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Abstract

The use of deuterium-tritium instead of deuterium plasmas
would allow neutron diagnostics to be improved because the
neutron production rate would then be appreciably larger

(by a factor of approximately 100). This report gives neu-
tron production rates and energy spectra for various veloci-

ty distributions of the deuterons and tritons in a hot plas-
ma.




1. Introduction

This report concludes a series of papers devoted to neutron
measurements as a means of plasma diagnostics [fi, 2, 3;7. In a
first paper we discussed the diagnostic possibilities based on
the neutrons from hot deuterium plasmas / 1 /. Because the d-d
reaction is quite strongly anisotropic, an anisotropy of the
deuteron velocity distribution can be measured directly because
it leads to an anisotropy of the emitted neutron flux / 1, 2_/.
Reference 173;7 presents a general discussion of the neutron
yield and energy spectra for arbitrary fusion reactions assuming
several velocity distributions of the ions (one-, two-, and
three-dimensional Maxwellian and monoenergetic distributions as

in references / 1, 2_/ ). This discussion is, however, restricted
to fusion reactions which are isotropic (in the center-of-mass
system). Thus it can be applied to the d-t reaction, which is
sufficiently isotropic at least in the range of relative energies
which is of interest for plasma diagnostics. The d-t reaction is
the most probable fusion reaction at relatively low energies cor-
responding to plasma temperatures obtained nowadays

in connection with, for instance, the fusion reactor problem. Up
to now all these experiments have been performed with deuterium
plasmas so that neutron diagnostics have had to rely on neutrons
produced by the d-d reaction. In many cases the information obtained
from neutron measurements is very limited because the neutron yield
is very often not sufficiently large to eliminate statistical er-
rors. This is partly true for neutrons coming from pinched plas-
mas (z-pinch or ©-pinch) and plasma focuses. It is even more im-
portant for the neutrons emerging from laser produced plasmas
which have been investigated recently Zfﬁ, 5;7. In all these cases
the use of d-t plasmas would increase the neutron output by a fac-
tor of about 100 (i.e. in the range T = 1 - 10 keV). This would
certainly be a large help in neutron diagnostics. Of course, the
reason that d-t plasmas have not been used yet is that tritium is
not stable (it is P-active with a half-life of 12.4 years; the
electrons emitted range up to 0.18 MeV). While deuterium is per-
fectly safe, great care is needed in working with tritium. On the

other hand, the information obtainable from the increased number




of neutrons may in certain cases be so important that one could
accept the difficulties connected with this approach. The pur-
pose of this report is to give the information necessary for
evaluating neutron measurements with d-t plasmas. It is based on
the general relations derived in reference / 3_/. Both total
neutron production rates (section 2) and neutron energy spectra
(section 3) are computed for several distribution functions of
the deuterons and tritons in the plasma. If the plasma is aniso-
tropic the energy spectra are also anisotropic (i.e. their shape
and width depend on the direction of observation). One may there-
fore observe the total neutron output and the energy spectra (pos-
sibly as a function of the direction) to learn something about
the ion distribution functions. The additional possibility of
observing an anisotropic neutron flux as in the case of anisotro-
pic d-d plasmas is, however, not available for d-t plasmas, as
already mentioned above.

Let us now consider the d-t reaction in some detail:

d+t —™ n+ o+ 17.6 MeV (1)

The reaction energy is

Q = 17.6 MeV. (2)

Owing to the masses of the particles produced (m =~ 4 mn) the
neutron receives 14.1 MeV and the a-particle 3.5 MeV. The reaction
cross section (in the center-of-mass system) is assumed to be

the following function of the relative velocity g :

8 1
1eogooexp (- 138

for g € 2.8
g g (g2 £ 7.67Y% '+ 44

G (g) =
6.9

1.38 + | g - 3.25

I1.8 for g 2 ‘2.8
(3]}

which fits the experimental results fairly well within the mar-
gins of error / 6 - 9 /.



Here g 1is the relative velocity in units of lO8 cm sec-l, and
O is the total crors section in barn. To avoid any misunderstanding,
we state that in all formulas of the following sections g 1is to

be measured in cm sec_'l and G in cm2, i.e., in CGS units.

2. Neutron production rates for various velocity distributions

As usual, we write the neutron production rate R (i.e. the number
of neutrons produced per unit volume and time) in the following
form:

R = ngng <6'3>, (4)

Here nd and nt are the densities of deuterons and tritons in
the plasma and <£?g> is the averaged product Gqg . which depends

on the distribution functions considered.

First we discuss three-, two- and one-dimensional Maxwellian di-
stributions. To reduce the number of parameters which have to be
taken into account, we assume that both types of particles, deu-
terons and tritons, have the same temperatures, i.e. we use only
one common temperature (T, T, or T”). Introducing the reduced
mass

his my My (5)
md + mt
and the parameters
B = .
2 kT
WORNE, . T
S e
Pu = 2xm,

we find the following expressions for <G g)> (see ref./ 3 / for
details) :
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We also use three- and two-dimensional monoenergetic distributions
of the ions, i.e. distributions in which all deuterons have the
same energy Eod (or modulus of velocity, uOd ) and all tritons

also have the same energy Eot (or modulus of velocity, U i dn
this case we get (see again ref. 4—3_7 for derivation):
uod+uot
<G g> ==L Glg) g2 a (10)
9’mono 3 2 u u g9) g g
od ot lu =u |
od ot
uodfuot
2 c(g) g° ag
{Gg)> SRl e 4
gl 7 | %oa=Yot | fnu (6 2za R 6O y2 s ]
[g od ot J [ od “ot g
(11)

Some of the numerical results obtained from equations (7) to (11)
with &(g) as given by equation (3) are represented in Fig, 1,
Here <Gg) is given as a function of the mean energy of the ions
in the plasma (E), where

3
E = S kT for <6g>max3

E = kT, for <Gg>max 5

k f G -
T, for < g>max 1

L] o S T

1 2
u = =
md od 2 M I%t for <G‘g%n

ono 2,3

So Fig. 1 contains monoenergetic cases only if deuterons and tri-
tons have the same energy. Fig. 2, on the other hand, gives <gg>



for monoenergetic distributions with either

Yoa T Yot (13)
or

m. u = m, u (14)

d “od t "ot

plotted as a function of Uog * The general case is contained in

Figs. 3a,b,c and 4a,b,c, which show <Gg>m as functions

ono 2,3

of U4 with u, asa parameter.

3. Neutron energy spectra for various velocity distributions

For a normal isotropic three-dimensional Maxwellian of the ions
the neutron energy spectrum is approximately Gaussian / 3_/, and
its half-width for the d-t reaction is

AE ® 177 VT (15)

where T 1is the common temperature of both deuterons and tritons
and where AE and XT are measured in keV. If the ions have a
two- or one-dimensional Maxwellian velocity distribution, the
spectra are anisotropic, i.e. they depend on the angle « of ob-
servation ( o is the angle between the direction of observation
and the axis of rotational symmetry). In the two-dimensional case
the spectra are also approximately Gaussian if a 1is not too
small, i.e. if

kT,

Q

sin o » (16)
where Q 1is the reaction energy (17.6 MeV). The half-width is
given by
- —, *
AE * 177 \[kT_ sin a . (17)

For a one-dimensional Maxwellian the situation is similar. The
spectra are approximately Gaussian if the angle a 1is not too
large,




kT
cos o » 5 (18)
and in this case the half-width is
S
AE = 177 VkTH cos a . (19)

The deviations of the precise spectra from these approximations
are not very interesting since they are less than the experimen-
tal errors. We therefore did not compute them numerically. We
have restricted the computation of spectra to the more interest-
ing case of monoenergetic distributions. It is based on sections
3d and 3e of ref. éf3_7. Some examples are represented in Figs. 5,
6, 7, and 8.

Let us first discuss the three-dimensional case (Figs. 5 and 6).
Each spectrum consists of two wings and a flat plateau in between.
Each spectrum can thus be characterised by four energies El' E2,
E3, and E4. The number of neutrons produced per energy interval
is precisely O below El and above E, and it is precisely
constant between E, and Ej. Thus the total width of the spectrum
is

m.u + m u
it d od t ot
l)mono 3 2 mnvo m4 + m, (20)

(E4—E

and the width of the plateau is

(EB - E2)mono 3 B2 mn vo (21)

where 3 m_ 2 7

W= (22)
(ma -+ mn) m

is the velocity of a neutron produced by the reaction of a deute-
ron and a triton if both particles were at rest. The reaction rates
are very small at the energies E, and E, already (where, in
principle at least, the spectra begin discontinuously; see ref.

/ 3_/). Thus the total width of the spectra cannot be seen in the




figures. Therefore the energies El' E2, Ej, and E, are given in

the following table for the cases contained in Figs. 5 and 6.

em l ‘

—_— E E E MeV
Ust, Uog [seé] o T 3 y [Mev]
: : |
0.5 x 108 0.5 x 10%| 13.811 | 14.031 | 14.139 | 14.352
0.5 x 10%| 0.613 x 10°| 13.787 | 14.057 | 14.116 | 14.377
0.5 x 10| 0.75 x 10%| 13.757 | 14.088 | 14.088 | 14.407
1 % 10°)a x 10°| 13.544 | 13.992 | 14.208 | 14.626
1 x 108 1.23 x 108 13.496 | 14.049 | 14.163 | 14.677

8

1 x10%|1.5 x 10%|13.439 | 14.111 1411 | 14.738

Table: Characteristic energies El’ E2, E3, E4

Examples of the two-dimensional monoenergetic case may be found

in Figs. 7 and 8. These spectra can also be characterised by four
energies. Actually, for perpendicular observation (i.e. for the
angle a = 900} these energies are precisely the same as in the
three-dimensional case, i.e. they can also be taken from the above
given table. There is a remarkable difference, however, between
the two types of spectra. We now get infinities of the spectra at

and E,. If

E2 and E3 and no longer a plateau between E2 3

d %oa T M Yot (23)

the two singularities join into one, as can be seen from Eg. (19).
This corresponds to the disappearance of the plateau in the three-
dimensional case. For'non-perpendicular observation the whole
spectra contract like sin a (if « is not too small), i.e. we
get

(E, - E

sin « (24)

l)mono 2 = (E4 = &

l)mono 3

(E, - E

3 2)mono 3 = (Ey - E

3 sin « (25)

2)mono 3




Fig. 7 gives three examples of spectra in the perpendicular di-
rection. The parameters are the same as in Fig. 6 for the three-
dimensional case. In Fig. 8 we compare one of the spectra of

Fig. 7 (case b) with the spectrum for the same values of u

od and

U, but a different direction of observation (300).

We are grateful to D. Pohl for the very
careful plots of our results.
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spectra mono 3

ar . U, = 1.0 [108cm/sec]
Larb.units]
a) Upg=10 "
b) Upg=123 "
C) U0d=1-5 "
/C
b
a
- T § T I T >
136 13.8 140 14.2 144 146 E,[MeV]
Fig. 5 Neutron energy spectra for some three-dimensional
monoenergetic distributions: u = 108 cm secﬂl.
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4 dR spectra mono 3
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Fig. 6 Same as Fig. 5 for u, = 0.5 x 108 em sec™ T,
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Fig., 7 Neutron energy spectra for two-dimensional monoenergetic

distributions. The parameters are the same as in Fig. 6.




A dR spectra mono 2
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|
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Fig. 8 Neutron energy spectra for a two-dimensional monoenergetic

distribution for u_., = 0.61 x 10° em sec—l. u., = 0.5 x
1 od ot

10~ cm sec - for two different angles of observation
(« = 90° and « = 309).
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