MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

A higher level assembler and
a linkage editor for the

PDP11l computer

Preliminary version

R.A., Pocock, A.W. Brown and R.T'. Lathe.

IPP R/3 December 1971

Die nachstehende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

IPP R/3 R.A. Pocock, A higher level assembler
A.W. Brown and and a linkage editor for
R.F. Lathe the PDP1ll computer

(in English)

December, 1971

ABSTRACT:

Section 1 describes a higher level assembler PPL written at
the Institut fiir Plasmaphysik and modelled on the IBM higher
level assembler PL360. The assembler is designed to assemble
source code on an IBM 360/91 computer, but to generate ob-
ject code for the Digital Equipment Corporation small machine,
the PDPll. The formulation of the language is described in
detail.

Section 2 describes a linkage editor, also written at IPP,
which is designed to resolve references between program seg-
ments produced by PPL and to provide as output a block of pro-
cessed code suitable for loading by the PDPll system loader.

CONTENTS

SECTION 1
TIHHE PPL COMPILER

1. TLE PPL COMPILLR
2. DESCRIPTION OF THE LANGUAGE DEFINITION
2.1 The Metalanguage
2.2 Syntactic Elements
2.2.1 Terminal Strings
2.2.2 Ceneric Terminal Symbols
p I . Scanning the Input
2.2.4 Syntactic Unit
2:3 Syntactic Operators
2.3:1 Juxtaposition
24342 Alteration
2..3.3 Concatenation
2.3.4 Parenthesis
24345 Sequence Operator
2:3:06 Void Alternative
2.3.7 Commentary
s PPL
3:1 Identifiers and Declarations
31l Values and Cells
3.1.2 Attributes
3.1.3 Cell Declarations
32 Assignment Statements
3.2.1 Arithmetic Assignments
3.2.2 Address Assignments
3:2.3 Logical Assignments
3.3 Control Facilities
3.4 Statements

=Y
'_l

Null Statement
If Statement
Case Statement
"hile Statement
For Statement
Blocks
Procedures
Procedure Call Statement
Return Statement
Goto Statement
Functions

L S S ST =

.. .
HHWOJO U S WK

~ O

. . e

WWwWwWwwwwwwww

Page

oo OO0 O UUda b bWwWw W WMo DN N

[
w

e
0~

=
w0 WV

MO NNONDNDNDND -
OO~ UNWwwWwMNn YW

de Program Procedures
3.6 Identifier Block
3.7 Program Deck
3.8 Commentary
3.9 Scope, Allocation and Use of Identifiers
3.1lo Errors and Error Recovery
4, PPL COMPILER OUTPUT
4.1 Printed Output
4.1.1 Obligatory Printed Output
4.1.2 Optional Printed Output
4.2 Object Code Output
4.3 Error report listing
APPENDIX A ERROR CODES

SECTION 2
THE PDP11l LINKAGE EDITOR

Functions Performed

Space Allocation

Address Constant Relocation
External Reference Resoluticn
Linkage Editor Input

Linkage Editor Output

Linkage Editor Operation

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

CONTROL CARDS

OBJECT MODULE RECORD FORMATS
RELOCATION DICTIONARY COMMANDS
LOAD MODULE FORMAT

Page

29
30
30
32
32
34

35
35

35
36

38
392

l¥e)

44
44
44
44
45
45
45

48
49
51
52

SECTION 1

The PPL higher level assembler

1. _The PPL Compiler

Many research and development latoratories are acquiring small
and medium sized computers for use in experiments requiring on-line
data acquisition., These computers often <come with their own
software, but large research institutions wusually have relatively
large computer installations, which cculd be used mcre effectively
in the generation of application programs for the on-line systenms.
The software programs used on the smaller computers are cften slow,
due to core size limitations and execution speed. These computers
are also hindered by their on-line printers, which may te slow,
noisy teletypes. The software of the small and medium machines is
limited in its capabilities and usnally lacks the helpful output of
a compiler, which can be invaluable during detugging.

The power of the 1large computer can be harnessed for the
generation of application software. Aids in the generation of
application prograns are non-host machine +translators, ie.
compilers and assemblers, which generate code for one machice
{small or medium) but run on the large one. In addition, the other
facilities of a 1large computer 1installation (file handling
systems,off-line proqgram storage etc.) can be of aid in generating
application programs. Small computer users are then abtle to
assemble or compile programs, including all the re-tries to correct
simple coding mistakes, without touching a paper tape or having to
wait for the teletype. Aids in the debugging of application
softvare include simulators that run on the large machine.

The Institut fir Plasmaphysik has ordered a PDP11 computer.
The Institut also has an IBM 360 Model 91 which is used primarily
for scientific applications. This situation allows an excellent
application of the above: the power of the 360/91 can te used to
facilitate the generation of application software for the PDP11. Imn
particular, the power of the 91 can be used at cormpile/translate
time for faster turn-around and for more useful output in progranm
generation and debugging (such as variable cross-reference listings
and formatted object code listings). The programming lanquages can
be designed to force the application programmer to write clearer
and more concise progjranms.

One of the programming languages designed to be compiled on
the 360/91 for the PDPP11 is PPL (pronounced PeoPle, for PDP11
Programming Language) which is patterned after PL/360. It is
designed to haves

1) coansistent grammar rules,

2) as few shorthand or obtruse mnemonics as possitle,

3) to discouraqge the programmer from using tricks (which is

accomplished by not allowing programs to mocdify themselves

and by hindering mixed mode statements),

4) to have many of the characteristics of higher level
languages - free format, block structures, and high level
program-flow control statements.

The lanquage, however, is not truly high level, but rather a higher
assembler. PPL requires the programmer to have an intimate
knowledge of the architecture of the PEP11 and its cperational
characteristics. In fact PPL, and any lanquage 1like it which 1is
intended for on-line data acauisition programming of small and
medium computers, must provide access toysand use of all the
facilities of the machire: special I/C interfaces require special
code etc.’ Thus the programmer mnust te able to usz 2ll the
addressing modes of +the 2DP11 sinply; he must ke abtle to express
all the machine instructions conveniently, and he must be able to
influence, if not control, storage allocation. At the same tinme,
howvever, it is intended that PPL should obviate much of the drugery
and many of the pitfalls of assemtly language coding.

-2 -

The PPL compiler was generated with the aid of a metacoapiler
which uses an extended and nodified form of Backus Vauer Form fcr
the definition of the cowrmpiler. A subset of the metacompiler
language (metalanguage) will be used to describe PPL.

The coding of PPL in the metalanquage consists of a set of
syntactic equations. FEach syntactic eguation 1is made up of a
syntactic variable (ie. the name of the syntactic wunit), an equals
siqn, a syntactic expression on the right of the equals sign, and 23
semicolon as a termination symbol. The names of syntactic units
must kegin with a letter wvhich may be followed by any nuoter of
letters or break characters (_). A part of the input string (ie.
input to the PPL compiler) which satisfies the syntactic expressicn
on the right of the equal sign is said to be an instance or example
of that syntactic unit. A syntactic equation, then, descrites a
syntactic «class (or the set of all allowabtle strings), ¢ty
specifying the grammatical structure of those strings which are
eligible for inclusion within the class.

2.2 Syntactic_FElements

A syntactic expression (the right hand side of a syntactic
equation) is made up of various ccmponents, the most primitive of
which are the terminal string, and the generic terminal symhols.

2.2.1 Terminal Strings

"Both terminal strings and generic terninals imply a direct
test of the input string. A terminal string is made up of
explicitly displayed characters and is enclosed in apostrophes 1in
the metalanguage. Thus 'A' in the metalanguage means an A in the
input string, and 'XY%' means an XYZ in the input string. To
satisfy a terminal string, the input string must match it exactly.
Thus, X Y Z in the input string is not an instance of the terminal
string 'XYZ' since the input string contains tEtlanks between the X
, the Y and the 7 .

2.2.2 Generic_Terminal Svmbols

The generic terminal symbols provide a sincle way cf
specifying any one of a set of possible terminal strings. There are
four types of generic terminal symhbols:

.D which stands for any decimal digit (0 to 9),
.L which stands for any letter of the alphaket (A to 2Z),
A which stands for any alphanumeric (" to 9 and A
to 2),
.C which stands for any character, including tlank and all
the special symtols,

Whenever the characters in the input string match the
requested terminal string or generic terminal svymnpol, the
characters are said to have been scanned. Once part of a source
string has been scanned, any further testing will be done on the
input string characters which immediately follow the scanned
characters. For example, the syntactic equation

SAMPLE1 = .L ;

means that the input string at this point, if it is a letter, is an
instance of a SAMPLE1. Thus if X is the next character in the ingut
string, it is an instance of SAMPLE1, since X is a letter. Further
checking of the input string proceeds with the character following
the X.

2.2.4 _Syntactic_Unit

Another basic component of a syntactic expression is a
reference to a syntactic unit. A reference to a syntactic unit in
an expression means that the input string is to bhe examined to see
vhether or not it satisfies the definition of this second syntactic
unit. Thus the syntactic equation

SAMPLETA = SAMPLE1 ;

means that the input string, to te a SAMPLE1A, must consist of a
SAMPLE1, ie. a letter.

2.3 Syntactic _Operators

A syntactic expression can also contain metalanguage
operators, which specify the relationship hetween components within
the expression. The syntactic operators control the testing order
for syntactic primaries. The operators also imply what is to bhe
dona if the sought syntactic primaries are not found.

2.3.1 Juxtaposition

The simplest metalinguistic operation is juxtaposition (which
has no operator). Juxtaposition means one syntactic unit (or
terminal) followed by another, with intervening blanks permitted.
In PPL commentary may bte used anywhere that tlanks are permitted.
Commentary is delimited by #: at the bkeqginning of the comment and
+#% at the end., The compiler 1ignores commentary, and ftor the
purposes of describing the syntax of PPL, commentary and blanks arce
considered synonymous. For the characters in the input string to
satisfy a juxtaposition, they must satisfy the syntactic units or
terminals in the order given. Furthermore, findiang the first
syntactic unit or terminal of the juxtaposition is a commitment to
finding the second. Thus,

SAMPLE2 = .L .A

means a letter followed by an alphanumeric, with any numter of
blanks or commentary. Anything satisfying this description is an
instance of a SAMPLE2. TIf a letter is found when lcoking for
SAMPLE2 and the next non-blank character is not an alphanumeric dn
error Will be signalled. Since tlanks and commentary din a
juxtaposition are equivalent, the following are all examples of
source code strings which satisfy the definition of SAMPLE2:

Al

B Z
C #:THIS IS A SAMPLE2:% Y

2. 3.2 Alternation

The alternation operator, | , is used to indicate that *the
juxtaposition which follows 1is a syntactic alternative to the
previous one. An example of the use of this operator is shown Lelow
in the definition of a REGISTER in the PPL syntax:

REGISTER = 'PQ? | 'R | 1R2¢
| "R3 | "RUT | RS

Thus, the syntactic unit BEGISTFR is satisfied by either RO or R1
or R2 or R3 or RU or R5 . When trying to satisfy a syntactic
expression, the input string is searched for the first element of
the first juxtaposition., If it is found, the additional elements of
the first juxtaposition must be found, and an error is signalled if
they are not. 1If the first element is not found, the compiler
checks for the first element of the second juxtaposition etc. Thus,

- A o
SAMPLE3 = .L .A | *$* .D

would be satisfied by any of the following:
A1

$2
while an error would be indicated for the following:

A¢

$X
since in the first failure <case a letter was found (R) but it was
not followed by an alphanumeric as reqguired by the first
alternative of SAMPLE3. In the second case a $ was found, as
required by the first element of the second alternative of SAMPLE3Z,
but it was not followed Lty the required digit.

2.3.3 Concatenation

The concatenation operator (£)indicates that no blanks or
commentary should be skipped before 1looking for the syntactic
element that follows it. For example,

SAMPLE4 = L E.A :
will be satisfied only by a letter which is immediately followed Ly
an alphanureric with no intervening hlanks. Furthermore, if the
first letter was found and an alphanumeric does not follow an error
will be indicated.

2.3.4 Parenthesis

Parentheses in the metalanquage are grouping operators, as in
algebra. The entire sub-expression within the parentheses may be
considered to be a single syntactic element; ie. if the dinput
string satisfies the parenthesized sub-expression, it satisfies ttle
syntactic element, Using parentheses and alternation, the
eguivalent of the syntactic unit of SAMFLEU might be expressed as

SAMPLES = L &(.L | .D) B

since an alphanumeric .A is any letter .L or digit .I . MNote, the £
is distributive - in the above case it implies do rot skip tlanks
before looking for either the second letter or the digit. PFailure
to £ind a concatenated letter or digit following the first letter
means the syntactic sub-expression was not satisfied. Thus an error
will be indicated since the parenthesized sub-expression &(.L & .D
) is the second element of a juxtaposition.

2.3.5_Seguence_Operator

The sequence operator (3) in the metalanguage means that the
syntactic element which follows may be repeated zero or nmnare times,
Thus,

INTEGER = L &(&.D) H

- 5 =
means that an INTEGER is a decimal digit followed by a sequence of
zero or more concatenated decimal digits. The parentheses around
£.D are required because the scope of the sequence operator is the
next syntactic primary, in this case a parenthesized syntactic
expression. A slightly more complicated example of the sequence
operator is

STMPLE_IDENTIFIER = .L $(&(A | '_*')) :
This means that a SIMPLE_IDENTIFIER in the PPL languaqe can be 2a
letter .L followed by zero or more concatenated alphanumeric
characters or break characters (_). The sequence is satisfied even
if there are no alphanumeric or break characters £following the
first letter, and thus a SIMPLE_IDENTIFIER may be a single letter.

2,3.6 Void_Alternative

The syntactic element .E or LEMPTY stands for a void
alternative, ie. a syntactic element which is always satisfied. It
provides a way of indicating an option. Thus,

SAMPLES = L 6(.A | .E)

means that a single letter alone will satisfy SAMPLES, since an
instance of SAMPLES is a 1letter .L concatenated Wwith an
alphanumeric or with nothing.

Finally, commentary may bte used in the metalangunage. As in
PPL, commentary is enclosed in #: and :# delimiters. Commentary in
the definition of PPL will often be used to indicate restrictions,

eg'
INTEGEP = ,D &$(&.D) #:value<b65536:%
means an integer may be a digit followed by a sequence of

concatenated digits whose value 1is less than 65536 (the paximun
representakble value in the PDP11).

There are some general things that «can he said about PPL
before launching into the full definition of the lanquage. First,
there are no reserved words , or words which may not ke used as
identifiers. All non-identifiers, ie. operators, commands, oOrC
statement key-words, begin with a point (.). All PDP11 machine
operations are directly cxpressible in the language. Commentary Rmay
appear anywhere that blanks may appear. Finally, all identifiers,
except those of the general registers (which are known ty default) ,
must be declared before they are used within a progran.

3.1 Identifiers__and Declarations

3.1.1 Vvalues__and_Cells

In PPL, the storage elements of the PDP11, the registers and
core memory locations (words or bytes),are called cells. Every cell
has a set of attributes associated with it, which 1in general 1is
specified by the user. Cells may have one of three tvrves : INTEGER,
ADDRESS,or LOGICAL,which represent the type of value contained
within the cell. Each cell also has a length associated wvwith 1it,
ie. it may be a SYTE(® bits) or WORD(Z bytes) cell. WORD cells mnst
begin on a word boundary. There are certain restrictions that
exists between the set of attrikutes that a cell .may have. For
example, INTEGER types must be WOPD if they are used in arithmetic.
These restrictions arise hecause of the physical characteristics of
the PDP11.

A cell 1is identified by its name, or IDENTIFIFR. Most
identifiers are programmer defined. However, thke names, and
attributes of the general registers are predefined. The general
registers RO to R5 have an undefined type and length.

REGISTER = "RO? | ‘R | "R2?
l tpi3t ' TRy] TR5? L
Programmer defined identifiers must satisfy the defirition

SIMPLE-IDENTIFIER = .L 3(.A | "_");

Thus, an identifier must be one of the following
IDENTIFIFP = SIMPLF-IDENTIFIFR | RFGISTER

The allocation attribute for memory cells refers to both the
location and method of referencing the «cell., The allocation
attribute may be RELATIVE (allocated together with the program code
and accessed using the program counter, or PC register) or STACKEL
(allocated in the program stack, and accessed in the compiled code
by means of the stack pointer, or SP register). A third type of
allocation is that of the LITES=AL identifiers, 1ie., identifiers
whose «constant values are known at compile tims. Storage for
LITFRALs is allocated directly in the prcgram code. °DP11 immediate
addressing is used to access them .

A cell may be a member of an ordered group of cells, 1ie. an
array. Array cells are accessed ty means of the array name ,
synonymous with its first element, and a displacement (in hytes)
from the first element. The array itself may be either RELATIVE or
STACKED. When an array is STACKTD, the displacement may only ke
expressed explicitly as a POSITIVE_VALOE. PFor RELATIVE arravs, the
displacement may be either a POSITIVZ_VALUE or an INDIX_EXPRESSICN.

INDEX_EXPRESSIONs have an opticnally auto-decremented or
auto-incremented general register, indicated ¢ty preceding, or
following, respectively, the register identifier with an

apostrophe. The amount of increment is equal to 1 for BYTE arrays

-e

-'7.-

and 2 for W0%D arrays. If neither auto-increment nor auto-decrement
is indicated a fixed offset value, in the form of
DEFINED-EXPRESSION, may be given in the case of INDEX_EXYPRESSION
displacements. In all cases, the displacement is in terms of BYTEs.
Thus, if an array is made up of WORDs, the elements 1,2,3,...1 nust
be accessed with the displacements 0,2,4,...2%(i-1). There exists
an entirely different method of accessing individual «cells in an
array which will be discussed later.

The PDP11 also allows for indirect (or deferred) addressing of
memory cells, This means that the cell specified does not contain
the value to be used, but rather the address of a memory cell which
contains the value. Indirect addressing wusing a memory cell is
indicated by preceding the memory «cell, which might be an array
element, by the character . The memory cell that contains the
address must have the ADDRESS attribute and WORD length. Indirect
addressing using a register cell 1is also permitted. 1In this
case,the register containing the address of the desired memory cell
may also be anto-decremented Lefore 1its wuse 1in addressing the
memory cell, or auto-incremented after its use. Auto-decrement and
auto-increment are indicated, as in an TINDEX-EXPRESSION, by
preceding or following, respectively, - the register indentifier by
an apostrophe ('). The amount of the increment or decrement is 2
for WORD length cells, and 1 for BYTE length cells. A register used
in indirect addressing without auto-increment or auto-decrement may
have a displacement modifier following it in parentheses.

No assumption is made about the attributes of cells referred
to indirectly,their attributes ©being deduced from the context in
which the cell 1is used. Indirect addressing of a cell via a
register may be single level, as above, where the address of the
cell is in the register, or double level where the address of the
cell is in a second cell whose address is in a register. Doutle
level indirect addressing is indicated by @2 preceding the
register, which, as in single level indirect addressing, may be
auto-decremented or incremented or have a displacerment in
parentheses. Note that auto-decrementing or -incrementing the
displacement applies to the contents of the register, no%t to the
indirect address contained in the second level memory cell.

Indirect addressing provides a second method of referencing
array variables., The base address of an array, or the address of
any element of the array, may be put into a general register or a
memory cell, and then used indirectly to refer to items in the
array by the means of an appropriate displacement added to the
cell, In addition, 1if a general register is used for indirect
addressing of array elements, it may be auto-incremented or
-decremented, thus providing a convenient means of stepping through
a STACKED array. Random accessing of STACKED array elements nust kte
done indirectly, and random accessing with auto-increment or
-decrement must also be done indirectly.

CELL = DIRECT_CELL
| 2" #:INDIRECT ADDRESSING:*#*

(MEMORY_CFELT. #:ATTRIBUTE=ADDRESS,WCPD:#

{ REGTSTER_INDIRECT

{ 'a' #:DOUBLE LTVEL INRIRECT:#
REGISTER_INDIRECT
£: PIRST LEVEL INDIRECT (VIA RPEGISTFP) GIVES:#
L THE ADDPESS OF A MEMORY WHICH HAS THE :#
L ATDRESS OF THE CELL cf

DIRECT_CELL = MTMORY_CELL | REGISTFR 3

REGISTER_INDIRECT
= Vi1t REGTSTER #:0PTIONAL AUTO-DECREMENT:#
| REGISTER
e $:0PTIONAL AUTO-INCREMENT:#
| ' (' SIGNED_EXPRESSION ')' #:BYTE OFFSFT FROM RFGISTER VALUE:?
i .E)
#: ONLY ONE OPTION ALLOWED:# ;

MEMORY_CFELL IDENTIFIER #:ATTRIBUTES=STACKED,ARRAY:#
{ POSITIVE_VALUE ')? #:BYTE CISPLACFMENT:#
| IDENTIFIER ®:ATTRIBUTES=RELATIVE,ARRAY:®

'*{(' POSITIVE_VALOZ | INDRX_EXPRESSION ')°?

#:BYTE DISPLACEMENT: #

{ IDFNTIFIER R:ATTRIBUTF-=REGISTER:# -
INDEX_EXPRESSION = REGISTER
(("+#" | '-') DEFINED_FXPRESSICN R:OFFSFT:#
I .E) 3

Every cell, or array of cells, has several attributes
associated with it. These attributes are determined either from the
Jdefinition of the cell identifier, or from the context,when the
cell is' of a type which is not declared (ie. absolutely or
indirectlv addressed). A simple user defined identifier may have
only one attribute from each of the classes: type, allocation,
length, and scope of definition. Within each class of attributes,
there is a default in the case of non-specification. 1In addition,
some attributes imply others, for example, ADDRESS implies WORD.

ATTRIBUTES
= #:TYPE. DEFAULT=INTEGER:?
* INTEGZR' | ',ADDPESS' | '.LOGICAL!
{ '.STRING' #: TQUIVALTNT TO LOGICAL, RYTE ARRAY :#
* (' POSITIVE_VALUE ')' #: STPING [ENGTH :#
{ #:ALLOCATION, DEFAULT=STACK:#
' RELATIVE' | '.STACKED!'
{ '.LITZRAL' %:INITTAL VALUE PZQUIPED:¢
B:MAY NOT BF FXTERNAL :#
£:MAY NCT 3E AN ARRAY :#
] #:LENGTH, DEFAULT=%0ORD:*#
'"_RYTE' | '_WORD!
| #:SCOPE, NEFAULT=INTERNAL:®
' FXTEPVYAL' | '.INTERNAL®
#:FXTERNAL ONLY WITH .RELATIVE:# ;

3.1.2.1 Type

The type attribute refers to the way in which an identifier
may be used. There are three type attributes, INTEZGER, ADDRESS, and
LCGICAL, and one subtype, STRING. INTEGFRs are used in arithmetic,
and are treated as tvo's complement tinary values. INTFGER is the
default type. ADDRESS values are used in addressing and address
arithmetic, and are treated as 16 btit birary integers in
comparisons. Care should be taken when doing arithmetic on large
address values,as all addition and subtraction is done assuming

L 9 =

two's complement binary operands. The type ADDRESS may be applied
onlv to WORD length cells, since all PDP11 addresses must Le 16
bits long. LOGICAIL cells may be used for the storing of flag bits.,
Individual bits within a LOGICAL <cell may pe set or cleared, and
other logical operations, such as complementing andi logical
shifting may be performed with LOGICAL values. Logical shifts are
permitted only if the particular ©PDP11 for which the program is
being compiled has the high speed arithmetic wunit, KE11-A. The
STRING type is actually a suktype of LOGICAL, and is provided to
allow initialization of memory with character strings. A STRING is
equivalent to a LOGICAL, BYTE array. The L.STRING keyword is
followed by a parenthesized positive value vhich is the length of
the string (in bytes, one byte per character).

3.1.2.2 Allocation

The allocation attribute refers to the method by which storage
for a cell 1is allocated, and also to the method Ly which it is
accessed in the object code. RELATIVE refers to cells whose storage
is permanently allocated with the program at compile time., RELATIVT
cells are accessed using PDP11 relative addressing based on the
program counter. They may he given an initial value at conmgile
time., STACKED cells have storage allocated for them dynamically in
the stack, and are accessed using relative addressing Lased on the
stack pointer. The conmpiler adjusts the stack pointer when STACKEL
cells are declared, generates the appropriate relative displacement
vhen the cell is accessed, and removes the STACKED cells from the
stack when the block in which they are declared 1is terminated.
STACKED values may not be initialized at compile time. The third
type of allocation 1is LITERAL, which is used to predefine values
which are known at compile time, LITERAL values may be used as
constants, and space is allocated for them in the object code. They
are accessed using PDP11 immediate addressing. An initial value is
required for all LITERALs., The default allocation tyge is STACKED.

3.1.2.3 Lenqth

There are two possible 1lengths for values in the PDP11, WORD
for 16 bit items, and BYTF for 8 bit items. The default 1length is
WORD, :

3.1.2.4 Scope

The scope of a variable refers to the extent to which it is
known, and therefore accessible. TINTLRNAL cells may be referenced
only from inside the block in which they are declared, while
SXTFRNAL cells may be referenced from any block. TFMTEPNAL is the
default scope. Only RFLATIVE non-LIT-RAL cells may he E¥TEFMAL, and
they may not te iritialised. ZE=XTFPNAL values are provided to allow
communication of values between separately compiled routines.
References to FXTERNAL cells are resolved in a symbolic environment
orior to loading of the object program. The final memory location
of RELATIVE cells is not determined until the link/load time.

3.1.3 Cell Declarations

IDENTIFIER_DECLARATION
= ATTRIBUTES ¢&(ATTRIBUTES) $#:ATLEAST ONF REQUIFED:#
IDENTIFIER_DPETINITION &(',' ICENTIFIZR_DEFINITION) s !

e ——— e .

- lo -
IDENTIFIER_DEFINITION
= SIMPLE_IDENTIFIER (' (' POSITIVE_VALUE *')°*
#:FOR ARRAYS: LENGTH IN BYTES:#
| .E #:STMELE CELL:%)
1=
(FPILL_VALUE
{ *.SYNOMYM' ' (* DEFINED_MEMORY_CELL
(#2FOR .BYTE TO .WORD SYNONYMING ONLY:#
*4+41 DEFINED_EXPRESSTON #:VALUE=0 OR 1:#
| «E)

{

| *.LOCATION' * (' POSITIVE_VALUE ')' #:LOCATION HAS ALLOC ARS:#

P .E) 3

DEFINED_MEMORY_CELL
= TIDENTIFIER #:PREVIOUSLY DECLARED:*#
((' POSITIVE_VALUZ ')' #:FOR ARRAYS ONLY- AN ARRAY ITEM:#
| .F #:SIMPLE CELL OR FIRST ITEM OF ARRAY:#%#) H

INDENTIFIER = SIMPLE_IDENTIFIER | REGISTER ;

=
o]
7]
]
9]
-3
(<]
=
]

"RO' | 'R1' | 'R2!
Q3 1 "Ry 1 IRt
$:ATTRIBUTES: TYPE=ANY, LENGTH=EITHER :# :

An IDENTIFIER-DECLARATION is used to associate attributes with
a user selected cell name. Every identifier declaration must begin
with an attribnte keyword. Further attributes may also ke |
specified,subject to the restrictions previously menticned. The set
of attribtutes is followed Ly one or more identifier definitions,
seperated by commas. An identifier definition specifies the
identifier name, perhaps an additional attribute (eg. array size)
and the initial value, if anv. A declaration is terminated bLy a
semicolon (:). An identifier definition must consist of at least a
simple identifier. If the identifier is followed by a positive
value in parentheses, the identifier is an array. The positive
value specifies the array 1length in bytes. LITERALs may not bte
arrays.

An iantifier in an identifier definition may be followed Ly
one of three mutually exclusive conditions, all fpreceded by an
equals sign ({=):

1) a £ill value, used as an initial value for the cell

2) .SYNONYM followed by an identifier in parentheses with
which it is to share memory

3) .LGCATION followed by a positive value in parentheses
which specifies the absolute address of this cell

- 11 -

. LOCATION is provided to tell the compiler that this cell has a
pre-defined, abhsolute location., Device registers, trap vectors etc.
use this facility. .LOCATION or the specification of a fill valne
is permitted only with PELATIVE cells.

- SYNONYN allows the definition of multiple names and
attributes for a single cell or for an array. Synonymed cells must
have the same allocation attribute. 1In parentheses following
.SYNONYM is the name of a previously declared identifier with which
this newly declared identifier 1is to share storage. The previously
declared cell may be an element of an array or a simple cell. In
either case, the identifier being defined must be containable
within the storage allocated to the previously defined identifier.
Thus, a simple BYTE memory cell may be set synonymous with a WORD
cell, in wvhich <case it is considered to be the HIGH ORDER byte of
the word. A simple BYTE c¢ell may also te set synonymous with a
"WORD memory cell +1", in which case it is a synonym for the LOW
ORDER byte of the word. Setting a WOPD cell synonymous with a BYTE
cell is not permitted except when the BYTE cell is an element of an
array vhich ends on a word boundary (even address). An array may rte
set synonymous within another array, again with the proviso that
the synonymed array is completely containakble within the previously
declared array. Only the principal identifier of a cell or array
not a synonym can be initialized.

Declaration Examples

. INTEGER I,J(10):

I is an INTERNVAL STACKED WORD (by default) INTFGER cell, J is
an INTFRNAL STACKED WORKD array which 1is 10 tytes 1long (5
elements).

« LOGICAL .BYTE FLAGS(10), IFLAG=.SYNONYM (FLAGS(C));:
FLLAGS is a LOGICAL BYTE array of length 1), IFLAG is a LOGICAL
BYTE cell which 1is another name for the cell PLAGS{(C). It is
STACKED and INTERNAL by default,
« ADDRESS .RELATIVE .EXTERNAL HEADPTR;
HEADPTR is WOPD in length by default. Since it is EYTERWNAL,
other separately compiled programs may reference it provided that
they contain a similar declaration.

«LOGICAL .BYTE ,RELATIVF TTYBUF = ,LOCATION(.O0(777562)) ;

TTYBUF is defined to be the RELATIVE LOGTICAL BYTE at octal
location 777562. TTYBUF has the default attribute INTERNAL.

«BYTE ,INTEGER K; .LOGICAL LOWBYT® = ,SYNONYM(K+1);
K is a STACKED WORD INTEGER «cell, while LO¥WBYTE is a STACKET

BYTE LOGICAL <cell that occupies the same storage as the low
order tyte of K.’

- 12 -

CHARACTEP_STRING #:FOR .STRING OR LOGICAL BYTE CELLS:#

' . ADDRESS! * (* DFFINED_MEMORY_CELL ")* #: RELATIVE ONLY: ¥
DEFINED_EXPRESSICN

IDENTIFIFR #:ATTRIBUTES=LOGICAI,LITERAL,NCT ARRAY:#

(POSITIVF_VALUE ¥:TTERATICN COUNT:® { .E)
(FILL_VALUE $(',' FILL_VALUE) £y

#:VALID ONLY FCR ARRAYS:#% = 3

PILL_VALUE

CHAPACTER_STRIHG
= " F"" &< EBCDIC :#
"y #: ASCITI :#%)
$(&(v g " TN SQURC =-> " IN STERING :#
i +C #:ANY CHARACTER OTHER THAN "™ :#)
tuy #: CLOSING QUOTATION MARK:# ;

)

A fill value is used to specify the initial value of a memory
cell or array. It may be a character string if the identifier has
the subtype .STRING. There are two types of character strings,
EBCNDIC, and ASCTII-8, the difference teing the internal codes
produced for each character. An EBCDIC character string is preceded
by the flag .E%. In both cases, the character string is enclosed in
quotation marks ("). To represent a guotation mark within a
character string, two quotation marks ("") must be coded without an
intervening character. The pair is required ir order to distingquish
it from the delimiting quotation mark. The necessity for paired
quotation marks within a character string gives rise to the
metalanguage terminal definition '""* for a quotation mark in a
character string. A character string must be coded entirely on a
single card. :

A fill value may specify the ADDRESS of another previously
defined simple identifier. In this case the identifier which is
being initialized must be of the type ADDRESS, and the previously
declared identifier must be RELATIVE.

A fill value for LOGICAL values may be a previously declared
LOGICAL LITERAL, or it may be exgressed as a defined expression.
Thus LOGICAL TINT3GERs, as well as expressions, may be used %o
initialize a LOGICAL value. Defined expressions are most useful for
initializing aritkmetic and ALPRESS type cells.

Syntactically a fill value may in fact be a sequence of fill
values, separated by commas, and enclosed in parentheses. R
positive value may precede the left parenthesis and is treated as a
repetition factor. This form of fill value is restricted to arrays.

A defined expression 1is a sequence of defined values, either
INTEGER or LITERAL, seperated by arithnmetic operators. The
expression is evaluated at compile time in a strictly left to right
fashior with no precedence, to 32 bits of precision. An error is
indicated if significance 1is lost in initializing a 16 tit WORD cor
an 8 bit B®BYTE cell. There are two types of INTEGEFs: decinmal
integers, and logical inrtegers (binary, octal, and hexadecimal).
A1l TNTFGFRs are assumed positive.

Examples:
.LITERAL ZERO=0,0NE=1,TH0=2;
The values 0,7, and 2 are associated with the identifiers ZERC,

ONE, and TWO respectively. The default attributes are INTFGER
WORD INTFRNAL.

- 13 -
« LITERAL SIX=TWO%*3, SEVEN=1+2xTWO+ONE;

The identifiers SIX and SEVEN are associated with the values 6
(=TWO%x3), and 7 (=1+2xTWO+ONE). Fvaluation of the expressions
proceeds strictly left to right.

« STRING (25) .RELATIVE MFSSAGE1="THIS IS AN ASCII MESSAGE.";

MESSAGE1 1is declared to ke a RELATIVE TLOGICAL BYTE array of
length 25, with the default attribute INTERNAL. The attribute
«RELATIVE is required if the string is to be initialized.

« STRING (26) .RELATIVE MESSAGE2=.E"THIS IS AN EBCDIC MESSAGE.":

MESSAGE2 is declared as a RELATIVE LOGICAL BYTE arrav of length
26, with the default attrihute INTERNAL., This array 1is
initialized with EBCDIC character codes, rather than ASCIT
character codes, as indicated by the .E immediately preceding
the open quotation mark. ' ;

« STACKED .STRING(80) BUFFER;

BUFFER is a STACKED LOGICAL BYTE array of length 80. Allocation
of the string BUFFER to the stack might be used to conserve
storage by a little used I/0 routine.

« RELATIVE FANCY(20)=(0, 2(1,2,2(3)),4)

FANCY is an array of 10 INTERNAL WOREL elenments ty dafanlt (=20
bytes). The complicated FILL-VALUE expression resnlts in the
following initial values:

FANCY (0)
FAKCY (2)
FANCY (4)
FAKCY (6)
FAKCY (R)
FANCY (10)
FANCY (12)
FANCY (14)
FANCY (16)
FANCY (18)

I U [T | T T T I

E o WA =W s O

3.2 Assignment 3tatements

A set of relationships tetween values is defined by the monadic
and dyadic functions, or operations, which the PDP11 processor is
atle to evaluate or perform. The relationships are defined ¢ty
-mappings hetween values or pairs of values known as destination
operands, and values known as source operands. These macpings are
defined in the PDP11 handtook and will not be defined here. One or
more of these operations may be expressed in an assignmernt
statement in PPL.

ASSIGNMENT = CELL $(',' CELL) #:MULTIPLE ASSIGNMENT:%
#:%0 LITERALS OY LEFPT:#
1= (ARITHMETIC_EXPPFSSION

| ADDRESS_TXPRESSICN

| LCGICAL_®XPREISSION)
#: CELL ON LEFT MUST AGREE IN TVYPE
#: AND LEKNASTH WITH SXPRESSION ON
#: RIGHT OF ASSIGNMENT STATEMENT

L I XT3

a8 ad wd -

- 14 -

There are 3 types of ASSTGNMENT statements - arithmetic,
address, and logical, corresponding tc the three tvpe attritutes
.INTEGER, .ADDRZ5S5, and .LOGICAL. The existence of different types
of assignment statements allows the conmpiler to do more error
checking, and therefore helps the user to write «c¢lear, 1logical
code. For example, nultiplication of ATUDPESS values is nonsensical,
as is the use of arithmetic operations on LOGTCAL data. These two
types of operations are too often mixed together in projrams, tut
they should be classed as tricks which more often tend to confuse
rather than help. An assignment statement is made up of a sequence
of operands separated by operators whick indicate the operations to
be performed. The type of an assignment statement is determined ty
the types of the operands and operators involved in the statement.

The length and type attributes of all values used in an assiqnment .

staterent must agree with each other, and with the type of the
operators.

The type and length of an assignment statement are determined
by the first cell or operator with a definite type or length, ie.
first in a left to right scan of the statement. There are cells and
operators which do not have definite type or length attributes. For
instance, a cell referred to indirectly may have any type or
length, and the addition operator (+), is valid for both ADDRESS
values and INTEGER values, It 1is possikle that an assignment
statement will have no operands or operatcrs that are specific. In
this case the default is INTEGER WORD, and code will be generated
accordingly.

Assiqgnment statements like defined expressions, are
interpreted in a stricly left to right manner. The receiving cell,
or destination (ie. the first cell on the left of the equals siqgn) ,
is used as the accumulator. All operations are performed on the
current contents of the receiving cell. The presence of more thar
one cell on the 1left of the equals sign indicates a multiple
assignment. Following evaluation of the expression using the first
cell on the left, the new value will be copied into the additional
destination cells.

3.2.1 Arithmetic Assigrients

ARITHMETIC_EXPRESSION = ('=' | .E)
#: 'UNARY MIUNS FOR FIPST ITEM ONLY :#
ARITHMETIC_VALUE
$(ARITHMSTIC_MONADIC_OPERATO®
| ARITHMZTIC_DYADTC_OPERATOP
(ARTTHMETIC_VALUE

{ '.CARRY!? #:FOLLCWING + | - ONLY :#

)

ARTTHMETIC_VALUE
= CELL #:ATTRIBUTE=INTZGER:#
{ INTEGER ;

POSITIVE_VALUE = SIGKNED_EXPRESSION £: VALUE>=C:# H

SIGNED_EXPRESSION = ('+ | Bimh ! .E) #:OPTIONAL SIGN:#
DEFINED_EXPRESSION

)

- 15 -
DEFINED_EXPRESSION = DFEFINED_VALUE
$((LV 1 11 1 Tyt | VA)
DEFINED_VALUE) 3

DEFINED_VALUE = INTZIGER
| IDENTIFIEP #:ATTRIBUTES=LITERAL,INTEGFR CR ADDRF

n
n

INTEGER = DECIMAL_INTEGER | LOGICAL_INTEGER H

DECIMAL_INTEGFR = .D $(£.D) 3

In an arithmetic expression the operands are interpreted and
treated as INTEGER values. An arithmetic expression may start with
a unary minus, in which case the receiving cell is loaded with the
negative of the first arithmetic value. Arithmetic values are cells
or LITERAL identifiers with the INTEGER tyve (decimal, binary,
octal, or hexadecimal). Following the first arithmetic value may be
a series of operators, some of which require an operand. The
monadic arithmetic operators need no operand. They operate in a
post-fix fashion on the current contents of the receiving cell.

ARITHMETIC-MONADTIC-OPERATOR
= (',ROL? | 1 ,ROR? | ',INC? [', NEC? | *.NEG!
&("B P:BYTE:=:# | .E #:WORLC:#)
1 { ".ASL' | '".ASR') & ('B' #:8YTE:#%# | .E #:WORD:%)
(*(' POSITIVE_VALUE ")' #:AMOUNT OF SHIFT<16:¢
! .E #:SINGLE BIT SHIFT:#%)
i '.AHS? #:ARITHMETIC HIGH SPEED SHIFT:#
&('"B' #:BYTZ:#%# | .E #:WORD:%)
"(* (ARTTHMETIC_VALUE
| SIGNED_EXPRESSION) LB #: SHIFT AMCONT:# -

The Arithmetic Monadic Operators correspond to all those PDP11
operations requiring only a destinaticn operand, a4applicable to
INTEGTR values., There is no commonly used special svmbtol that can
be selected to indicate these operations, so the appropriate PDP11
mnemonic operation code, preceded ty a point (.), is used as a
keyvord. The optional concatenated suffix B is used to indicate
that the operation 1is BYTE rather than WORD oriented. This also
corresponds to the PDP11 mnemonic operation code namina convention.
The B suffix is required if the operands are BYTE in length. The
arithmetic shifts have been extended artificially to allow multiple
bit shifting, since the PDP11 only performs single bit shifting.
Multiple bit shifting 1is actually acconplished by making the
appropriate number of single bit shifts. The number of shifts is
indicated ty a parenthesized positive value following the operation
keyword. This number must be less than 16.

st

There 1is a monadic operatigf which is not part of the PDP11
basic instruction set. This is the arithmetic high speed shift
(.A45), which is actually performed by the FAL (Fxtended Arithmetic
Execution unit KF11-A loaic option). This operation is defined as
monadic since it acts more like a function than an operation, the
actual processing teing handled try +the FEAT. In ©parentheses
following the keyword .AHS, which should be concatenated with B in
the case of BYTE 1length operands, 1is a parenthesized value
specifying the amount of the shift - a negative value for a left
shift, and a positive value for a right shift.

ARTTHMETTIC_DYADIC_OPERATOR
= s i '-' #:FOR BYTES: VALOES OF -1,0,1 ONLY:#
| Tx' | Y/' #:VALID ONLY WITH EXTENDED AU:# -

The dyadic arithmetic operators require a second operand,
corresponding to the PDP11 source operand. Addition (+) and
subtraction (-) have their usual meanings, and result in the
addition of the second operand to the receiving cell. If the second
operand happens to be .CARRY, the appropriate action of adding the
carry bit will be performed. 1In addition, the use of addition and
subhtraction with two cells reguires that both be WORD cells since
it is impossible +to add two BYIE cells on the PDP11, or to add a
BYTE cell to a WOPD cell. A #1 or -1, or a LITERAL or an INTEGEPR
with a value of +1 or -1 will conpile to an .INC or .DFC, whichever
is appropriate. This mav be specified for RYTE as well as WORL
cells. The dyadic operators, multiply (%) and divide (/), may onlyv
be used with the FAEZ unit. Zxamples:

RO=R1+2;

Register 20 is loaded with the value contained in register
R1, and then 2 as an immediate operand is added to RO.

« LITERAL INT=15;
R2=-INT:

Register PR2 is loaded with the value of INT (ie. 15) and
then negated.

.INTEGER I3
« RELATIVE L.J.INTEGER J(10)=5(0);
I,J(0)=J(C)+1C .ASL .INC .NEG

I is loaded with the wvalue of the array element J{7)
(initially zero) to which 10 is added. The contents of T
are shifted 1left one (ie. multiplied by 2), incremented,
and then nejated, resulting in the value =21, Finally, the
value I is copied into J(0).

.LITEPAL TINDEX=4;
.INTEGER .RELATIVE K(17);:
R1,K{(R1+2) =INTFX;

Fegister 71 is loaded with the value of INDFYX. Then, K(&),
the fourta element of the array K, is set to 4. XK(6) is
the indicated <clement Ltecause B1 now contains 4 plus an
offset of 2 ie. X(R1+42)=K(4+2)=K(6).

17
3.2.2 MAddress_Assignment Statements

ADDRESS_EXPRESSION
= ALDRESS_VALUE
$('.ASL' | *,.ASR?
| ('+' | '-v) ADDRESS_VALUE) ;

ADDRESS_VALUE
= CELL #:ATTRIBUTS=ADDRESS:#
| INTEGEFR
| °".ADDRESS' (' MEMORY_CELL ')°?

Address assignment statements, are assignment statements with
ALCDRESS cells on the left, and an address expression oan the right
of the assignment operator (=). Address expressions are a sutset of
the arithretic expressions, and consist of an ADDRESS value
followed by a sequence of monadic operators (the arithmetic shifts)
or dyadic operators (+ and -) which must be followed Ly a second
ADDPESS value. Since all ADDRESS values must be WCRLs, only shifts
on full words are permitted.

An ACDRESS value may be either a cell with the ADDRESS
attribute, an identifier which is an ADDRESS LITERAL, an TNTEGER,
or the address of a memory cell as indicated by the keyword
.ADDRESS followed by a cell identifier in parentheses. The compiler
will generate the appropriate code to produce the atsolute address
of the cell at execution time. The cell may be allocated 1in the
stack.

Exanples:

. ADDRESS SARRAY (20), INDEX;

INDEX=3;

RO=INDEX-1 .ASL #:GIVES BYTE DISPLACEMFNT#:;
RC=R0+,ACDRESS(SARRAY) ;

AR0=R0O;

Tn this example, a random element of the STACKER, ADDEESS
array SARRAY is set with its own address, where the randcn
element happens to be the third one. The correct byte
displacement of 4 is generated in RO by INDFX-1 .ASL. Then
the starting address of the STACKED array, which is
provided by .ADDRESS, is added to the displacement. The
fourth assignment statement actually sets the specified
address to itself.

. INTEGFR JLITERAL INDEX=5;
.ADPRESS .RELATIVE RAPRAY(16):

.ADDRESS LLITERAL BASE=.ADDRESS(PARRAY);
.ADDRESS .RFLATIVE DISP=INDEX-1x2;
RARRAY (0) =BASE+DTISP;

RARRAY (C) =dRARRAY (0) ;

RARRAY (0), after execution of this code, will contain the
address of the fifth element of RARRAY, ie. the one with a
displacement of 8, as specified bty the value of DISP.

T

- 18 -
3.2.3 Logical Assiqnment_Statements

_———— e e

LGGICAL_EXPRESSION
= ('=' | .E) #:UNARY OP FOR FIRST ITEM:#
LOGICAL_VALME
$(LOGICAL_MONADIC_OPERATOR
| LOGICAL_DYADPIC_OPERATOR LOGICAL_VALUF)

CELL #:ATTRIBUTE=LOGICAL:#

LOGICAL_VALUE =
| LOGICAL_INTEGER
i

CHARACTER_STRING #:LENGTH=1. AS BYTE VALUE ONLY:#;

LCGICAL_MONATIC_OPERATOR

= '.,COM" #<COYPLEMENT:# & ("B' #:BYTE:% | .E R:WORD:?%®)
i Y,SWAR' ¥:5SWAP BYTES; ARGUMENT MUST BE WVORD:#
1

* . LHS' #:LOGICAL HIGH SPZEC SHIFT, WITH HIGH SPEED AU ONLY: ¥

&E('"B" B:BYTE:%® § ,E #:WORD:#)
(' (ARITHMETIC_VALOE
| SIGNED_EXPRESSION) Ly #:AMQUNT OF SHIFT:#

LOGTCAL_DYATIC_OPERATOR
= ('.BIS' | '".BTC') E&('B' #:BYTT:# |

.E ¥:WORD:?)
#:0PERAND THAT FOLLOWS USED AS MASK:#%

LOGICAL_INTEGER

- |.x{l 5(.D ' 'A' I IBI ‘ lCl ' ID' I IEI I 'Fl)
$(&(.D | YAY | 'BY | 'CY | 'DY | VE' | tFY)
BI)I

] '.O0(" & .N R:VALUECS]:#
$(% .D ®:VALUE<R:%)
gl)l
i VUB(' O E('0Y | 'Y) SCE('0Y | *1')) AN

Logical assignment statements consist of LOGICMIL cells on the
left of the assigament operator and a legical exprassion on the
right. A lcgical expression consists of an optionallv cotclemented
LCGICAL value followed by a sejuence of logical monadic operators,
or logical dyadic operators and operands which are also L[OGICAL
values.

LCGICAL values include any cell with the attrihute TOGICAL,
LCGICAL LITERALs, INTEGERs, and character strings of length 1 which
may only be used as BYIT values. The logical nmonadic overators
include complement (.COM) which can be used c¢n 3YTE values by
concatenating a B to it, swap bytes (.SW2B) which may be used only
on WORD values, and the logical high speed shifts which are valid
only with the arithnretic unit. These logical shifts may ke
WORD or RVTE oriented, as is the cas2 for the arithmetic high speed
shifts. The amount and directicn of the shift 1is specified at
execution time by the arithmetic cell or signed expressicon that
follows the operator kevword 1in parentheses. In logical shifts,
zeros are used to fill vacated tits.

--19 - .

There are only two logical dyadic operators .SET and .CLR,
which correspond to bit setting and bit clearing respectively. The
logical value that follows 1is used as a mask. RBoth the setting and
clearing operators can te used with BYTE or WORD values.

Examples of Logical Assignment statements;

« LOGICAL JLITERAL L.BYTE A=.X(8C),R=:X{40),
. D=.%X(20) ,C=.X(10) s
.LOGICAL LBYTE FLAG;
FLAG=FLAG . X (FO) ;
FLAG=FLAG .BICB C;

The first logical assignment statement sets the high order
four bits of FLAG, 1leaving the 1low order four bits
undisturbed. The second logical assignment statement
clears the fourth bit from the left of FLAG.

.LOGICAL ABC;
ABC=.X (C55C) .COM .SWAB;

ABC is left with the value .¥(C55C)=.B(1C10910101011010)
as a result of complementing and swapping of .X{C55C).

3.3 Control Facilities

The PPL language provides several methods of controlling the
execution sequence of the resultant code. The main otjective of PPL
program control statements 1is to decrease the need for programmer
generated labels and to increase comprehensibhility.

3.4 Statements

3.4.1 Null Statement

NULL = *3% $#:VOID STATEMENT:# ;

The NULL statement 1is the simplest statement of all - it does
nothing. The NULL statement is indicated simply hy a semicolon (3),
which 1is the normal statement terminator. It is preset 1in the
lanquage simply as a space holder., Its use and utility will be dem-
onstrated in conjunction with other control statements.

3.4.2 TIf Statement

IF = ".IF* PBOOLFTAN_EXPRESSION ',THEN' STATEMENT
(".ELSE' STATEMENT | L.E)

The IP statement provides for the conditional execution of the
statement in the .THEN clause, ie. the statement follcwing .THEN,
The .THEN clause will be executed if the Ltoolean expression has the
value true. The .ELSZ clause 1is optional. When present it is
executed if the boolean expression has the value false. In general,
following. the execution of either the .THEN, or the .ELSE clause
(if one is present) control normally passes sequentially to the
next statement.

e I I HHHGCCEGEGEET

TP statements may be nested, with an IF statement appearing irn
either the .THEN or .ELSE clause. When IF statements are nested,
.ELSF clauses are paired with the immediately preceding, unmatched
.THEN clause Thus, in g = .IF B1 .THEN ,IF 32 ,THEN S1;
LELSE S2: statement S1 will be executed if RBR2 is true while 52 will
be executed if B2 is false, both providing that B1 is true. The
.THE=Y clause: .THEN 51 and the ,ELSE clause: .ELSE 352 both belong

to the same IF statement. As a further exanmple, consider LIP 21
.THEN .IP B2 .THTEN S1:; .ELSE S2; .ELSF S3; S1 will Pe executed if
B1 and B2 are both true, S2 will be executed if B1 is true and B2
is false, and S3 will be executed if B1 is false since the .ELSE
clause: .ELSE S3; pairs up with the first .THEN clause.

The NULL statement may be used to force the proper pairing of
. THEN and .ELSE clauses, Consider

.IF B1 ’
.THFN .IF B2 .THEN S1;

«ELSE;
.ELSE 52;

in which the NULL statement is used in the first .ELSE clause. This
forces the second .FLSE clause: ,ELSE S2; to bke associated with the
first ,THEN clause and the value cf B1.

BOOLEAN_EXPRESSINN
= BOOLEAN_AND
#:CONDITTONS SHOULD APPTAR FIRST IN AN EXPRESSION:#
$(*{' BOOLEAN_AND) ;

BOOLEAN_AND :
= POOLEAN_PRIMARY $(&' BOOLEAN_PRIMARY) :

BOOLEAN_PRIMARY
= CONDITION ®#:CHRRFNT CONDITION CODE STATI:#
| '~" BOOLEAN_PRIMARY
1 *{' BOOLFLN_EXPRLSSION ")°'
| PELATION #:RZLATION BETWEEN TWO VALUES:# .

COMPARISON_VALYJE
= CTLL #:ATTPIPUTE=INTEGER CR ACDRESS:#
] DEFINED_EXPRESSION :

CONDITION
= & _xQ¢ | ' NE
| '.GE* | 1L T! | '.GT? | '.LF?
i ", PL? | VUMTY
| ! <HI? | '.HIS! | t.LOY | ' . LCS!
i 2 el | 1.V
1 " CcCe | '".CSt .

- 21 -

A btoolean expression consists of a toolean AND followed by a
sequence of boolean ANDs seperated by | which is the operator for
OR. A Lboolean expression is true if any one of the toolean ANDs is
true, and false if and only if all of the Ltoolean ANDs are false.

A boolean AND consists of a boolean primary followed by a
sequence of bcoolean primaries seperated by &, the operator for AND.
.A boolean AND is true if and only if all of the toolean primaries

are true, and false otherwise. ’

A boolean primary may be a condition, which refers to the cur-
rent state of the. condition code bits in the PDP11 Central
Processor Status FRegister. The condition codes are used in the
simple and signed conditional branch instructions of the PDP11. A
condition 1is true, and thus the toolean primary it represents is
tcue, when the corresponding ?DP11 conditional branch instruction
would result in a branch. The conditions are provided to allow
selection of the .THEN or the ,FLSE clause dependent upon the
results of the preceding instruction (at execution time) that set
the conditions., A condition may only appear as the first boolean
primary of the first boolean AND in a boolean expression, since
subsequent boolean primaries will invariably change the state of
the condition code bhits.

The other types of boolean primaries include the complement of
a boolean primary, as 1indicated by a prefix (-) before a
parenthsized ©boolean expression. Boolean expressicns are evaluated
with +the normal precedence of the toolean operators (= taking
precedence over & which in turn has precedence over | , and not
left to right).

RELATION

= COMPARISON_VALUE #:EXCLUDES LCGICAL:#
(LI L EL B L DL B T ' B L D EL B T P B B PP I B L I
COMPARISON_VALUT #:ANY BUT LOGICAL:?%

| LOGICAL_VALME
('=' |
I '.BIT" &('"B' #:BYTE:#% | .E #:WORD:#%)
LOGICAL_VALNE

#:VALUES HUST AGREE IN TYPF AND LENGTH:# ;

The relations provide a way of comparing two values of like
type and length, where the values may be arithmetic, ADDRESS,
LCGICAL, or defined expressions of the appropriate tvpe. A relation
is true 1if the 1indicated condition is met. Fcr arithuetic and
ATDNDRESS valnes all the normal arithmetic relations are permitted.
However they are interpreted differently depending on the apbparent
types of their values. A relation between arithmetic wvalues is
treated as a relation Letween binary two's complement values
(either BYTEs or ¥03Ds), while a relation tetween ADDRZSS values is
treated as a relation tetween unsigned, 16 kit integers. Two values
of type LOGICAT. (or a LOGICAL value and a defined expression) mav
be tested for eguality or inequality. The PDP11 bit tast comparison
mav be used, as indicated by the .BIT relational keyword between
two LOGICAL values. In a bit test, which may be for BYTE or 9YORD
values, the second 1logical value 1is used as a mask, 1indicatingqg
vhich bits are to te tested. A bit test is true if any of the
indicated bits are set (ie. have tinary value 1), and is false only
when all of the indicated bits are clear (ie. binmary value 9). It
can happen that no specific type of value is indicated, as in the
case of the assignment statement where both values refer to
indirectly addressed cells. When no specific type is indicated, the
comparison will he made under the assumption that both values are
of INTIGER type.

- 22 -
Examples of Boolean Expressions:

. INTEGER A,E,C;

[

.IF A=B | C<=RY

The bhoolean expression. is true if the value of cell A is
equal to the value of cell B, or if the value of cell C is
greater than or equal to the value in register R4,

.INTEGER A
.TOGTCAL B;
. ADDRESS ALDR;

.IF A=1 & (B .BIT .X(FF) | »ADDR<RC)

The boolean expression is true only if the value of cell A
is equal to 1 and either of the two relations contained
within the parentheses 1is true. The first relation in the
parenthesized subexpression, a bit test, is true if any
of the low order eight bits of the HWORD cell B are set.
The second relation in the parenthesized subexpression is
true if the value accessed indirectly via ADDR 1is less
than RO, The conparison is made assuming that bhoth values
are binary twvo's complement numbers since neither wvalue
has a definite type.

"Note: The compiler will translate Loolean exfrressions into a
compare-and-tranch sequence, This sequence is constructed so that
conmparisous will he suppressed whenever possible. Thus, if it is
found that the first boolean primary of a hoolean AND is false, the
evaluation of the other primaries in the AND may bhe skipped, since
the value of the boolean AND must be false. Similarly, if it is
found that the first boolean primary of a boolean OR is true, the
evaluation of the other primaries 1in the OR may b= skipped since
the value of the boolean OR must ke true.

3.5.3 Case_Statement

CASE = ',CASE! ({ ANDDRESS_EXPRESSION | ARITHMETIC_EXPRESSION)
'.0F"
STATFMENT
$(STATEFEINT)
'.ERD? 3¢ :

CASE statements permit the selection of one of a sequence of
statements according to the cutrrent value of the WORD, INTREGFR cell
specified following the .CAST keyword. The statemert whose ordinal
nurber is equal to the cell value is selected for execution, arnd
the otker statements in the sequence are ignored. Following the
conpletior of the selected statement, ccntrol 1is passed to the
statement following the CASE statement.

Example:

.CASE R3 LOF
R1=R1+R2;
R1=R1-R2;
R1=R1 .ROIL;
R1=R1 .ROR;

29T -

R1=R1 .INC: #: IDENTICAL TO R1=R1+1 :#
R1=R1 .DEC; #: IDFNTICAL TO R1=R1-1 :#
R1=P1 .NEG; 2 IDENTICAL TO R1==-R1 :=#
« END; ’

#:ONLY ONE STATFMENT EXECUTED:¢

3.u4,4 While Statement

WHILE = 'Y,WHILE' BOOLEAN_EXPRESSION *,DO?
$(STATFMENT)
' _END!? 1o :

The WHILE statement denotes the repeated execution of the
sequence of statements following the keyword .DC, upto the keyword
.END, as long as the bhoolean expression following the keyword
« WHILE is true.

Exanmples:
_« WHILE RC-=aR1 .DO R1=R1+2; . END;

In this case the value pointed to by R1 is ccmpared to the
value of PC, and when they are not equal R1 is stepped &Ly
two. Thus, if R1 points to a table of values, +the table
may be searched for a match with the contents of PO.

«HHILE RO-=dR1' .DO #:NULL:#; .END;

This example. is similar to the one above, except that R1
is incremnented using the autc-increment feature. Since the
comparison 1is imprecise, 1ie. neither value has definite
attributes, it will be made assuming WORD INTEGTER values,
and the amount of the auto-increment will be 2. In this
example R1 will be 2 greater than the value at which the
match was found since the auto-incrementing takes place
regardless of the results of the comparison.

3.4.5 For_Statements

FORrR = ', FOR?
POR_LIST i L FOR_LTIST) #:SEQUENTIAL EXECUTION:®
t.00°
$(STATEMENT) #:FOR LOOP BODY:#
" END' ;! :

FOP_LIST = CFLL *'=' (AFRTTHMETIC_EXPPESSION
| ADDRESS_EXPRESSION)
(*.STEP' ('-' | ,E) (ARTTHMETIC_VALUF | ADDRESS_VALUE)
{ .F #:STFP BY 1:%)
' ONTIL®
('=' | tas=t' | <Y) > 1E=0 | IO= | TadY | a0
| .2 ¥:DEFAOLT IS ">" :¢
(ARITHMETIC_VALUZ | ADDRESS_VALUE)
#:CELL, ZYPRTSSION, AND .STEP AND .UNTIL VALUES :%
#: MUST AGREE IN TYPE AND LENGTH. :#
'.WHILE' 300LEAN_EYPRISSTON
$:MAY NOT CONTAIN CONDITION TESTING:#

(

i .E) ;

- 24 -

The FOP statement specifies the repeated execution of the
sequence of statements cnclosed in the keyword delimiters .DO and
.END, which will be called the FOR_loop tody. The statements in the
FOL_loop tody are executed as long as all the statements of the
FOR _lists have not heen completed. More than one FOR_list can ce
given in a FOR statement, indicated by separating the FOR_lists
with commas. Multiple FOR_lists are used scquentially, ie. the
statements in the FOP_ loop body are executed the appropriate
number of times for the first FOP_list, and then control passes to
the second FOR_list, etc. '

The FOR_lists consist of a cell (the control cell), an equals
sign followed by an expression similar to an assignaent statement,
specifying the initial value for the control cell, an optional step
value which follows the keyword .STEP, and a limit value vhich
follows the keyword L_(UNTIL . Preceeding the limit value may be an
equality or relational operator specifying the condition at which
the FOR_1list 1is complete. Hhen neither an equality or relational
operator is supplied, the relation '"greater than" (>) is assumed.
If no step value is given, the default is 1.

At the beginning of the execution of A FOR statement
(FOR_1list) the control cell is set with the initial value and is
then compared to the 1limit value nsing the specified relaticn. TIf
the comparison yields a true result, the FOR_list is satisfied and
the entire process is repeated with the subsequent FOR_lists, it
any vere given. If the svecified condition hetween th2 value of thae
control cell and limit value is not met, ie. the comparison vyields
a false result, the statements in the FOR_loop tody are executed.
Then the step value 1is added to the control cell. The process of

comparing the control cell value with the limit value, executinfg

the statements in the FOR_loop tody and incrementinjy the control
cell value is - repeated until the comparison condition 1is true, at
which point control is passed to the next FOR_list if multiple
FCR_lists were specified. When all the FOP_lists of a statement
have been satisfied, control passes to the statement following the
«END delimiter of the FOR_loop body.

Fxanples of FOPR statements:

.INTEGZR .RELATIVZ ARRAY(20),I;

R1=9;

.FOR I=1 LJUNTIL 10;
. DO
ARRAY (R1')=T;
« END;

The array elements are set with their ordinal index. The
control «cell T takes on the values 1 to 1" in steps of 1,
vhile the appropriate eclement of the array is selectead
using the initial zero value of R1 with auto-increment (ty
2 since the array is made up of WORDs by default).

.INTEGFR .RELATIVE ARRAY (40),I;

R1=3;

.FOR I=1 ,UN™IL 103 «.STEP -1 _UNTIL >1 /
. DO
ARRAY (R1")=T;
« END:

Similar to above, except that the array elements will have
the values 1 to 12 and then 17 to 1, sequentially.

3.4.6 PRlocks - 25 -

—_—————

.BEGIN'

{ IDENTIFIFP_DECLARATION)
(PROCFDURE_TCECLAPATION)
{ STATEMENT)

+END?Y ':' :

m

Blocks are used to group a sequence of statements into a
structural unit which as a vhole is classified
syntactically as a statement., Identifiers may be declared within a
blcck. These identifiers may te used 1in any of the subtsequent
declarations or statements within the ©block, ©but are not knowvn
outside the bhlock unless they have the EXTERNAL attribute.

Examples of Blocks:

. IF R0O=1 .THEN .BFGIN
R1=2;
R2=5;
« END;

The THEN clause is made up of a block. All of the
statements in the block will be executed if the toolean
expression holds.

+.CASE R1 ,0OF
X=1;
-.BEGTIN X=1; Z=1: .END:
X=3;
« END;

The second case of this CASE statement is a block, thus
alloving more than one action to te performed.

STATEMENT ${ LABEL_IDENTIPIZR f:" #:M0ST BE ON SARF LINE AS LAEFL:#)
IF | WHILE | FOPR | CASE | GOTO

PROCEDURT_CALL | FINCTION

ASSIGNMENT

BLOCK

RETURN

NULL) H

SR

LABEL_IDENTIFIER = L $(F&5(.21 'Yy)

-d

e

- 26 - :
Any statement may be preceeded by an artitrary nunmter of
labels, each followed ©ty a colon (:) which must be on the same card
as the associated 1laktel, <Label identifiers are not explicitly
declared, but are declared contextually by their appearance as a
label of a statement. The latel identifier may te chosen freely,
with the restrictions that no two statements in the same block may
have the same label, and that the identifier is not the same as any
other declared identifier within the tlock.

There are two tvpes of declarations, the identifier
declaration, used to associate an identifier with a particular
cell, and the procedure declaration, used to associate an

identifier with a procedure.

3.4.7 Procedures

PROCEDURE_DECLARATION
= ¢ ,PROCEDORE! SIMPLE_IDENTIFIER ((" REGISTER ")?
| .F #:LINK VIA STACK:®)
11
’
$(IDENTIPIER_DECLARATION)
$(PROCEDURE_CECLARATION)
$(STATEMENT)
".END' SIMPLE_IDENTIFIER #:PPOCEDNRT NAME:# L
| ' . PROCEDUORE' *,EXTERNAL! $:TO DECLARE PPOCEDURE EXTEENAL:#
SIMPLE_ICENTIFIER (*(* REGISTER '")!

| .E #:LINK VIA STACK:#*)
'

’
#: FOR IDENTIFYING EXTERNAL PROCLCDURE NAMES :#

A procedure declaration serves to associate an identifier with
a sequence of declarations and statements, called a grocedure body.
This identifier may then be used in a procedure <CALL statement to
invoke the execution of the vprocedure ©body anywhere within the
block in which the procedure declaration resides. The identifier is
given the PROCEDMAFRE attritute,

There are two types of procedures, INTERNAL and FXTERNAL.
INTEGNAT. procedures have their procedure bodies specified within
the declaration, and may be invoked only within the block in which
the declaration resides, FYTIPNAL procedures, whose Adeclaration is
precaded ty the keyword .TYTER"NAL, have their procedure bodies spe-
cified elsewhere. IXTTFRNAL procedures may te invoked from any block
in which an appropriate declaration resides.

Following the keyword .PROCEDURE is a simple identifier which
is the procedure name, and an optional 1link register enclosed in
parentheses. The link register specifies which register 1is to
contain the linkage pointer to the procedure CALL statement which
invokes the procedure. DNuring a procedure CALL in which a register
is specified, the original contents of the link register are saved
in the stack Dbefore it receives the linkage rfpeinter. W¥hen no
register is specified, the linkage pointer is stgored in the stack.
A semicolon 1nust follow the procedure head ({ie. the procedure,
identifier and optional register).

- 27 =~ '
For INTERNAL procedures, the procedurs body follows the
procedure head. The procedure body is terminated bty the keyword
+ END followed by the procedure name and a semicolon. The procedure
identifier 1is required following the .FND to allcw the compiler to
check that all blocks and procedures within this procedure body
have been terminated, ie. a matching .END was found for each. When
a procedure 1is invoked, the statements in the rrocedure Lody are
executed in sequential order, assuming none of the statements alter
the flow of control. Control 1is passed back to the point of
invocation when the LEED -delimiter of the procedure tody is
reached. The 1linkage pointer should ¢te in the specified 1liank
register when the ,FND delimiter is reached. If no link register
was specified, the linkage pointer is retrieved from the stack.

For EXTERNAL procedures, only the procedure head is required.
The procedure body may then be specified in another, seperately
compiled, procedure. PReferences to it are resolved in the same
external symholic environment that is used for resolving references
to other identifiers with the EXTERNAL attribute.

3.4.8 Procedure_Call Statement

PRCCEDURE_CALL = ',CALL' SIMPLE_TIDENTIFIER #:ATTRIBUTE=PROCEDUPRE:#

11
v

The procedure CALL statement 1is used tc invoke the procedure
whose identifier follows the keyword .CALL . Upon completion of the
invoked procedure, control is automatically returned to the
statement immediately followinag the CALL., The identifier in the
CALL must have the attribute PROCEDUPE, and therefore must have
previously appeared in a PROCEDURE declaration. It is then known
which register is to be used as the link register.

3.4.9 Return Statement

RETURN = ',RETURN' '3;* #: GENERATES APPROPRIATE RETURN JUMP:%

The PFETUPY statement may be used to force the return of
control to the point of invocation from anywhere within the
procedure, and is thus equivalent to reaching the .FXD delimiter of
the procedure declaration.,

3.4.10 Goto_Statement

GOTO = '.GOTO' LABEL_IDENTIFIER ';*'

The GOTO statement provides for the explicit transfer of
control to the statement wvhose label matches the label identifier
in the GOT0 statement. This identifier must te the latel of a
statement within the procedure in which the GOTO statement resides,
although not necessarily wvithin the same tlock. The interpretation
of a GOTO statement proceeds as follows:

28
1. Consider the smallest possible block containing the GOTC
statement,

2. If the label 1identifier designates a statement in this
- block, program execution resumes at that point. Otherwise,
execution of the block is regarded as terminated and the
next largest bhlock is considered. Step 2 is then repeated.
Care should be used when branching to the inside of a FOR,
CASF, or WHILE statement body. Mo check-is made for this
possibility and execution will proceced as descrited for
these statements wusing the current values of the control
variables., It is impossitle to tranch into a nested inner
block or procedure,

3.4.11 Functions

FUNCTIONS =('.HALT®* | '.WAIT' | '.RESET!
TLEMTY ' (v DOSITIVE_VALUE #:VALUE < ,0(U40OC) s# 1)1
*.TRAP' ' (' POSITIVE_VALUE #:VALUE < .O(400)z& 1)°
Y.CLRY t(* v.v B(E(C V|7 N)))
"USETY (Y v B(E(C | V| Z | N)) "
*.IOT' ('(' IDENTIFIER &(',' IDENTIFIER) ')
#:LITERALS ONLY AS TOT PARAMETERS:#

I -E)

Functions provide a method of interacting with the PRP11
hardvare. 211 but one of the functions correspond directlyv to the
machine operation with the same mnemonic. The pcsitive values of
the trap (.TRAP) and emulator trap (.EMT) functions correspond to
the value in the machine instruction available for transmittal +o
the trap routine. As a result they must ke within the ranqge C to
+0(477). The clear (.CLR) and the set (.SET) functions provide for
the explicit setting or clearing of one or more of the condition
code bits. The bits to be modified are indicated by the ¢, VvV, Z,
andi N codes which correspond +to their similarly named hits in the
Processor Status Register. The first code must be preceded by a
point (.). If several bits are specified, their ccde letters should
be concatenated.

The IOT functior allows interaction with the PRP11 input/
output executive system. The ICT function may be fallowed by any
number of LITERAL identifiers, enclosed 1in parentheses anc
separated by commas. The values of LITERALs will e generated
in-line and are used as parameters by the input/cutput executive.
There are no restrictions on the numbher, type or length of the
LITFRAML.s; WCRD LITERALs will be aligned to a full word boundary if
necessary, while BYTE LITERALS will be packed in the resultant
code.

3.5 Program_Procedures

PROGRAM = '.PROCELIMNRE?
' (" MAIN'
{ <. INTERRUPT!
{ (*“EXTERNAL'| .E) #:EXTERNAL:#%)
IMPLE_IDENTIFIER
"{'* REGISTER ")? #¥:INVALID POR .INTERRUPT CR .MAIN:#
.E #:LINK VIA STACK:#%)
- 0
{ IDENTIFIER_DECLARATICN)
(PROCEDURFE_DECLARATICN)
{ STATEMENT)
«END'" SIMPLE_IDFNTIFIER #:PROCEDURE NAME:#

5
{
{
L]
$
$
$
1

There are three types of separately compiled program
procedures that may be used as PCP11 programs. A MAIN program 1is
the procedure which receives control after loading an entire
program into the PDP11., An EXTERNAL ©proqram procedure is a
sub-proqram which receives control via a procedure CALL statement.
An INTERRUPT proqgram procedure is a sub-program crocedure that
receives control via an interrupt.

The principal difference between the three typres of progranm
procedures 1is the way in which they receive and return control. A
MAIN procedure, as indicated by the keyword .MAIN, receives control
from the PDP11 1loader program via a jump, and upon completion
enters into the WAIT state with a jump to itself. ¥No link register
should be given for a MAIN program procedure. An EXTFRNAL program
procedure receives control via a procedure CALL (a PD211 JSEP
instruction), and upon completion returns control via a PDP11 RTS
(return from subroutine). FYXTERNAL ©procedures may specify a link
register, and if one is given it is the programmer's responsikility
to see that the link address 1is contained in the register upon
completion of the procedure (whether 1indicated by a RETURK
statement or by reaching the procedure .END). The EXTERNAL progran
procedure is the only way to specify the body of an FXTFRNAL
procedure. An INTERROPT program procedure, as indicated &Lty the
keyword INTERPUPT preceeding the procedure head, receives control
via an interrupt vector which provides both the starting point of
the interrupt and an initial valne of the processor status rejister
(the original values of these two registers are saved in the
stack) . INTEERUPT procedures return control via a PDF11 RTI (return
from interrupt). No link register may be given for TINTERRUPT
procedures. Two special keywords may ke used within an INTEPRUPT
procedure as SYNONYM identifiers, ,LOLPPC and .OLDPS may be used as
SYNONYM identifiers (for WORD,STACKED identifiers only) for the old
program counter value and old processor status value respectively
vhich were pushed into the stack ty the interrupt handler. Thus, an
interrupt routine mav gain access to these values, and, indirectlyv,
to a trap value.

Following the program procedure head is a procedure hody that
is identical to that of an INTERNAL procedure. Like the INTERNAL
procedure declarations, the procedure thtody is terminated hy .END
keyword followed Py the procedure name and a semicolon.

3.6 Identifier Block

IDFNTIFIER_BLCCK
T " .DATA! SIMPLE_TIDENTIFIER
('".LOCATION' ' (' POSITIVE_VALHNE ')?
.E)

|
(IDFNTIFiER_DECLARATION) #: WITE SPECIAL RESTRICTIONS:#
.END' SIMPLE_TIDENTIFIER #:IDENTIFIER ELOCK NAME:#

-1

L]

- = in e

IDENTIFIER blocks provide the only meanrs of specifving the
location, names and values of EXTERNAL, non-procedure identifiers.
An IDENTIFIER block begins with the keyword .IDENTIFIER followed hy
the name of the block, and optional 1location value in parentheses 5
following the keyword .LOCATION (specifying the atsolute adiress at
which the block is to he loaded), and a semicclon. The hody of an
IDENTIFIER block consists solely of identifier declarations. The
RELATIVE identifiers in these declarations have the defanlt scope
EYTERNAL. The space for the identifiers is allocated within their !
bPlock, and is relative within the bhlock. The identifiers may kte '
initialized and synonymized within the hlock. The identifier }
declarations must satisfy the following restricticns:

1. No allocation attritute other than RELATIVE and [ITFPAL
may be specified.

2. No LOCATION modifier may bke given.
The identifiers declared within the IDEXTIFIFR block are compiled
in exactly the order in which they are presented, thus allowing for
the initialization of irterrrupt vectors. The LOCATIONY value of the
identifier is used to properly locate the vectors.

Examples of Identifier Rlocks: '

. TATA TRPVCT .LOCATION (.0 (30));
.FXTERNAL .ADDRFSS EMIT #:EMULATOR TPAP FEOUTINE:#
,TPAPT #: TRAP ROUTINFE :¥;
. ADDRESS VECTOR(8)=(.ADDFESS(FMIT),.X (0020) #:PROCESSOR STATUS
(PRIORITY) =4,
.ACDRESS (TRAPI),.X (00AN) #:PROCESSOP STATHS (PRIORITY) :%);
.END TRPVCT ;

The emulator trap and trap vectors could be specified in this
manner.

.DATA PRTBLK 3
.INTEGER PLINF=0,MAXLINE=E],
PAGE=03
+ FND PRTBLK

An identifier block of this type might be used to hold printer
control information.

3.7 Program TCeck

DFCK = (OPTIONS | .F #:0SFE DEFAULTS:#)
${ PROGPAM | TIDENTIFIFR_BLCCK)

' . DECKEND? ;

OPTTONS = '.OPTIONS'

.(l

$(("NOT | .F)

§('FOBJ' #:FORMATTED OBJFCT LISTING:#

*BORJ! #:COMPLETFE OBJECT CODE LISTTNG (BLOCKED) :#
'XREF' #:CROSS KEFFRENCE DICTIONARY:#
"ATTR' #:LIST OF ALL ATTIRIBUTES FOP IDENTTIFIERS:#
'LOAD' #:0BJECT CODE PROLUCED ON "//SYSOUT" <4
*COPY' #:0RJECT CODF COPY PRODUCED ON "//SYSCOPY":#
'ERRL' k:FRROR REPORT GENERATED ON "//ERREP" :#
"SOPT' %#:STORAGE OPTIMIZATION:®
'HSAU! #:COMPILE CODE FOR HIGH SPEET ARITH. UNIT:#
"'
) l)l l;'

#:DEFAULTS= ok
#: NOFORJ o ¥
#: BOBJ .
#: XRFEF : &
#: ATTR b
L LOAD HE
B: NocoPY o8
g2 NOEPRRL bR
#: NOSOPT b
- NOHSAU - .

A deck, as input to the compiler, consists of an optional
OPTIONS statement, followed by a sequence of procedures or
IDENTIFIER blocks. The options specified in an CPTIONS statement
hold for all the programs or IDENTIFIER blocks that follow, each of
which is treated as a completely seperate entity.

An OPTIONS statement consists of the keyword .0P™IONS followed
by a parenthesized list of options seperated by commas, and termin-
ated with a semicolon. Fach option may be concatenated with the
prefix NO to indicate if is not desired. There are defaults for all
the options. The HSAU ootion tells the compiler that the arithmetic
dyadic operators % and /, the arithmetic monadic operator .AHS, and
the logical monadic operator .LHS may be used in this compilation.
A detailed discussion of the other options is included in Section
u.

Source code may appear in columns 1-72, inclusive. Columns
73-80C may contain sequence numbers which will te reproduced in the
listing. The source code may be free format, ie. statements mayv Le
split over more than one card. KFeywords, identifiers and character
strings must appear entirely on one card (ie the intecrface Letween
column 72 and column 1 is considered to be a blank.) Any numbter cf
statements may appear on a line, subject to the physical limitaticn
of 72 characters.

3.8 Conmmentary

The user may insert commentary anywhere in a deck that a hklank
may appear (ie. preceding any terminal string or generic terminal
that is not concatenated as indicated by the metalinquistic &).
Commentary 1is delimited by #: at the begirning of the comment and
:# at the end. Commentary is ignored ty the compiler.

3.9 Scope,_Allocation_and Use of Identifiers

In general, an identifier is known, and usable only within the
procedure or bhlock in which it is declared, and within any inner
nested procedures or blocks. When an identifier is used within an
inner nested block or procedure, the following method (which is
analogous to that used for labels of GOTD statements) is used to
determine to which declaration the identifier refers:

1. Consider the smallest block or procedure containing
this instance of the identifier.

2. If the identifier appears in a declaration within
the block or procedure this is the declaration that
is used, ie. the cell to which this identifier
refers, Otherwvise, the next largest surrounding hlock
or procedure is considered and step 2 is repeated.

..33...
Example:

«.MAIN. PROCEDUPE XY7;

]
+-INTEGER I; (|
‘e $>I of XYZ
® |
. |
. PROCEDURE ABC; 4 4
+INTEGER I; 1
e i
. |
. |
I=1; I of ABC
. |
o |
. |
« BEGIN 2 2
- INTEGER Tg |
- |
. |
° |
I=2; I
N |
- i
. |
« END; 4 4
el |
» |
B |
.BEGIN 1
. i
* |
- |
I=13; t>I OF RBC
. |
. |
. |
- END: |
B i
e i
- |
+.FEND ABC: 4 1
I=4; |
. $>I OF XYZ
- |
. {
« END XYZ; . 4

The use of the identifier I within each of the three oroups is
conpletely independent of its use in the others, ie. the different
I's refer to completely different cells. There are some
restrictions that must be placed on the use of STACKED cells within
nested vrocedures. The compiler allocates space for STACKED cells
uron entry to the procedure or block within which the declaration
appears, by bumping the stack pointer. It frees the space upon exit
by restoring the stack pointer to its value upon entry. The
coapiler knows the relative location with respect to the stack
pointer of these <cells in the stack and will qenerate the
appropriate code to access them, Trrors «could cccur if the stack
pointer is not maintained at the relative 1lccation that the
compiler assumes is indicated. This situation wmay arise when a
STACKED variable in an outer procedure is refered to froa within a
nested procedure (nested by its declaration) which is not at the
same actual level of nesting at execution time. This is the case
with recursive procedures. The compiler will monitor the declared
nesting level of procedures or blocks and the potential actual

- 34 -
nesting level (by noting the use of procedure CALL statements), and
will flag as an crror any procedure CALL statcment that might give
rise to incorrect access of STACKED cells.

There are three methods of leaving a block: a GOTO statement,
a RETUDRY statement, and reaching the ,END delimiter of the block.
All must be able to correctly return the stiack pointer to its value
upon entry 1into the block. As a result, a certain amount of
additional overhead 1is incurred by the use of the RETIRN and GOTC
statements, Furthernore, the use of a GOTO statement which
references a yet unreached 1label (ie, a forward Lranch) may te
slightly wasteful of storage. Enough space must ke set aside for a’
hranch out of the current block and the attendant restoration of
the stack pointer, even though this space may not te required if
the label is subsequently found to be within the current block.

It should be noted that the compiler often allocates,
temporarily, values in the stack which are used in compiled code.
The CASE statement uses the stack transiently to calculate the
branch table address for the CASE. The FOR statement uses the stack
to keep track of which FOR_list of a multiple POR_list FCR
statement is currently in control. The stack is not used if only a
single FOR_list is specified.

3.10 Errors_and frror Recovery

When errors are detected during the scan of the source
program, they are flagged 1in the output 1listing (c.f. Section
4.1.1) . The compiler then attempts to recover control by skipping
the remainder of the statement in error, ie. by skipping to the
terminating semicolon.

_35-
4. PPL_Compiler Output

The compiler for the PPL lanquage may generate output on four
different data sets: a print data set, containing at least a
listing of the source statements and error messages, a data set for
the compiled object code, a data set for a copy of the cecmpiled
otject code (which might te used as a back up copy on tape, punched
cards, etc.), and a fourth data set for a separate error report.

4.1 Printed Ontput

Some of the printed output is optional and may te selected by’
specifying the avpropriate option in the OPIION statement. The
listing of the source code and attendant error messaqes is not
optional.

4.1.1 o0bligatory Printed_ Output

The obligatory printed output contains a cover page which
lists the OPTIONS statement followed by all the options used during
the compilation. 1In addition, a listing of all source statements
and attendant error messages is always printed. Fach source progranm
or identifier block is listed separately, with the first card used
as a title on each page. The title 1line also contains a page
nuaber. Each page, other than the options ©page, contains an
appropriate subtitle. The suttitle used for the source code listing
is shown in figure 1. :

| K I i K
COLUMN 11 1 1 12 1@ 992 2
NUMBER {1 8 2 5. 910 |2 910 4
i |]
I - I 1 [
HEADING i1 LGC BLK N STMT |==== CARD IMAGE ====]| SFQ. |CCNO
eee o 11 1 1 — 1
| ' | | card 1
CONTENTS J1000000 DD T DDD | card image |sequence |DDDD
- 11 1 1. _field |

0= Nctal digits
D= Decimal digits

PIGURE 1. _Source Proaram_Listing_Layout

FTach source card line will contain the followinag information
under the appropriate heading:

LOC - The relative location, in octal, of the first state-
ment on the card

BLK =-- the block number of the current block

N - the nesting level of the block, procedure, or sequence
of statements to which the statement belongs

STMT - the number of the first statement on the line
CARD - the source card image, including the sequence field
IMAGE

(SP+2) - the stack depth (+2) at the beginning of the line

CNDO - the card number of the card within the input deck

- 36 =

Errors detected in the source statement will he flagged with a
V above the character at which the error was detected. Preceding
the error flag will bhe FRROR AT V in the first 10 cclumns of the
line. Following the error flaqg will be an error code. A complete
list of all error codes, and an explanation of each, is given 1in
Appendix A. Following the listing of the source program will te a
copy of the error report information. This lists for each error the
card number, card sequence field, error number, and source code
surrounding the error point (cf. 4.3). '

Bach INTERNAL procedure will be flagged by a line specifying
the name of the procedure in columns 11 through 18. This line will
precede the source card containing the procedure head for the
procedure.

4,1.2 QOptional Printed Ndutput

4.1.2.1 Formatted Object Code Listing

If the option FORJ is in effect, a formatted 1listing of the
object code is generated for each source statement. The formatted
object code is listed 1in line with the source stateaents. On each
line appears the relative 1location in octal of the word or byte
(column 50), followed by a colon. For identifier declarations the
relative location has the following meaning:

RELATIVE - the location relative to the bheginning of the
program procedure for identifiers with the INTERNAL
attribute,or zero for identifiers with the
EXTERNAL attribhute

STACKED - the relative displacement of the variatle from
the stack pointer value upon entry to this
procedure or block. This value is enclosed in paren-
theses.

LITERAL - the location field is left Ltlank

The code necessary to bump the stack pointer follcws the
identifier declarations of a hlock or procedure.

The okject code word or byte bagins in column 62 and is
expressaed in octal form as follows:

REZLATIVE identifiers - initial values if any are given
STACKELD identifiers - blank
LITERAL identifiers - the value as it appears when

referenced in statements

machine code instruction - the first -word contains the
various fields, as defined in the
PDP11 handbook, separated by
blanks. Any additional words
needed by an instrnction are
listed on subsequent lines.

There a value is not known, for example the relative address of a
forward jump, question marks are substituted.

The statement number of the first statement on the 1line
appears in the STH™ column of the first line of code generated for
a statenent. Zach identifier declaration word contains +the
identifier name hbeginning in colunmn A0, and each machine
instruction explicitly specified by the source code contains the
corresponding source code beginning in column 60.

- 37 -
4.1.2.2 Blocked 0Object Code Listing

If the option BOBJ is in effect, a listing of the object code
is generated on a separate, appropriately subtitled page following
the the program procedure .ENL . Forward references to latels have
been resolved, and thus the corresponding branch or jump
instructions have their offset or index words filled. The blocked
object code listing consists of PPLLINK commands, and object code
in the following format: 16 octal words per line with either €
octal digits -each and 2 spaces between each word, or a pair of
octal byte values (3 digits) followed ty a space. The subtitle for
the blocked object code listing is shown in figqure 2.

1
COLUMN I
13
B

NUMBER 1
| |
|
HEADING {1 OBJECT CODE WITH LINKER COMMANES
11 = s
11 linker { commands or
CONTENTS)|
{1 _okiect |1 _code with 16 words_(in cctal) to the line

PIGURZ 2. Blocked Object Code Listing

4.1.2.3 Cross Reference Listing

If the XREF option 1is in affect, an alphabetized cross
reference listing is generated for each identifier declaration and
its use. The cross reference 1listing follows the blocked object
listinag, beginninrg on a new appropriately subtitled page. The page
and subtitle layout for the cross reference 1list are shown 1in
figure 3. Each declared 1instance of an identifier is listed
separately, with 1its location value, 1length, declaration card
numbher, and the statement number of each reference to the
identifier.

The location value field is in octal, and has the following
meanings for identifiers:

RELATIVE - displacement from beginning of the procedure
or identifier block in which the cell is located

STACKED - position in the stack (relative to the stack pcinter
upon entry to the current procedure or block)

LITERALS - the value of the literal

LABELS - displacement of the statement to which the
lakel is attached from the teginning of the
program procedure

PROCEDUPE - displacement of the procedure from the begin-
ning of the program procedure

REGTISTER - the register nuwmber

-38_
The length field is coded in octal, and indicates the number
of hytes required for the identifier, ie. the sizz in hytes for a
LITERAL, <cell, or array of cells, or the length for a procedure.
The lenqgth for label identifiers is zero.

The declaration field 1is coded 1in decimal and gives the
statement numbher in which the identifer 1is declared. For latel
identifiers, the declaration field contains the statement number of
the statement which it labels.

The statement numher of each statement that references the
identifier is listed in the reference section. Those statements 1in
which the value of the cell to which the identifier refers 1is
altered, are flagged with a star (x) following the nunmter. ie.
those occurrences of the identifier c¢n the 1left side of the
assignment operator (=) are flagged.

i | | | |
COLUMN 11 11 111 21 2 13
NUMBER 11 810 518 21 5 711
1 I | | {
1 | | | |
HEADING | |SYMBOIL { Loc | LEN | DBCL | PEFERENCES
11 1 1 | . - e -
1 | I 1 |
CONTENTS | JLAAAAAAA |0QO0OOO0O {00000 | DDD | DDD DND ...
11 _ 1 | | | _— — -
L: Letter A: Alphanumeric

0: Octal digit D: Decimal digit

FIGORE 3. _Cross_Reference Listing_lLayout

4.1.2.4 Attribute Listing

If the ATTR option is in affect, a list of all thke attributes
of each declared inrstance of an identifier 1is generated. TIf the
XREF option is also in affect, the attribute 1listing appears,
irstead of references, as the first 1lipe in the cross reference
listing., If the YPEF option is not ir affect, the location value,
length and declaration card number fields of the cross reference
listing are given with +he attribute listing, but no references are
listed. Following the list of attributes 1is the identifier nanme.
Each procedure name or hlock number within which this identifier is
nested is listed, irn nesting order, separated bty periods.

4.2 Object_ Code_Output

Object modules can be produced on two different data sets,
a S5YSOUT data set which is identified by a //SYSOUT DD card, and a
SYSCOPY data set which is identified by a //SYSCOPY DD card. The
primary object code output appears on the SYSOUT data set if tte
LCAT option 1is in affect. The ofject code produced 1is compatitle
with that used by the LINK-11 program linker. If the LORD option is
selected and the COPY option also specified, a copy of the object
modules is generated on the SYSCOPY data set.

39
4,3 Error Report Listing

When the FRPL option 1is in affect, a separate error report
data set is generated on the SYSEPRER data set,which 1is specified
on a //SYSERRER DD card. Each error flayged in the source listing
is noted in the error report with the following information:

1. the error number

2. the 10 characters on each side of the error position,
enclosed in apostrophes and separated by a question mark.

3. the card number followed hy a slash (/) and the sequence
field (if non-hlank) of the card on which the error occurred.

20.

22.
23.

24,
25.

2h.
27.
23,
29,
39.
31,

32.
33.
34,
35.
34.

-
! a

41.

u?.

43,
44.
45,
A,
47.
us.

- 4o -
Appendix_A.__Error Codes.

Tnvalid OPTTON keyword.

First statement is not a procedure or Ilblock.
~ +LOCATION must ke followed ty a parenthesized positive

value, less than .0 (177777).

Missing right parenthesis.

LCGICAL INTEGER values must be enclcsed in parentheses.
Invalid LOGICAL INTEGFER code for this type.

LOGICAL INTRGER values may not be void.

Cnly INTEGRR and ADDPESS literals may he used in a defined
expression.

Undefined identifier,

Register name may not be used as a SIMPLE_TD.

Semicolon is not found where expected.

More than one attribute from same class.

Literals may not be arrays or have the ,PELATIVZ attribute.

. STRING implies LOSICAL BYTE array.

.STRING lenyth must- be non-zero, positive and rarenthesized.
Multiply defined identifier, or invalid attribnte keyword.
Array size must he a non-zero positive value.\ WO2D array

may only be allocated an even number of bytes.

.LOCATION valid only for .RILATIVE identifiers.

Literals may not have synonvns.

. SYNONYY defined memory cell must be enclosed in parentheses.
Defined memory cell must have tvoe .TNTEGFR, .ADDRESS,

or .LOGICAL, and may not te a literal.

Array expression may not follow a simple cell identifier.
Array displacement must be positive. Displacement for a ¥ORT
array may only be an even number of bytes.

Synonym BYTE offset possible only for setting BYTEs synonymous
to WORDs.

Synonym BYTE offset must ke positive with a value of zero

or one.

Identifier declarations may not follow Procedure declarations.
.EDDRESS fill value may only be used with ACDR%#SS identifiers.
Invalid defined memory cell identifier.

Improper alignment of synonyn.

Defined array cannot be contained within the SYMONYM array.

A simple WORD cell cannot be set synonymous to a simple

BYTZ cell.

. ADDRZESS defined memory cell must be enclosed in parentheses.
Array length should not te zero.

Compound f£ill value legal only for arrays.

Iteration count must be positive.

Invalid or missing fill value.

Character strinj must be entirely on one card.

Fill value not containatle in cell of declared si-ze.
Character string of length >1 valid only for .3TRIWAG
initial valne (.LOGICAL .BYTS array).

Character string of one character valid only as a LOGICAL
BTTZ value.

Fill value exceeds bounds of cell or array.

In a f11ll value, LADDRESS defined memory cell aust te
RELATIVE, or ABSOLUTE for .TLOCATION cells.

Tnvalid fill value for the declarced identifier.

Tnvalid specification for an identifier definition.

Fill value required for literals.

Synonyas must have same allocation attribute,

STACKED identifiers may not appear in an identifier tlock.
«LOCATION specification may not bte used in an IDblock.

u9.
50.
51.
52.
51-
54.
55.
56.

Dile
53.
59.
A0.

A1,
62.
63.
Al .,
65.
66,
67.

63.
69.

70.

71.
72.

73.

4.

75.
76.

77.
78.
79.

80.

81.
82.
83.
84,

85.,
. B5.
87.
Ra,
89.
an.
1.
Q2.
93.
94.

95.

. - 41 -
Only declarations may appear in an identifier block.
Logical end of program tlock, but block name nct found.
Invalid program or IDblock.
Oonly a rcgister name can be used as a link.
Invalid statement or declaration keyword.

" Invalid statement keyword.

Label is already used as an identifier in this block.

.GOTO may not transfer control into a block/procedure from
outside.

Multiply defined label,

Label delimiter : must ke on same line as label.

Invalid or no statement following lathel.

Invalid operator in assignment statement; semicolon not found
as expected.

Label identifier not found as expected.

End of procedure occurred before all blocks closed.
Semicolon not found following .EIND .

Semicolon not found following EXTERNAL procedure declaration.
Semicolon not found following procedure head.

Symbol following .END 1is not a procedure nane,

Logical end of procedure, but correct procedure name

not found.

Procedure identifietvr not found following .CALL .

Tnvalid call, Outer stacked variatles referred to within
the L.CALLed ©procedure can not be accessed correctly.
Condition code bits for .CLR and .SET must ke enclosed in
parentheses.

Each condition code bit may appear only once in a .CLR or.SET.
Invalid condition code bit in a .SET or .CLR, or missing
right parenthesis,

Invalid or missing condition code bit indicator in a .CLR ot
«SET.

. TRAP value must be less than .C(400), and enclosed in
parentheses.

Only addresses may be used for indirect addressing.

Symbol is not a literal and may not be used in a defined
expression.

Offset (displacement) in array exceeds array bounds.
Register identifier does not follow auto-decrement operator.
Signed expression expected as byte offset of register
indirect address.

Only a positive value may be used as displacement in a
STACKED arraye.

Invalid use of identifier as cell.

BYTE displacement of item in an array not found as expected.
Literal value not containable in cell of desired size.

The tase address of this indexed array cell is outside of
memory.

Invalid cell type for .CASE argument.

.0OF (case body delimiter) not found as expected.

Empty .TASE body not permitted.

Invalid cell type for an assignment statement.

ITnvalid mix of cell types in an assignment statement.
Rssignment operator not found as expected.

Literals may not appear on left of assignment operator.

Cell not found as expected following addition operator.

Yot a valid beginning of an expression.

Cell lenqgth does not agree with expression cr assignmant
statement langth,

This operator may not be used with the NOHSAU option.

- D =
Only a positive value may be specified as shift value.
A parenthesized shift amount must follow the LAHS operator.
Invalid shift amount specification in .ANS.
Only the values +1 and -1 may be added to or subtracted fron
BYTES.

" Memory cell in parentheses must follow .ADDRE33,

.ADDRESS may only he used in address expressions,

A character string may only be used as a ,LCGICAL L.RYTE
value.

Literals may not be used as the arqument of a .ATDRZSS.
Only single characters may te used as LOGICAL values.
.SHAB valid only with LOGICAL WOPD values.

Only LOGICAL INTEGERs may be used as [LOGICAL values;
decimal TINTEGERS may not.

BOOLEAN_AND not found as expected following | .
BOOLEAN_PRINARY not found following - siqgn.
BOOLEAN_EXPRESSICN not found following left parenthesis.
Invalid BOOLEAN_PPIMARY.

Relational coperator not found as expected.

Comparison values do not agree in tyfpe.

Second comparison value not found as expected.

Logical value in relation does not agree in length with
operator.)

Cormparison valunes cdo not aqree in length.
BOOLEAN_EXPRESSION not found following .IF.

. THEN not found following BOOLEAN_FYXPRESSION,

Statement not found in .THEN clause.

Statement not found in L.FLST clause.

BOOLEAN_EXPRESSINN not found following L.WHILE .

-D0 not found following .WHILE koolean expression,

No specification found following = in an identifier
declaration.

Arithmetic value not found following arithmetic dyadic operator.
Comparison of two literal values in a bcolean relation.
STACKED iderntifiers may not he EXTERNAL.

.LOCATION, .SYNONYM, and fill values incompatitle with

« LXTERNAL.

Shift amount must bhe less than 16,

BOOLEAN_FXPRESSION for FOR-LIST limit not found as expected.
.D0O (FOF-loop hody delimiter) nct following FOR-LIST(s).
FOP=-LIST control cell has invalid type.

Invalid increment value.

LUNTIL (FOR-LIST limit delimiter) not found as expected.
Limit value not found following LHUNTIL .

Limit value does not agree in type with control cell.

Only literals may be used as .INT parameter.

Relations may only appear as the first primary in a POOLEAN_
EYPPESSION. :

. ADDRESS value may not be used as a .FOR step value.
.ATDPESS value may not he used as comparison value.

. STACKED identifiers may not be preset.

Pesitive value expected.

Invalid operator sequence or undefined identifier in defined
expression.

- 43 -

SECTION 2

The PDP1ll Linkage Editor.

- 44 -

PDP-11 LINKAGE EDITCEH

The PDP-11 1linkage editor forms a porticn of the PDP-11
prccessing system for use in conjunction with the IBM 367,
Its Furpose 1is to resolve references Letween progranm
segments produced by the varicus langquage processors and, as
a result, form a single block of code. The linkage editor
accepts as input the output from the various PDP-11 language
processors (object modules) and certain control commands and
provides as output a block cf processed code (lcad module)
suitable for loading by the PDP-11 system loader.

Functions Performed
The linkage editor performs the following functions:

allocate Space for each control section (CSECT)
received as input

relocate address constants (ADCONs) used as pointers to
internal or external symbols

resolve external references to other user CSECTs or,
via automatic litrary call, to system litrary
routines

output a 1load module which is either atsolute or
load-time block-relocatatle.

Space Allocation

Each control section received as input to the linkage editor
processor Wwill contain an external symtol dictionary (ESD).
The ESD contains a value which specifies the total length of
the CSECT, thus enabling the 1linkage editor to allocate

space. Also known to the 1linkage editor, via an input
parameter or control card, 1is the highest core location
availatle for program storage. Storage for relocatatle

object modules will be allocated from the top of core down.
Therefore the first object module provided to the linkage
editor will be allocated to the highest locations availatle,
the second object mwmodule to the contiguous lower storage
area, etc. This method is necessitated by the operation of
the stack pointer (see the PDP-11 Handbook).

Address Constant Relocation

Relccation 1is performed on bhoth external and internal
address constants according to the commands found in the
relocation dictionary.

External Reference Resolution

References to external symbols are resolved and the proper
address 1is placed in ADCCNs by the linkage editor. All
external symbols which the 1linkage editor is unakle to
resolve are listed and the resulting load module is flaged
as not executaltle.

- 45 =
Linkage Editor Input

The input to the PDP-11 linkage editor is made up of control
statements and obhject modules. The two types of input data
may be freely intermixed and, in general, need not adhere to
any specific order. Control statements are used to provide
information to the 1linkage editor concerning entry points
and relocatability (APPENDIX A). The object modules are the
ouput from the various PDP-11, lanquage processors and
contain generated code and formatted instructions for
relocating the code and resolving external references
(APPENDIX B). An object module is generated for each CSECT
processed by the language processor. Several otject modules
may be generated from one scurce deck. Each okject module
contains one ESD and one END record and a sequence of RLD
and TXT records. The RLD must always preceed the TXT
record (s) to which it refers. The END record is the last
record in the object module. The ESD may te placed tefore
or after any RLD or TXT records.

I.Linkage Editor Output

Two types of 1load modules may be formed ty the linkage
editor. Load module type is «controlled by an input
parameter or control card. An absolute load module contains
code with all addresses resolved and without the means
available to move the code block to various core load
points. It may therefore only be loaded at the load point
specified to the linkage editor at link-time. The second
type of 1load module 1is blcck-relocatable and may be
relocated as a block at load-time. A primary difference is
that a block-relocatable 1load module contains a modified
relocation dictionary to relocate atsolute address
constants, This second 1load module type may be used for
creating overlay structures.

Linkage Editor Operation

The 1linkage editor operates in a two pass mode in order to
minimize the amount of core required for input data
storage. A one pass linkage editor was considered, tut such
a program would require that all of the input text blocks te
held in core so that references could be resolved.
Purthermore, even though the linkage editor would externally
appear as a one pass program, it would differ 1im no
essential lcgical respects from the one provided.

Five tables are used in the linkage editor to store the data
necessary to perform the ADCON relocation and external
reference resolution functions. The tatles are as follows:

SYMBOL, The SYMBOL table is a "hashed" list of all
CSECT names, ENTRY names and external references
found in the totality of object modules which will
te used to form the load module.

TYPE. The TYPF table contains a flag for each entry in
the SYMBOL table to indicate the attritute of the
associated symbol. The TYPE flags will have the
value provided in the TYPF field of ESD records.
Symbols found din RLD records and not defined in

= A€ =
the ESD record(s) of the current ZSECT will be
flagged as external references. Syrtols used in

NDATABLKs will have a TYPF flag of 1 (ENTRY name).
At the end of the first pass, all symtols with the
TYPE flag of 2 will be regarded as undefined and,
therefore, as errors.

L¥NGTH. In the case of CSECT symtols, the LENGTH tatle
will contain the total length of the named CSECT.
For ENTRY names, the LENGTH taktle contains the
relative displacement of the ENTRY name from the
beginning of the CSECT,

ADDRESS. The ATDPRESS table contains the absolute
address of the indicated CSECT or ENTRY nanme.
These addresses are then used to calculate the
relocated ADCONs in the second pass of the linkage
editor.

IDFLAG. The IDFLAG tabtle contains, for symtols of TYPE
flag=0 (CSECT), the CSECT number, which is the
sequential number of the CSECT in the input
streamn. For ENTRY names, the TILDFLAG tatle
contains a pointer to the CSECT in which the ENTRY
is located.

During the first pass, the input stream is examined for all
ESD records. The information contained in the EST and RLD
records is inserted into the SYMBCL, TYPE, LENGTH and ITFLAG
tables as described above. If a symtol of TYPE flag 0 or 1
is found which has previously heen entered as a CSECT or
ENTRY name, the new TYPE is ignored but a message is printed
in the output 1listing to indicate that the symkol is
multiply defined and the 1load module will be flagged as
non-executable, The 1input stream is also examined for
linkage editor control cards and appropriate control flags
are set to indicate

1). the name of the load module entry point
2). the highest core location available
). the type of load module to ke generated.

At the end cf the first pass, the ALDRESS takle is filled in
with the absolute address of each symbol in the SYMBOL

table. Undefined symbols (TYPE 2) are noted in the output

listing and the load module is flagged as non-executatle.

Tn the second pass, the RLD and TXT records are scanned and
processed. Each RLD record must proceed the TXT record (s)
to which it refers, As an RLD record is scanned, the
information about each relocation command is placed in an
ordered (by address) string. Fach node (RLDNODE) contains:

1). left and right pointers to the neighboring nodes
{ LPTR and RPTR)

2). a pointer to the symbol to be used in <calculating
the address (SYMIDX)

3). the relocation command type ({CCMD)

4y. the displacement, relative to the start of the
current CSECT of the address to ke relocated.

As TXT records are scanned, the RLD is <checked for

$ 47 -

relocation commands and the necessary functions are
pecformed. The resulting code is queued up for the clean-up
phase of the 1linkage editor. A CCMD, as required by the
PDP-11 disc monitor system, is also generated during pass
tvo. The modified relocation dictionary required for
load-time relocation is not generated since its
characteristics are not presently kncwn. At the completion
of pass two, the clean-up phase is initiated, which results
in the output of the COMD and the relocated TXT records.
Execution of the linkage editor is then terminated.

APPENDTX A

CONTROL CARDS

There are three control cards accepted as input to the
linkage editor. The linkage editor ccecntrol cards may be
inserted anywhere 1in the 1input stream. The order to the
ccntrol cards is not important.

ENTRY

The ENTRY control statement 1is wused to indicate to the
linkage editor the name of the load module entry point. The
FNTRY card contains the word "ENTEY" followed Ly the entry
point name in free format. The length of the entry point
name 1is not restricted. TIf the ENTEFY card is omitted, the
entry point will be the first entry pcint in the first
object module in the input stream.

RELOC (ATION)

The RFLOC control statement provides the information on the
highest core location available for storage of the load
n1odule to be generated from the input stream. The RETLOC
card contains the word "RELOC(ATICN)"followed by a decimal
number which indicates the highest availatble core location
available. The default load location will be 1024 plus the
total length of the load module. Thus the last CSECT in the
input stream will be relocated to kegin at 1024 and the area
available for dynamic storage utilizing the stack pointer
will range from 256 to 1023.

BLCCK

The PBIOCK control statement indicates to the linkage editor
that the generated load module shcould contain the modified
RLD for use by the relocating 1loader. Load modules
generated 1in conjunction with the BLCCK contrcl statement
may te relocated at load-time as a complete block of code to
any availatle area in core. Load modules to te loaded into
core by the Overlay Supervisor should ke generated using the
BLCCK statement. The default load module cutput does not
contain the modified RLD and, therefore, may not tLe
relocated at load-time, although it may be loaded by the
relccating loader.

- 49 -
APPENDIX B

OBJECT MODULE RECORD FORMATS

External Symbol Dictionary (ESD)

Rits
E
1
6

—

1

Content

" ESD™ Block type identifier

blank

RFLAG if RFLAG 1is blank the following text
blocks up to the next END record may ke
relocated. ITf RFLAG>=0 then the text
blocks following should be loaded at
the octal address given by RFLAG.

blank

SYMBOL CSECT or ENTEY name of arbitrary length.
No intervening blanks are allowed.
Normally , the first SYMBOL encountered
will be the name of the CSECT.

blank

TYPE J=> CSECT nanme
1=> ENTRY nanme
2=> external reference

tlank

VALUE if TYPE = 0 then VALUE is the length of
the CSECT. If TYPE=1 then VALUE is the
relative displacerment (octal) of the
entry point from the CSECT start in
bytes. If TYPE=2 VALUE may ke
omitted.

blank

Relocation Dictionary (RLD)

Bits
2

1
?

Content

", RLDY Block type identifier

blank

COoMD relocation type command as described
below.

blank

DISP relative displacement (octal) from ‘the
start of the CSECT of the word to te
modified.

blank

SYMBOL name of CSECT, ENTRY or external to te

R

1

blank

Text Block

Bits
3
1
€

- O\) -

End

Bits

Content
n "IXIIN
tlank
Loc

hlank
DATUM

kElank
of CSECT

Content

" _ENDI!

blank
NAMNE

in computing the relocaticn address. No
SYMBOL is given for internal
relocation.

Block type identifier
relative displacement (octal) from the

start of the CSECT for the following
block of text.

text data is provided as either bytes
or full words. All data is octal.

Block type identifier

the name of the current CSECT.

Code
0

= pge s

APPENDIX C

RELOCATION DICTIONARY COMMANES

Description
INTERNAL RELOCATICN

The rTelocation base of the current CSECT is added
to the contents of the location specified by
DISP. SYMBOL is omitted. This command is used to
relocate a direct pointer to an internal
relocatable symtol.

Example: A: MOV #A,%0;

INTERNAL DISPLACED RELCCATION
The displacement from the current locaticn counter
+ 2 to the absolute address contained in the
location pointed to by DISP 1is calculated and
replaced. SYMBOL is omitted. This command is
used only when there is a reference to an atsolute
location from a relocatable CSECT.
Example: CLR 177550

EXTERNAL RELCCATION
The absolute address of the relocated external
SYMBOL 1is added to the contents of the location
designated by DISP and relpaced.
Example: MOV #A+10,%0

EXTERNAL CDISPLACED RELOCATION
The displacement from the location counter + 2 to
the address which is the sum of the relccated base
address of the external SYMBOL designated and the
contents of the location pointed to by DISP is
calculated and replaced.
Example: CLR A+6

conp

0!
001
502
aaad
PPE

ttt

ddd
rrr

SSs
SSS
Lrr

w
- r‘1 s sl 00
-3
-

- M O
IIIIQ‘L{”(')
st %

ada
ZZZ

BLOCK

XXX
nnn
iifug]
daa

PPP
ttt

ddd
LEL

SSsS
S5S
Crr

H *o oa o8 o0

(o]

BLOCK

070
XXX

Yyy
ddd

[T
By et 50 aa
(=%

APPENDTX D

LOAD MODULE FORMAT

COMD block code

nunber of words of general information

number of monitor requests

lowest address loaded

program size in bytes (sum of all relocatable
sections)

progranm transfer address. If even, the
transfer occurs, if odd, the transfer does not
occur.

DDT transfer address (9 if DDT is nct loaded)
N=>absolute load nmodule

1=>load-time relocatable module

load module name (2 words mod 40)

Monitor routine requests are words containing
the routine number as specified in the monitor
library.

DATA block code

number of bytes in data tlock
load address of tlock

binary data

block checksunm

