductivity and the magnetic fields. We shall
derive these equations for general magnetic field

structures, starting from the fluid equations.

Similar calculations may be performed for the thermal

conductivity 14, 27. Since the excursions from the

magnetic surface are much larger for ions than for
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electrons, the modification of the ion_thermal conductiv-

ity 1s most significant.

Extending the calculations to nonaxisymmetric systems such

as the stellarator or the bumpy torus introduces some

new features

23, 27, 31, 32. Diffusion is now ambipolar

only for a certailn radial electric field. There is self

diffusion, i.e. the diffusion coefficient depends on the

total collision frequency, Vg = Ve e~ Vai ¥ Y=y . The

dependence on magnetic field strength and collision

frequency is also different from the axisymmetric case,

due to the occurence of transiting bananas and trapped

bananas (superbananas). The displacement of the bananas

from the surfaces J = const , 1s independent of field

strength and may be very large, c.f. Sec.ll_ . The

maximum enhancement of diffusion occurs then the

collision frequency y equals the frequency of banana

drift motion K)D . In the axisymmetric case, we had

maximum enhancement for Vv ~ Ly the bounce freguency

of guiding center motion.

Problems

Derive equ.(61). Show that all terms which arise from
the toroidal electric field E « Y/c \&, are
negligible, except for the term retained in (61).

The time dependence of B and CP was assumed to be of

higher order, in general one must addf_t %—"E—-* 2 %&1%
on the l.h.s. of (b1)
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Prove (63)

The expression (64) for follows from the linearized

equation (67).

a) Show that one obtains from (61) the exact (within
the drift approximation) relation (equation of

motion)19

- és_t.o \'_4\-3\:\& %‘—}— e\?.ﬂ\%%]>f ‘%1 (V?'"\n%>§

S
e \_;:%‘;‘V-<Mlv\\ Vo -S>\) ]

N
where & > indicates an integration over v and
an average over & and SL=Nefh ; W~ \“""H\“’"S

b) Modify the distribution function S.s €aqu.(76),such

.

as to include a radial electric field E,~ ==

and show that the last term in the above expression

for T is of order19
CE, gl v e W
QLR O ek

a) From the drift kinetic equation (61) prove the
. ) o An =S
continuity equation for guiding centers: <5, ¥ WE s O
e —
where I = de_ \_v“"c_e *!oj% is the guiding center
flux.
b) Show that the flux U , equ.(62), through a magnetic

_ . . DLAD L-(-‘D -
surface r = const, satisfies Syt & V"T' ®)

where Yy » S%(\*“{RMS) wie s) .

c) The above result may be generalized for arbitrary

poloidal fields. Using the coordinates and results

of problem II.7b, ¢ show that 28

t <°%) v
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where < WY -Q%)“S% (W )

and | is the inward flux per unit length of magnetic

axis.
Fo (8%, 2 (e ¥p§ = Bogux foe - 20 (M)
= “R°§>¢\X_ S“‘“‘-’ e 9% Cek. 620, €2) )

R oOxX /

5 Derive the drift kinetic equation in the coordinates
(€ ,Vy , * ,S). Show that the left hand side

correctionsof (74) are negligible.

6. From equ.(78-81) derive the differential equation for

NG £).
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IV. Transport Processes in a Collision Dominated Plasma

(Classical Theory)

3, 4

IV.1 Transport equations -

The macroscopic properties of a plasma, relating to trans-
port of mass, momentum, energy, etc. may be derived by
taking moments of the distribution functions &g (}_‘_\_’_.4‘)

of each particle species a.
NL{R > = Se\\i Q(i“gﬁ)&(}lzﬁ) (82)

The first few moments are

V(% L) - Se\\_, —S—(‘r_gt N, A) density (83)
L_»_\(‘ﬁ.-‘r) - _\l;‘—gg\! }_/.S. = (> mean velocity (84)
?ﬂ(g 2 VAWA /\W‘AWQ> pressure tensor (85)
i
@\*p"-‘\/\w(w*wﬁ,w,‘) heat flux tensor  (86)

where W = \/— W

The pressure tensor may be written as



where

P =wnw (W2> [3 (88)

is the scalar pressure and SZ the viscous stress tensor.
The thermal energy density'VV and temperature T\ may

be defined by
W = v (Wi > = 2L V| (89)

The heat flux vector is defined by

q = WM WhRwD> (90)
For the total mechanical energy flux we have
T=wmdV7Ry>=Eu ~ £~ 9 (91)
where

is the total mechanical energy density.

Finally, the entropy density may be defined by

S= = Sy $) LI -\ (93)
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The distribution functions satisfy kinetic equations

of the form

Q {%m DA™
3% TY¥5c to2 CE*Q"/Q)"%]ai =3Bt

The collision term of a stable plasma is a functional

of all distribution functions.

b
8

7 Sau C5a, S5Y) (95)

The collision term should satisfy the following conser-

vation laws for density, momentum and energy
de Cayw = © (96)

Sa-\\_l_m&._/_ San™D (97)

12
c
&
T,

O (98)

f;ti\/ VVﬂxzfz- C:Q.CL =

If the collisions are elastic we have furthermore

2 2
de muv/l Cay + S““f’- WMV Cla =0 (100)



B.Q\n is the rate of change in momentum of specles
a in collisions with particles of species b. We may

introduce a heat transfer rate by

EN N - g“’“’ ‘MQWL/:_ Yaw (101)

Q

Equ. (100) may then be written as

G’Q\:-t-Q\aQ % Bu\,QE{\o‘Q‘_\a) -0 102}

The collision term should vanish for Maxwellian velocity
distributions, which correspond to (local) plasma equi-

librium.

Loa = was B
o @

2
ex p\— vy —w) (103)
QR T Im) 2 R e

(Note: TaCa M) = T a, (x3)= 1)
Any initial distribution should relax to a Maxwellian in
the course of time. (H-Theorem). Finally, 4, (X v +

must be nonnegativ at all times.

Elastic collisions between charged particles can be
described by the Landau collision integral, which satis-

fies all the conditions listed above. It takes the form




- -

‘:za’b_\& Yo' ea, o v, \—_ > Sb("‘)—
K \G

(104)
e j]
WAL, -S—u' V'
€3
where i~ \V-\J'\ ~ 7
W = o 1A SaL - W, A
AB T SN, Sve 8T M (o
W Y-y
and — 2 2
[T, = P Sq=p

RQie N\ is the usual Coulomb logarithm, N~ \X& V\lb 5
Equ.(104) can be put into the form of a Fokker Planck

equation

oo AN £~ 35, L 5]

4-6 v, v 2 at
where
N )
=7 = Va9, e Cet) (106)
: B ? 27OV *= (107)
L wm vn
Ry s ) w\‘ab Sav! g‘b(")/‘w"\"\ (108)

- %31 Say' Sua) \w=v') (109)
Q

(105)
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and

- - ,‘\-\‘eu‘*

X

o N

wa L
o

Quite generally, it can be shown that the collision term
is of the Fokker-Planck type if particles suffer a large

number of statistically independent, small deflections,

2\:}
during a deflection timeTgp*® ?:::ﬁn the following we

i 4
shall make use of the characteristic times

Y
3wz ) Ve ° (110)
TS — =

| P (111)

for electrons and ions respectively. (Z = i MQ-)

A characteristic feature of a plasma is the very small
ratio of electron and ion mass, ' (w <\ = "Ehe
relative velocity in (104) is essentially equal to the

electron velocity. Expanding in terms of the ion

“14@5
velocity we obtailn

Cei= 32w T.E.Wl ‘/T_FD_. [\/Aafa'g'e 45 (112)
- wA S e Vi 5\)2

3 — - 1
M/V\( ::-; 'g_g -v\\lM 3\’5\’3\}:\’ S-L&* gitp)]

where

L % \ L _
\l = *—\—’—3' szs VJ.V]’&)
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The electron velocity in (112) is computed from the mean
ion velocity. The lon pressure was approximated by the
scalarpressure ;=W . The first term in (112)

is independent of the ion distribution. It is the collision

term for a Lorentz gas, ™[m —= O which vanishes for

any isotropic distribution 5(\1). The ion-electron
collision integral can also be simplified by expanding
°°4§> in terms of the ion velocity. If the electron

distribution is approximately Maxwellian one obtains

E=
C\e ) V‘R'Ce

\

}~P\j|

< e F; Ri % (113)
1;22 (f{* syl ey ) ) :=JT.-_;Z_

¢/
Z
X
5
S

Here the ion velocity is computed from the mean ion
velocity and & = Sd\\_’ M CTie = "'Be '
Equ.(113) has the form of a Fokker Planck equation that
describes Brownian motion in a moving medium with

temperature Te P

From (112) and (113) one may compute the collisional
momentum and heat transfer. For Maxwellian distributions

one finds

© A
BQ = - W.;e (‘_{Q"E’_‘s) m4)
S, = 3__&\" V‘/t_( (Te —T) . (115)



.

Q. 1is given by the relation (102).
e

From the above we find for temperatures of the same

order
-5 .M \]2 _\/“
Tae: Ty Vet "\.L/M : IM(1‘|6)

=
where Yo | is the energy exchange time. Thus,

electrons and ions reach separate equilibria much before

it is established between the components. This circumstance
makes it possible to obtain transport equations with
different electron and ion temperatures and mean velocity.
Since Tq e vTg ; ™V CQ , lons have an important effect

on the relaxation of electrons. On the other hand

Tie .\,%\‘ce Tie <840 thus the ions behave like a
I

simple gas.

Transport equation which déscribe the macroscopic
behavior of the plasma may be found by taking moments

of the kinetic equation (94). One finds §ov cacl <.pedics

s¢ T oR e O (117)

’%V\M\_ﬁ *‘%"V“”‘.‘f‘ﬁ -v\mé_‘.-é - (118)

ewn (& )x & | "%{__g ~%



(119)

where o =) . ?__
et

(120)

gafz:_gu_b : Qe > 2 Nay (121)

\e

and the relations(R%32- 30, §¢€ ~|AS2) have been used.

In order to close the hierarchy of moment equations it is
necessary to obtain relations between the parameters

n(x,t) u(x,t) and T(x,t) and ‘_2_‘ Q, %, 4 . To this end
one has to find a solution of the kinetic equation (94)
which can be expressed in terms of the local variables

n, u, T. The possibiliby of such a description derives

from the properties of the relaxation process due to colli-
sions. If the plasma parameters change over time intervals
much greater than the collision times and distances much

larger than a mean free path, then the distribution

functions will be of the form

‘So\ > 'g'bu = g’\q (122)

Wi
where foa is a local Maxwellian density vx§f=}0 temperature
A~




- 46 -

'\'“(1_':.4\-) and mean velocityw (X Mand fia is a
small correction which depends on the gfadients of
VT.E:,-V and the electric and magnetic fields.

From f,n.one obtains relations between the fluxes and the
forces which produce the deviation from thermal equilib-
rium. The coefficients in these relations are called

transport coefficlents.

4.2, Transport coefficients for a collision dominated
plasma in a magnetic field.

The method of obtaining transport equations from the
kinetic equation differs in the plasma case from that of
a neutral gas essentially as a result of the small
electron to ion mass ratio and the presence of a magnetic
field. Because of the small mass ratio it is possible

to uncouple electron and ion kinetic equations (e.f.

Sec. 4.1.) and to obtain'separate transport equations for
electrons and ions with different mean veloclties and
temperatures. The magnetic field introduces an anisotropy
in the plasma. Transport processes along the magnetic
field are generally the same as 1in the absence of a
magnetic field. Across the magnetic field they depend

upon the parameter'SL1: ( Sl,gyro frequency, = collision time).

The kinetic equations must be solved by approximation
methods. Basically, one has two expansion parameters,

5-‘\[L_ which characterizes the effect of
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collisions and Ef-T\‘IL_ which characterizes the effect
of the magnetic field, (L scale length of inhomogeneity,
DRV mean free path, T3 Mu\/ﬁ_ Larmor radius).
Other expansion paramcters, such as the toroidicity,

which characterizes the magnetic field inhomogeneity,

or the mass ratio may also be used.

It is convenient to write (94) in the frame of the mean

velocity W

e e o OV RN R -

NEY T g123)
< D =)
where 3 - SO % E_),,_E_):_
= \A
ar le~bone] - & - w2

In the case of a collision dominated plasma, f is

|
expanded in the small parameter S~ /L., assuming that
the collision term keeps corrections to %cxlsmall. One

obtains the expansion

oCV¢) Q_%Ef - <(5s) (124)

i

: d £ )
Y T WEE v a2 48 T -G8 ) (29)

etc.}where o 1s the phase angle of W/, }thg [ -2%

WA -
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Retaining theSL term allows one to keep the parameter
Erga- %C arbitrary, but R e\ or t:»\means
unnecessary work. For X & <« | (weak magnetic field) the

expansion could be modified to

< C(Es) = © (126)

e;grs;*ﬁ,zg_s:+q.§_§+9.gizs ¢ £65) (127)

etc. For strong magnetic fields Xz =\ one may

expand in the parameter §£ = VE'IL_ , the so=-called

finite Larmor radius expansion 4

24,
SIQLY B = O ies)

SONE- Rt

e

b +Q_%:=“§°)

Po Ot (129)

.

2

O B) df"-\-w Dﬁ ra g—{—u iziz =-Cq") (130)

The drift kinetic equations are obtained from (128-130),
after introducing the drift variables and separating

average and e\ dependent quantities.

4,2, Transport coefficients for a fully ionized

electron-ion plasma.

The solution of the kinetic equations in the collision

dominated case have been discussed by many authors. Thus
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we shall merely summarize the results for the transport
coefficients of a fully ionized electron-ion plasma

(Z=1) in a magnetic field and give a qualitative inter-
pretation. Expressions will be given to dominant order

in 1/= . More general results may be found elsewherej.
a. Momentum transfler

We haveR ,» ju\y_w\:/_ Qg{ and

consists of the friction force

E—

QV\: el _j_“ * Ly _}_.\.) (131)
and the thermal force

- —Bp N > T
Rr=-0m w9, Te-fag- (< - T T\ (132)

where W are the longitudinal and perpendicular
i A1

electrical resistivity respectively

W™ % Al oL = O. SN K[ov 27| (133)
<
i1 T
My il e . (134)

J‘:—V\tQ_KL_AQ—LA_;) is the current and T is an unit vector
in the direction of the magnetic field. The factor 0.51

in (133) accounts for the distortion of the electron
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distribution from a shifted Maxwellian, due to the
velocity dependence of the collision time, T \Js
The thermal force is also the result of the velocity
dependence of the collision time, although‘tQ does

not appear explicitely in (118). This may be understood
as follows: Through the surface =% _ there will be
two compensating electron fluxes W Np , with

corresponding friction forces of order r\Wﬁvélgé However,

if there is a temperature gradient dq—l dw ., these forces

v
will not cancel but result in a net force Q" AT Q\‘.LV\ =
With AT VeTe G and (g, * ‘TQ we obtain

the longitudinal component of (132). Across the magnetic
field, the temperature difference is carried by the gyro
motion,veTs = (o= \"fgg,resulting in the transverse

thermal force.

b. Heat conduction

. 14
The electron heat flux has the form (\es o\“-\-q_\. with

- ——— —

(135)
BusemnT, + N3 rad ]
e -

Q T N -5 56)
fﬂT““"3Q§ T, Ve — Ry ¥y 'e -éix\ o= (e vSQTgﬁ

C . N Ve e 137
JQ“ 3. l6 - ( )
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R le T
J?.\. e S MQQ..({CQBZ' (138)

The relation between (13%2) and (13%) is an expression of
the Onsager-Casimir symmetry relations between transport

coefficients 35. The ion heat flux is

’

( ) St:V\fri =
Q1 ® Ry Vi ~ Ry ¥y Vi : ngr-VT-‘]

22| R
where (139)
y n, 1. Ty :
' e 8.8 ——t iRt
®y ™M Kt’\) R (140)
i R L+ Vo e
R, = 2 2 v = (MY
* e A3 &‘M\ * (141)

As in the case of the momentum transfer, it is possible
to give a similar elementary interpretation for the heat

b

conduction “.

c. Heat transfer
The heat transfer to the lons as a result of collisions

is given by (115)

L 2w
& = - . 11
Q; ( Te T‘)' (115)

The electron heating rate is related to Gli by (102)
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o - . — o 1 . L .
Qe Be . Qm =Ny +%L3L*;,LQ?:'\--;_“Q~\' (142)

1

The first two terms in (142) represent Joule heating.

d. Viscous stress tensor

The stress tensor in the absence of a magnetlc field is

T4, - <5
& Poao wu qze‘.{ (143)

where

< R o @
W =D_L_’t9 -\-?__\_*_2: ._2/3 g'“su:.bm (U (144)
. a*g 'D‘AJL .

is the rate of strain tensor andr

Poe= 0.M13 v \g T (145)

Loi >~ 0.9C v, T T, (146)

In the case of a magnetic field, the relation between
\AfLBand Trotﬁ becomes much more complicated ¥ .
A qualitative discussion of viscoslty in this case

36

has been given by Kaufman .
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4.3 Hydrodynamic description of a plasma

Adding the equations (117-119) for all species we obtain

‘-53— f'é _ (147)
s¢ T sx8u)=0
s . ~ (148)
53’-2_ * g Buw ~R TR . ”% P+ TEMYME + R
=T 5% ku_»:\-:’)+6d« =3 %8+ vdw«mg)

(150)

;Sa?;'n“e“&u‘ 5_*0":\ s Qa‘iwueu (151)

‘ e~
B g2 ety (152)

the center of mass velocity

[Sav]]

~ 2 Eq =2 Lo rngwa yrae )("-*:%-*ﬂ (153)
o o

the total barycentric pressure and Zi the total barycentric
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heat flow, etc. The bar indicates that for barycentric
quantities the random velocities are to be counted
from the center of mass veloclity u rather than the mean

velocity of each species,

QQ = Vg WMo <\,"_'_.L.§ \.'_’.'—-t-*—>q (15%)
etc.
For binary collisions R= é BG:O ; Q-—-;Z\:QQ*B aWa-Wl =0

Multiplying (118) by ‘“‘hﬂo\ and summing over all species
an equation for the current 1s obtalned.

The resulting equ. for an electron=ion plasma is

w e A/ B .
= TIPS 23 2 e AR Qe <F) (155)
\ =< _J_____. sy
a(328) I+ oo e (B BDTHER A
where giz :DT (156)
R -
SR (‘“)“'_s S
=~ v
Q= RCE L) (157)
< = /M (158)
L <
Al Be— g \ (5 9)

The Hall term y W \3 can be eliminated by making use

of the equation of motion (148).
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From (155) we can obtain an Ohms Law for a plasma, 1f
we restrict ourselves to phenomena of low frequency
and weak spatial variation. We may then neglect the
left hand side of (155), i.e. electron inertia, assume
quasineutrality o <<| , and also use o <« |

Ohms Law takes the form

(160)

If the Hall term is eliminated, using (143), (160) becomes
— v v (o DY (161
£ ~&rdr B~ [2(Qi v u) « Ry 4+ 338 160

Equ.(160) may be solved for the current

_ o a4 < €)1
5 Ey o LEL ¥ ReSe (S "'l)__, (162)

= M my v Rewe)? )

which defines the longitudinal, Pedersen ana Hall conauct-

ivities respectively

T - Ty, TaTe o (T-Tets) » (163)

T2 (T v X))
Por Qe Te>> | the current across R is nearly

perpenddcular to !i.L . If the current in the y direction

is prevented from flowing then TR &Sy Wy and

Ey ~~ReTe Ex. (?:“E)-
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\
G’_\_ - [W\A_ is called the Cowling
conductivity 37.

Corrections

Equ. (105) add Ref. 33

10

Equ.(113) A term due to friction

1

—

5)

must be added on the rh s, of

. 5351
A O

(11
Equ.(11); Replace 2 by 3

Problems

1. Obtain the collision term T, equ. (105) for w<vV

e and

v>» v _.
e

2. Show that the Lorentz collision term in spherical

coordinates \Q(S,gb takesthe form

?
CE%- "/ [% (-r) 2 —e2 ?3_{62] S 7 )

‘ W
oy _ RN ve
where Ka > © » /\, r--——————,l,v.f\

’

wa 9

. L v
Show that S§'_§___ has the eigenfunctions P:\*(‘A) Q

2
wa VvV
5. Show that in the drift coordinates Ew = 5{@? v, )

the Lorentz collision term becomes

_S_‘_LL‘ 9_ ww“._.__ \_)) Ny ?)P j

&= %
ehuu. V) = 3/?_%/\;\ Q=)' V2o
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V. Diffusion and Heat Conduction in a Collision

Dominated Toroidal Plasma

We wish to investigate stationary plasma states
(equilibria) Currents, electric fields and diffusion may
be found from the following set of equations, describing

plasma equilibrium

J.([R]w) =0 (164)
S = © (165)
T (@aguu) “()wE (166

EORR =G Qs *35%)\“%\*1‘3 (167)

(the bars indicating barycentric quantities, have been

dropped). From Maxwell's equations we need

Y?.SE = O (168)

Ix @ = ¥y (169)

(168-169) may be combined by introducing the vector

potential B = curl A, where A satisfies

q? g h-'-“'(q _:)_ (170)

<




D
From curl ’_g = =V S’% follows in the stationary

case \-'S':im\- .-——V$ . We may however, allow for an

Y
external driving field. From (160) we obtain

~
J-(-°) = 0O (171)
R-(V-B) = (172)

where _3_ = R ¥RUuM is the total stress tensor.

A function WY(x) such that B- <V = O is called a
magnetic surface function; ¥ - const describes a magnetic
surface. In the axisymmetric case ¥ may be identified
with the flux per unit length of magnetic axis, and

RV % V‘S is the poloidal magnetic field. If

)

we approximate by the scalar pressure p then
P= wp(‘\)) is a surface function and the current

flows in the magnetic surface.

The perpendicular components of the current and plasma

velocity may be obtained from (166-167).

_ -\ R, 2N
- e B S B2

A .
where jﬁa?;-rguau )\ represents the confining diamagnetic

current in a plasma with pressure gradients. The Terms pro-

portional to 1KLin (174) represent classical diffusion due to
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electron=-ion collisions, conslisting of resistive and

thermal diffusion. The corresponding velocity across

the magnetic field may be written as (neglecting viscosity

and inertia)

Vo =D | W2« oo @, (T _‘IQQH (175)

T~ Ve

where
N R o Vax\s
t>cx=' ____3IEAL (er\y ) = '——; iz oy e
© R.%e (176)

is the classical diffusion coefficient.

Assuming that Tia—t'Vg (Q) » because of the large
longitudinal thermal conductivity (137), ~gy may also

be written as

Z = R oV
R - B\ s

indicating that for certains profiles of pressure and

ftemperature the net flux may vanish.

The electron and lon mean velocities are given by

|&

N i/w\e\ (178)

“i =l (179)
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If we neglect viscosity, we find that classical diffusion
is ambipolar (i.(?p = 0) and independent of the
magnetic field structure. For an uniform magnetic field
and & - ;‘\—QQ-Q-‘ = §j , the divergence of the
first two terms in (174) vanishes, thus they do not
contribute to diffusioén. The second term in (174) also
shows that ion viscosity leads to self diffusion, 1i.e.

38

diffusion due to collisions between like particles .

If we consider plasma in a nonuniform magnetic field it 1s

found that the ExB drift makes an important, usually the
dominant contribution to the particle flux. Because of the
rotational transform of magnetic fields, such as the
Tokomak field, the longitudinal current j“has an azimuthal

component, giving rise to an electric field

(S \::% Qzéi ~ € g % = M W (180)

and a radial drift

. = < .
Ny ® B1D'S\7”g 32’31 . (181)

In (180) use was made of the longitudinal component of
ohm's law (167), assuming for simplicity that ?;1 and Vo
are constant on the magnetic surfaces. Because of the
axisymmetry, E'S is the external field

Ew

\:§= mg . (182)
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The additional flux rh is related to the longitudinal

curr‘ent;n s, whereas the classical diffusion flux Tl_

is related to the diamagnetic current Jl_. The longitudi-

nal current may be determined from the continuity

equation (165) and Ohms law (167). We set Jy== B and

find a differential equation for &£ . From (1€65), (16%)
T 2N\ _ - 2

B VYot=-N-J1 and from (173) Q-CQ_LQ, )-QL.W% +

829.,,=Y.< (B *Vpl=c[Ne(v78) - B-ewrd Ve )= 0

In the last relation use was made of (169). We obtain the

magnetic differential equation

: z
R.I4y = 2 .Y8 (183)
B
with the solution
X : 2
. DRV
%"é%f = LCR) = L F %“‘R — =32 (184)

where the integration is along a magnetic field line and
the constant -<(0) is to be determined from Ohm's law.

If the field line ergodically covers the magnetic surface,
we may conclude that x Lb) is a constant on the surface

LD ~ £ (V).

As an example consider a Tokomak with the magnetic fields

. 8- L unr
BF} |~ lgomns f Bg 2 W SS (185)

B\n= O




Equ.( 183 become a« _2ev - sP
4 ( c S Q_§ Riggs A\

with the solution

do — 2S¢  de
ks R2%a B sv @ § . (186)

Comparing o = = W -Q(\—lemg‘)‘\- E¢ kg (&]

L= Eo
“'\\\go

and

— 2

Ecax — 2<r B

< s —de o, ¢ (187)
Q%S gg v -

Using C 1€0) and averaging over { , according to

(62) we find the average radial velocity due to the

internal electric field o
- g - LMy QE_
dNed = g{;(_\t’V(QMS)\’r Yy o Ty .\\
or the total velocity of resistive diffuslion across

magnetic surfaces

- 2
Ve 2 U + M 8w ] 188

where from (174) . c?-vll
Do ®

de
g_é} v

The enhancement factor in (188) was first computed by

Pfirsch and Schlﬁter'e.
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The enhanced particle flux (188) can be interpreted in a
simple manner: The toroidal drifts lead to charge separation
which has to be compensated by the longitudinal current

Jy = %%F‘chJ)S # Because of the longitudinal resistivity
this compensation is not complete, resulting in a (vertical)

electric field, cf. (187), and a corresponding radial drift

velocity.

The enhanced heat conduction in a toroidal geometry is due to
effects which are completely analogous to toroidal diffusion1}.
From (136-141) we find that for L= >>\ the longitudinal,
drift;and perpendicular heat flows differ greatly in

magnitude
. \ ,
A An AL~ a0 VRIS (189)

Because of symmetry, we have in a straight cylindrical
geometry q, = O and divQap = O s heat transfer thus
takes place only due to the magnetized flux q, . In

toroidal geometry we obtain to lowest order in o<

ol i 3: = O (190)

from which it follows that the temperature T is
constant on the magnetic surfaces. The divergence of the
drift heat flow 55?\ is now nonzero and has to be balanced
by a longitudinal heat flow (*;

9io (qy v an) = O (191)
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in the same way as the charge drift had to be balanced by

the longitudinal current j“ » div J = 0. From

-

<o 5 —_— °
c_e-\/\\;- R YA ]:g_ i ‘i_g 3. (192)

M

Q
AN =

and (191) we obtain a magnetic differential equation for

\
oA = ““/[5 , analog to (183)
2 2
BI«w = an Ve (193)
s )

Because of the finite longitudinal conductivity, ‘AL

results in a temperature perturbation T-(q (", ()
\ T L9
W= <Xb =~ R, Ny (r,§) 19%)

The total heat flux across the magnetic surface consists of
the usual perpendicular flux qz and the toroidal drift

flux c“h

fu}

s \
Ar = Qe * Y Ac (195)
Averaging (195) over a magnetic surface we find for ions

Lav> = ape [+ Ve @90 (16)

where
d-i-lu)
QLr T TR, &
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Except for the numerical factor, (196) agrees with the

simple estimate from elementary kinetic theory.

The temperature gradient also gives rise to a density
perturbation n \(P,S ) and a potential & (v € )
Neglecting viscosity and inertia we obtain from the

longitudinal component of the equation of motion (148)

R.Ye >R .VJpe «&.9p,;, =O (197)
L T (%) i
Since »'/x\{ = K(V“!) ¢ we may neglect Tek\)t T and obtain

RIn = - &¥TYw (198)
Te_ ~ ’\_\' A

The resulting pressure gradient has to be balanced by an

electric field which may approximatelyhﬁetermined from

n= e meniel® /g

\ g 53
e@Y L _ T ) (199)
Ve e %% s

This field turns out to be lew4\ya'times larger than the
Pfirsch Schliiter field (187). However, this field does not
significantly influence diffusion, since according to (174)
the drift velocity depends on B' & —A‘;‘_R)Q?“ which

vanishes for (199). It has been pointed out by Stringerjg'LH
that inertia connected with plasma rotation and (ion)

viscosity lead also to a density perturbation "1('t§,L

Equ. (197) has to be replaced by
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RS D

=22 L op _ Py e 2 Siw
Q“P Q v 3% ° ?ow’ag'TP““e\EOO)
Qad\jn
where Vg = g & is the electric drift velocity and

Py the longitudinal viscosity. Stringer noted that in the
rest frame of the rotating plasma the toroidal magnetic

field acts like an external force of frequency Gb";volr
parallel wave number W, = E7V' and mode number m = 1 (cos § ).
If for a certain VYo this force 1s 1n resonance with a
natural mode of the plasma, then a large perturbation of the
plasma and enhanced diffusion will result. It has been

shown by Rosenbluth and Taylor 42 that v, is not an arbiltrary
parameter, but determined by the equation of motion, in which they
included viscosity (cf.Problem V.6).In subsequent papers it
has been shown that including a number of effect disregarded
previously. such as longitudinal ion viscosity, perturbation
of electron temperature and thermal force 43 and perturbation
of the lon temperature 44 results in a velocity of rotation
far away from resonance and a radial potential < G4~ Te
For not too large pressure gradients Pi/a ¥ S Q_?; ion Larmor
radius, &“‘(; %—V‘:) diffusion and heat flux differ only by
factors of order unity from the expressions given by Pfirsch
and Schliiter (188) and Shafranov (196) 44. The above results
have been obtained by linearizing the equations of motion,
continuity, Ohms law and the heat balance equations for
electrons and ions with respect to toroidicity e * /g <

45, 46

Zehrfeld and Green considered an expansion in terms

of the resistivity, but treated inertia effects exactly.
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It is argued that nonlinear effects due to toroidicity

strongly limit enhanced diffusion due to inertia.

Diffusion and dissipation

In the above discussion we have made use of the model
toroidal field (185) introduced by Pfirsch and Schliiter. We
have found that enhanced toroidal diffusion is related to
dissibation by the longitudinal current. It can be shown
for general magnetic field configurations that diffusion is
related to dissipation (energy-balance equation) 12, 47, 48, 49
and that the Pfirsch-Schliiter enhancement factor for

classical toroidal diffusion depends only on the magnetic

field geometry and the ratio of longitudinal to perpendi-

cular resistivity 50.

The plasma flux through an isobaric surface p = const is

given by
\_-= §dg,ﬁ& = - g??v\_"’} =j—-S@TV\L_A_VP.
el \De) e (201)
=

Scalar multiplication of the equation of motion (166) by nu

and of Ohm's law (167) by nj results in

o

- GL\" €) *'_3/\91-9(2\1-?3}5) (202)

|

o V\L\Q? = V'\'('V_I.

lL/

4
=)

where

TAb . 0% p8*% L putu
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Using (202) in (201) we see that the plasma flux consists
of contributions due to resistivity, thermal force,

electric field pressure tensor and inertia.

r“ .\_-»YL"\'.\_-RT '\'\—_‘-_r_""\—hvp. = \"T' (203)

\

Using the longitudinal component of Ohm's law (203) may
also be written as
T v 4 % N ooy . M Noe 204
(U -E L SV SO o (20%)
The general form of the energy balance equation has been
discussed by Wimmel 49. The contribution due to an isotropic

pressure py

— d 2 ’7 .

= (B2 N ey 2"5z We e ex =
\‘?\ S\‘:T?\ /o ' Q\Pg

_g;? @mlév_‘)_?\le‘o
if J- NV e>Q , ef. (171). Similarly if in addition

3»¥n = 0, e.g. n = n(p) then the contribution from the

internal electric fileld g*-vﬁ_ vanishes. For TezTe(p)

VY
- Sy %) E

Rty (?.. \ l.
ef.(177). The usual classical diffusion (175) is described

we obtain V@, -
by the terms

I = QIS T o a8 Wi
Y @\Qp\ (IR % “BE‘J'VP (205)

and F'
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Assuming U(g"-l-g_u\_ti)z "VPQ ~ O Te = Te ()

and comparing (203) and (204) we find that the additional

flux is given by

os * ey Tl Tean ‘%\w \\:'L“J‘\ 3"‘4206)

3

For a straight cylindrical geometry (206) vanishes. The
Pfirsch-Schliiter enhancement factor becomes for a general

magnetic field

e &5 it — 3 Eeu ]

—

I (207)
\"\' F‘rl_.‘_ = ‘-—\— /VL Q‘ P) -
M \¢g A
The longitudinal current is given by 3“‘Jh§ where ol

is given by (184). The constant X (D) is obtained from the

longitudinal component of Ohm's law

\Q?\ Bl Comk 1 JL] %\QP\ B n-iy (208)

2
%\':7?\ SNy :

The left hand side is a known function, thus « () may

be determined on comparison with (184). Since ¢ =~ ¢ (ﬂﬁ)
the enhancement factor (207) depends only (for Bowr = 0)

on the magnetic field geometry and the ratio of longitudinal

and perpendicular resistivity 50.
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Problems

1. From the drift velocity (21) obtain the continuity
equation for guiding centers, linearized 1in G'WQ
and averaged over Maxwellian velocity distributions.
Show that quasi neutrality requires a longitudinal

40

. . 4
current —E[ Vo w8

2. Obtain the averaged particle and guiding center flux
across a magnetic surface, assuming constant tempera-
tures, but allowing for potential and density pertur-

bations. Show that the two fluxes are equal 40.

More generally, one has the relation between particles

and guiding center lux >

(nyy = vy — ek (2L B)

. From the fluid equations obtain a general expression

for the averaged electron flux across a magnetic surface

: Q) -

in terms of “\.‘P\; Ve ’. Eliminate the perturbation
of the potential :Q\(vng), using the longitudinal
component of Ohm's law and discuss the corrections to

Pfirsch-Schliiter diffusion (188) 44

Q
4, show that N~ (‘ju):O implies T = const on the

magnetic surface.
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5. Obtain the temperature perturbation from (194), for a
Tokomak field (185), making use of the analogy between
diffusion and heat conduction. Compare the resulting

electric field (199) with the Pfirsch-Schliiter field (187).

6. From the § component of the equ. of motion (148) and

the condition of ambipolar diffusion show that the velocity

of rotation satisfies h2

2 . _ €T AaT;) (dg i
g"bl-l‘é" = re gggﬁv\‘cvzi)iw\x
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