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Abstract

We present a general formalism for the description of an axi-—
symmetric plasma equilibrium. This is a model for the steady
operation of a Tokamak device. We use the hydromagnetic equa-
tions taking into account effects such as tensorial resisti-
vity and finite thermal conductivity. The reformulation of
this set leads to an equivalent set which includes the gene-
ralisation to toroidal geometry of the Bennett-Pinch relation,
and an expression for the resistive plasma loss which shows
explicitly the effect of the discharge current.

This mathematically concise presentation of the full resisti-
ve equilibrium problem is appropriate to practical calcula-

tions. As an example we consider a steady state with no mass

sources for the case of small inverse aspect-ratio.




I. Introduction

The exciting experimental plasma parameters recently achieved
in the Tokamak device has led to a re-awakening of theoreti-
cal interest in the problem of toroidal axisymmetric plasma
equilibrium. While there exist many discussions of magnetohy-
drostatic equilibrium, the effect of finite plasma resistivi-
ty on the equilibrium has rarely been treated (but see for
example [1]). One reason is of course, that the static problem
is difficult enough and the consideration of finite resistivi-
ty further complicates the already nonlinear situation.

We consider here a simple one-fluid plasma model and derive
several important relationships; for example we derive the ge-
neralisation to toroidal geometry of the well known Bennett-
Pinch relation. The effect of the discharge current on plasma
loss is explicitly shown.

We discuss possible differential geometric methods for trea-
ting the system of equations. With a parameter ordering typi-
cal of experiment, we calculate a solution for a steady state

with no mass sources.

II. Basic Equations

To describe the stationary state of a Tokamak plasma, we use
the following MHD equations (in M.K.S. units)

§xB=-7p 1)
rot8 = . (2)
dWB_ =0 (3)
+VxB 4 (4)
daroy = Q (5)
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where j is the current density, E and B are the electric and
magnetic fields respectively, p is the pressure , 9 is the mass
density and v the plasma velocity. 7 1s the tensorial resis-
tivity and is assumed to be of the form (see [2])

n=-n1-(y,-7)BB/8 (6)

The following observations should be made:

(A) We consider a stationary state, by which is meant, that
the time variation of quantities is slow enough to ne-
glect all partial derivatives with respect to time.

(B) The plasma losses across the magnetic field due to ion-
electron collisions, as described by the resistivity 1 "
are balanced by a plasma source Q (rate of mass injec-
ity A

(C) In the stationary state under investigation, plasma flows
are retained,but are such that inertia effects are negli-
gible.

For the plasma equation of state, we have adopted that of an
ideal gas, so that the plasma temperature T is given by

p=0kT/m (7)

where m is the mass of a plasma "particle" in the sense of the
fluid picture. We assume that T is constant along magnetic
field lines. As energy equation we take the following form

din-(epy) = =44 - pdivy + diw(kVT) + Qg (8)

where e is the specific internal energy of the plasma. This
equation expresses the energy balance between ohmic heating,
expansion energy, energy conduction due to temperature gra-
dients and internal energy transport. Qg describes possible



energy sources.

We imagine that the plasma described by equations (1). £0..(8)
is enclosed in a toroidal container made of ideally conduc-
ting material, and that the meridional cross—-section is of ar-
bitrary form unless otherwise specified (Pig.l)s

[N u :

Fig.1

ITI. Equilibrium Equation

The usual description of an axisymmetric situation is carried
out with the use of the cylindrical co-ordinate system (R,z,g),
where axisymmetry implies the absence of < dependence in sca-
lars. The introduction of flux functions leads to an elegant
and convenient description which we now briefly review (for
further elaboration see, for example, Kruskal and Kulsrud [31).
We employ for B and j the fluxes the "long" and "short" way,
where each flux is evaluated in the appropriate direction,
between the magnetic axis and a magnetic surface enclosing this
axis. We call the magnetic fluxes the long and the short way

F and G respectively. The corresponding fluxes of j, the cur-




rents, we call T and J. By their definition, the equilibri-
um condition (1), the equation of state (7) and the assump-
tion on T, the functions ¥, G, I, J, T, p and Q are surface
quantities. The labelling of magnetic surfaces can be done in
terms of any one of these quantities. We usually employ the
poloidal magnetic flux G.

From (3) and the rotational symmetry about the z axis, we can
write the magnetic field as the sum of meridional and toroidal
components

B - A7 76 + ATy .

The surface integration of (2) in the equatorial plane of the
torus, between the origin and a curve which is the intersection
of a magnetic surface and this plane, together with Stokes the-
orem gives

A= (3,-7)

(10)

where N is identified as the line integral of the toroidal
magnetic field along the above-mentioned curve, and JA is the
constant current flux through any surface bounded by the mag-
netic axis. Clearly N is a surface quantity too.

The current density we calculate from equations (2) and (9).
The evaluation of the toroidal component appears difficult,
but this is not really so, for

%‘trot(ngVG) = O(,V'g (11)

from vector considerations in this axisymmetric case. (X is a
scalar factor and is calculated by taking the scalar product
of (11) with Vg, which, after simple vector manipulation, gi-
ves

_ Ry VG
o = mdmr? (12)



wherelVgI: 1/R. Finally, j is given as

i = M—F(Ava Vg + Ridiv B Vg) (13)

The dot identifies a derivative with respect to G. Using ex-
pressions (13) and (9) in equation (1) we have

dle ?i-+‘r5cpp (14)

The first term is the invariant version of what in cylindri-
cal co-ordinates is the so called AG term (e.g.[%]). The so-
lution of this equation, the general equation of magnetohydro-
static axisymmetric equilibrium, usually proceeds by selecting
relatively simple functions A(G), p(G) and solving for G. The
full solution of this elliptic equation, where N and p satisfy
the other equations, has rarely been attempted because of ana-
lytical difficulty. In principle, numerical procedures can 5e
used, although there still exist both theoretical and practi-
cal difficulties, for which the nonlinearity of this equation
system is directly responsible. In the next section we discuss
how the functions A and p are related to the structure of the
as yet unconsidered equations (4) to (8).

IV. Equilibrium Relations for a Slowly Diffusing Plasma

In practice an ideally conducting torus must be "cut" so that
the main toroidal field can enter the plasma region. This cut
takes the form of a slit running around the torus in the %

direction. In addition the torus must also be cut in a meri-
dional plane so that a toroidal electric field can enter and
induce a toroidal plasma current. We assume that this latter

slit does not disturb the axisymmetry, a plausible assumption




when one considers the function of the "liner " in experimen-
tal devices. The longitudinally induced current produces the
meridional magnetic field, and is itself produced by a change
of external magnetic flux in the z direction. The magnetic
flux variation is accomplished by a transformer centred about
the z axis, and ideally constructed so that the 0B/dt in the
region of the plasma, vanishes. That is, time-varying stray
fields from the transformer in the plasma region are zero, so
that

_@=mtg= 0 (15)
at
It follows that in the plasma
E=-Vd (16)
and the total induced voltage around the torus ("ring voltage")
is :
II
- §E-dx (17)
This leads to
= il
AN 4 (18)

where (? is a single-valued point function in the plasma regi-
on. Ohm's law (4) then reads

vxB = zn:v§ + V@ + /8 % (19)

We wish to derive certain relationships, which lead to a ra-
ther simplified representation of the equation system (1) to
(8).

First let us consider (19), Ohm's law, and the continuity equa-
tion (5). The parallel component of (19),

B-Vy-= “”Qu%B m-—% (20)




after integration gives the electric potential in terms of
the magnetic field and the ring voltage up to an arbitrary
surface potential %& . From the perpendicular component of
the same equation it follows then that there is an arbitrary
part in v, , which is given by EXVTQ/BL. Introducing v, in the
continuity equation and denoting the part determined by the
magnetic field and U by ﬁl, we get

diwrg(y,+ 25 - Q - duvgl S

This equation can be seen to be of the form

Bofgl% + &) - a-aingg
Formal integration leads to a second arbitrary surface quan-
tity Vo o Together with the perpendicular component of Ohm's
law we can conclude then that v consists of two parts; a part
i which is expressible by the magnetic field and the ring vol-
tage, and a divergence-free part everywhere tangential to the

magnetic surfaces:

v-0+ (y-g¢)8 + LBeva 23)

The latter part is undetermined because of the arbitrariness
in Qs and W, , quantities for which we have no further equa-
tions. This freedom in the tangential velocity is limited only
by the assumption that inertia effects are negligible.

In order to get single-valued solutions of (20) and (22) we
must satisfy corresponding consistency relations. Integrating
equation (20) through the volume enclosed by a magnetic surface
corresponding to the value G of the poloidal magnetic flux G,
the right hand side must satisfy

\n, pB e+ AUTtS B-vgdc - 0
| Gw<g 60046

(24)




Here the U term can be re-expressed, so that

\, 4B d't + UF =0 (25)

auwe
is equivalent to (24). From (9) and (13) we find

i ) 553

-4B = i (AB-

where BM is the meridional magnetic field component. From the
definition of I, and use of (13) we have

1= 504V de- Vdiw B oe @7

which by use of the well known identity for any single-valued

function H

&(VHae) - (v 2 vl (28)
Gx)<G GUx)=
becomes
I= L:,t/u &SWT@&S ,udG&B dit (29)

The rotational transform divided by 2T , L, can be expressed,
with the aid of (28), as

1= ' - i d*c (30)
With the introduction of | we can differentiate (25) with re-
spect to G, and using (26) to (30) we obtain

M- AL- S0 oY



The integrability condition for equation(22)is nothing other
than the integrated form of the continuilty equation (5).We
introduce M, the mass flow rate through a maghetic surface:

M= (ou-ds - fade G2
G()-G Glx)<@

Equations (1), (4) and (16) give
- V-Vp = %-(MXB) A %-V(D (33)

The left hand side of (32) can be written as

M= -qIpl" yvp & = —qlpl" OLGSVVp d'c Gi)

which with (%3), (29) and (18) leads to

= olpl’ {oLGS'Yl H&HUI} (3

We wish to re-express this result for M in a form where it is

easy to identify the different contributions involving

(I) j,, the so called "Classical Diffusion" term
(II) the correction due to toroidicity, first de-
rived by Pfirsch and Schliiter [5].
(III) a new term, involving the ring voltage.

For this we need the differential generalisation of the Ben-
nett-Pinch relation to toroidal geometry. The corresponding
equation can be found by multiplying the MHD equilibrium
condition (14) by 1/|VGl and integrating over & magnetic sur-
face. With the use of (27) the result is

[+ L/\ + pV - (g2

where V is the volume of a magnetic surface.




=) 5=

We now take d, from (1), J" from (26), use (14) and elimina-
te derivatives of A and I by means of equations (31) and
(%36). This gives for M

_ IAZ 1 dS , Vll aU |
M= 3 QZ&_Q e ( SB’-WFT ) /\W,LI) " "\*}‘I~YI}(57)
F(':)F F(x)=F

A prime denotes differentiation with respect to F. (37) has
the form required for an identification of terms. The first
term is the classical diffusion term, the second is the
Pfirsch-Schliter correction, and the last term is the one con-
taining the effects of induced current. It it of interest to
note that the second term can quite generally be shown to be
always positive. Calling this term P, using (28) and

(%_.\Bzd‘t = N+l (38)

(see [3]), we get

d 2
P g (BR8] o

which by Schwarz's inequality and for outwardly decreasing
pressure profiles is always positive definite, except the tri-
Vvial case B2= const.

We can recast the expression for M in a simpler form, which

is more convenient for theoretical considerations.

M= QQUV-BAN - p5 + (g p)(p 2 + LMY o

= &(mR)zda’t i = %% d't (41)

Finally, we must discuss the energy equation. After a volume
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integration of (8) and differentiation with respect to G,

we obtain
%ﬁ{&e?!'dg N gpd“”\_/ dff} = %G“("ZHL +Q)dc + &KVT'(LS} (42)

From (%3) we have

e wvpde = flggde Ul +3)
Now for an ideal gas the specific internal energy is given by
e= mi(-!—rtﬂ (44)

where T is the ratio of the specific heats. Using (42) and
(4%) we find the following form of the energy equation:

,,T"fﬁ(w)#ui - &k« (agd) (45)

K = {rlV6l d’c a6}

We now collect the six equations which determine G,A , I, p,
T and 9 :

diw 3+ ARf} g Lqui,p =1 (47)

N - A = %;Aﬂ (48)

-..[ " }i"o/\/\ﬂ . pV =0 (49)

M= QU - T AR - pT + (-3 + ;—;o/\f\\/)) - fadc o
p- 9 (51)

Ry (tM) +UT = (K . (Q,aq (52)

m (Y-
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An alternative set of equations could have been obtained by
not introducing I. This set is obtained from (47) to (52) by
dropping (49), which is a weighted average of (47), and in-
serting the expression (27) for I in (48) and (52). For rea-
sons of greater convenience we have chosen to solve the sy-
stem as shown above, together with the constraint (27) for G.

V. Equations for Currents, Pressure and Temperature

Once G is known as a function in space, and the mass density
is replaced in (50) by (51), equations (48),(49),(50) and
(52) represent four ordinary differential equations for the
G-dependence of currents, pressure and temperature. These
equations can be explicitly solved with respect to the deri-
vatives. The corresponding formulaeare relatively simple
when we introduce the following dimensionless functions

: Q20 .
Ti= (z—’l)(z—:.)@*‘ v 1 (5%)
= °I = ..-LI_
3 A}*_r = (54)
Z = L (55)

M

VE is roughly the ratio of the meridional to the toroidal
component of magnetic field. For isotropic resistivity (z=1)

T vanishes together with the toroidicity; otherwise the first
term in T is related to € , because

., i 5 SRR T,
5-2 =\ (xR} (1- 1+B,’;/B§)Iv_al 75

In what follows we restrict our
considerations to the case where the source terms in (50)and (52)
do not contribute. The logical development of the solu-




lution procedure is not altered for any other choice of sour-
ce functions.

Solving explicitly for the derivatives we find

. UQ _e+T

I = 7 r'zu 8"'(1"’&)”: (5’7)
‘ U T

= R e (et 28)
.U ¢

P= oV et (59)
. UT

T = Tevalds N

Assuming for the moment that G as a function in space is given,
then these equations can be solved for Lo il 5 -p Bnd APy
Related to the calculation of G is the Virial theorem.

VI. The Virial Equation

With the spatial part of the energy-momentum tensor

T--(£Bp1 + BB )

and the position vector x, and the understanding that (2) and
(3) are satisfied, divT = O is equivalent to (1). We have

diar (x T) =TrT=—247L°B’“—3p (62)

Calculation of EIT from (61) and integration of (62) over the
interior of a magnetic surface yield
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g(;‘_}x,Bl’fP)X'dS . SGF‘BZQp) d*r (63)

Differentiation of this equation with respect to G, use of (9)
for B for the left, and (38) for the right hand side give to-
gether with (30) and (3%6)

LG \Bads -p(losv) e dre B e

Note that (64), like the differential Bennett-Pinch relation
(49), is a weighted average of the equilibrium condition over
a magnetic surface, but with a different weight function. In
this way, (49) as (64) are independent parts of the informa-
tion contained in the equilibrium equation (47). In the next
section we will treat the case of a small inverse aspect-ratio
torus in which it turns out that no further information from
(47) other than that contained in (49) and (64), is required.

VII. Approximate Determination of the Equilibrium

The results of Section V make it appear desirable to retain
G as an independent variable for a treatment of the complete
system of equations (47) to (52). Unfortunately, such an at-
tempt seems to be in conflict with the basic equilibrium equa-
tion (47), which usually is considered as an equation for G.

Taking for guaranteed the existence of a reasonable equilibri-
um solution with nested level surfaces of G we can clarify the
situation as follows:

We introduce an orthogonal, for the present unknown curvili-
near co-ordinate system (G,Q,g). The co-ordinate surfaces are
represented by the magnetic surfaces, the rotation surfaces




=B =

of the orthogonal trajectories to the latter, and by the me-
ridional planes ‘§= const. Equation (47) connects the geome-
try with physical quantities, because in the system (G,@,g)
the relation
- VG 46( -2 GG : _2
dov Y8 - L O (vgR™g%) - of (65)
o AN A VAR L
holds. (We have introduced the metric tensor Bup (o, f= G, ¢s€)
and the volume element 1§'de$dg.)

Because a solution is assumed to exist, there is a metric ten-
sor such that Riemann's curvature tensor vanishes. The corres-
ponding differential equations for the co-ordinates of the
metric tensor, our system of equations and differential equa-
tions connecting cartesian and the curvilinear co-ordinates
under consideration, allow us in principle to find the equi-
librium solution and the vectorial relation §==§(G,?,§). In

this way one could retain G as an independent variable.

Neither will we outline here such a programme in detail, nor

will we discuss how useful such an approach to the problem in
general might be. Rather we wish to use the convenience of a

properly chosen co-ordinate system for treating the equations
approximately.

The general idea we wili profit by is to start with an analy-
tically given coordinate system, which anticipates the expec-
ted geometry of the magnetic surfaces and which is provided
with largely arbitrary built-in functions. We can treat then
equations (57) to (60), and get solutions which depend on the
built-in functions. After this we can use the latter to modi-
fy shape and position of the magnetic surfaces in such a man-
ner that the approximation with respect to equation (47) is as
good as possible.

A procedure which we can imagine reasonable for a small in-
verse aspect-ratio torus , would consist of the initial assump-
tion,




. 0

that the magnetic surfaces form a family of nonconcentric to-
roids of ellipsoidal meridional cross-section. Shape-functions
in this case would be the center-shift toward the container-
wall and the eccentricity of the ellipsoidal cross-sections.

Although we are preparing a treatment of this case, we restrict
ourselve here to the simplest situation showing up all essen-
tial features of the equilibrium, where one works with noncon-
centric circular cross-sections, so that only one shape-func-
tion enters. This is the displacement A , introduced by Sha-
franov [6] and defined below.

| z

Swl

Fig.2

With respect to boundary conditions our results will be valid
in the sense of either of the following interpretations:

(1) The container is made of ideally conducting material and
has circular cross-section of sufficiently large aspect-
ratio, so that all inner magnetic surfsces are circular too.

(2) We disregard boundary conditions and restrict our results
to a sufficiently small neighborhood of the magnetic axis,
such that the outermost magnetic surface to a good approxi-
mation is circular.




g -

We will use the nonorthogonal coordinate

X = R(r,0)(cos¢ e, - sing e,) + rsinBe,

R(r.8)=R,+A(r) +rcos®

system given by

(66)

(67)

R, A= A(r), r and @ sre defined in fig.2. The metric tensor,
its inverse and its determinant g are calculated as

1+20'cosO+A* -rA' sin@ 0
q - ~-rNsing r? 0
0 0 R
1 A Sin@
{1+ A'cos@)* r (4+A'c0s0)*
4 A'sin® 4+2 A'cosO +A*
g = r (4+ ' CosB)* r:(4+A osR)*
0 0

Vg - rR(1+A'cosh)

(68)
0
. (69)
1
‘Rl

(70)

G in this approximation and geometry is a function of r only
and is related to I and A by (27) or (29) (see the remark af-

ter equation (52))

- & % (W)
1

. o 3 I v _ 4l
D=1+Nws6 N o
R _ .

N := R 1+ R, Eacose

(71)

(72)

3.

(7%)
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As we have pointed out earlier, satisfying (49) is equivalent
to the fulfillment of (47) in a restricted sense, which, as
can be seen, is

{fgLy =0 (75)

where with L we have represented the left hand side of (47).
Now the function A (as yet unspecified) enables us in addi-
tion to guarantee that

{13 LeosB) = 0 (76)

and will lead to a differential equation for A . It can be
shown that if (75) and (76) are satisfied then L is at least
of order (r/RO)E. With the assumption that this will lead to
an equally good approximation of the exact poloidal flux func-
tion by G(r), we conclude that in the sense of our approxima-—
tion (76) replaces equation (47). (76) is exactly the Virial
equation (64).
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