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Abstract

A uniform electric field transverse to a spatially non-uniform
magnetic field produces particle diffusion even when the electric
field spectrum contains no dc component. This diffusion is additional
to the usual E x B diffusion and occurs isotropically in the plane
transverse to the magnetic field direction.

The dielectric constant derived for the case of a uniform
magnetic field is shown to be quite inappropriate for a plasma in

a spatially non-uniform magnetic field.




I. Introduction

Study of particle motion in spatially uniform transverse elec-
tric and magnetic fields reveals the presence of an E x B drift.
This drift is due to the pole at w = O when the position of the
particle in the E x B direction is expressed as a function of the
electric field. Spitzer /1/ pointed out that if the electric field
is fluctuating in time, particle diffusion would take place instead
of the dc drift. The diffusion rate is proportional to the value
of the dc component of the electric field spectrum /2/. In Refs. 3
and 4 these results are generalized to the case when the electric
field frequency is no longer small compared to the particle gyro-
frequency.

Such results have led to the generally accepted conclusion
that only the dc component of the electric field spectrum in the
particle’s frame of motion could produce a diffusion transverse
to the magnetic field /5/.

In Sec. III of this paper it is shown that the parametric re-
sonances due to the longitudinal motion of the particle in a non-
uniform magnetic field cause the appearance of additional poles in
the equation relating the particle position and the electric field.
The resultant drift and diffusion occur isotropically in the plane

transverse to the magnetic field direction.

Sec. IV deals with the effect of the parametric motion on the
plasma dielectric constant. It is shown that in a non-uniform mag-
netic field the local approximation of the dielectric constant

derived for the case of a uniform magnetic field is seldom valid.

II. Particle Motion in an Ideal Parabolic Mirror

Let Bx (X v2) By(x,y,z) and Bz(x,y,z) be the magnetic field
of the axially symmetric magnetic mirror used to contain the par-
ticle. Let B, [ x(t), y(t), z(t)] , By,[x () wit), z(t)] and
B, [ x(t), y(t), z(t)] , henceforth referred to as B_(t), By(t) and




Bz(t), be the magnetic field at the instantaneous position of the
particle. Then, the non-relativistic equations of motion of the

particle of charge g and mass m are

Il

G (8) = =3 wg (E)V(£) + 3wy (E) v, (£) + 4 E() (1)
and ¥, (8) =y [By(t) v (t) - B_(t) vy(t)]

where V. = N + jvy,rl= q/m, mc(t) =Y] Bz(t), wcr(t) =
M [Bx(t) + 3 By(t)] and E(t) is the spatially uniform electric

field in the x direction.

We consider only the paraxial particles with r = x + jy - O.
At the axis w., > O, so that the term containing W in Eq. (1) can
be neglected. Next we consider a parabolic mirror so that in the

absence of an electric field /6/

mc(t) = [ 1 + A cos (pt +1F )] (2)

where A = (R-1)/(R+1l), R being the ratio of the maximum to the
minimum field seen by the particle, p/2 is the frequency of the
longitudinal motion of the particle along the mirror axis and
depends upon the initial position of the particle. Finally we
assume that the electric field E(t) is vanishingly small and leaves
Eq. (2) unaffected. We shall neglect the effects due to the finite
wavelength of the electric field as well as due to the magnetic
field associated with the time variation of the electric field. In
Sec. V we shall return to examine some of the implications of

these assumptions. The solution of Eq. (1) may be written as
v_(t) = exp [—j w, t -3 B sin (pt +\§f)]

o N +n t]-1 .
'Xaqjg(“’) A J-n((s)iexp[é(w-rwc P> 1 }"—P‘P((j‘“v) -

é(u3+—ut +np)

r V(o) exp (B sm¥) ]

where 8 = (ch)/p, I, is the Bessel function of first kind and
order n and.ﬁ%m), the Fourier-transform of E(t) is defined as
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E(w) = ;% f. E(t) exp (-jwt) dt
o
e
and E(t) = ./rlE(w) exp (jwt) dw.

All summations extend from - e to +e¢ , Note that the single
resonance at the gyrofrequency for the case of a uniform magnetic
field has been replaced by an infinite set of parametric resonances.
If the electric field is stationary random in time, applving
Fermi’s-golden-rule (see Appendix A) to Eq. (3) gives

2 2 2
d vi(t)/dt = 2 g J (B (v, + np) (4)
q n " €§ Ye F

where the power spectrum § (w) and the associated autocorrelation

function ? (T) are defined as
1 L * -
PITE == f E(t) E (t+7T) dt, T —»
-T
and P () = (- oT) afT .

Equation (4) is valid only when t-»=e and v(t) is the particle
velocity at asymptotic times. A similar result valid for all times
would be obtained by considering an average of vz(t) over an in-
finite ensemble of electric fields of finite duration. In Eg. (4)
v2(t) would be replaced by <;v2(t)j> where the angle brackets
denote an ensemble average. Equation (4) reproduces the results
obtained in Refs. 4 and 7 using different mathematical techniques.
Integrating Eq. (3) we obtain
Y(t) ’=-Y] ((3) To-s(B) —:L‘_—A—s‘lrl/‘:(w)d’w.

e
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S imy) EXPE €}-1
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(5)

In the next section we study the implications of this equation.




ITI. Diffusion Caused by the Electric Field
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0f the two sets of poles in Eq. (5), the first set at w = sp
gives rise to guiding center drift. Application of 1"Hdpital rule

to one of these poles gives
[ -]

_ Ss) [ !

My o e

(6 a)

Since\#’can assume arbitrary values between O and 2x, the drift
produced is isotropic for the case w = sp # 0. For the case

w = sp = 0, however, r(t) is purely imaginary and the drift occurs
in the y direction only, corresponding to the E x B drift in a
uniform magnetic field. This is to be expected since in a dc
electric field no particle drift can occur in the direction of
the electric field without exchanging energy with the field, this
possibility being excluded due to the absence of a corresponding
pole in the velocity Eq. (3). For w # O no such restriction exists
because particle drift is conceivable without exchanging energy
with the electric field.

The second set of poles in Eq. (5) at w = w, + np, where
n = m-s, represent the effect of expanding particle orbits due
to the corresponding poles in the velocity Eq. (3) and do not
contribute to guiding center motion. This is readily verified

by applying once again 1°Hopital rule to one of these poles,
L)
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The oscillating factor exp [-j (mc+mp) t] gives rise to a spiraling
motion to lr(t)] which increases linearly in time. There is one
exception, however, when wc/p has the integer wvalue -m, in which

case Egs. (6a) and (6b) combine to give on applying 1’Hopital rule,

Y(‘l?):.—-r] I’“’c/P(@) J;(wc/}’)_s((a)ex[:(;ds V)J E(w)dw t (6 ¢)
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The reason for such behavior can be appreciated by noting from the
term containing vr(o) in Eq. (5) that even in the complete absence

of an electric field a drift is produced when W is an exact multiple
of p. The electric field acting on this already resonant system gives
rise to a quadratic drift when its frequency w is also a multiple of p.
For a practical plasma confinement system mc/p >r B so that, J‘wc/P(B)
J—(m;no-s(p)-qb O, and the quadratic diffusion term in Eq. (6 c) is
negligibly small. In this paper we shall circumvent this singularity
by the purely mathematical artifice of requiring wc/p to be a non-
integer.

Applying Fermi’s-golden-rule to Eq. (5) we obtain

L = 3
Iy J. ,
i:fj___zﬂ_y{‘%[é M(fs) M- ((3)] f(s;—:) (7)

elt %+ Wb

where the subscript "g" denotes guiding center diffusion. It is to
be remembered that the diffusion is isotropic for s # O and in the
E x B direction for s = O.

Ford-thf case s = O, 5 J—w:-(("") Lf( ;
Y, _ s o
T lons = B (% wc-*-mr—]

Since Jm(B)—v-O if m >y B (or mp > ch), for the case of a not very
large value of R, we get 5
Sl ~ AT

",ng_\ = 27N F(o)

AX w = wc_.
where we have used the identy %&lsz(B) = 1. By comparing the above
equation with the results of Refs. 2 to 4 it is seen that the E x B
diffusion produced by the dc component of the electric field spectrum
is not materially affected by the magnetic field being non-uniform.

Using the identity /8/’£i Jm(p)Jm_s(ﬁ) = JS(O), it is seen from
Eg. (7) that for w = sp # O, the magnitude of the diffusion term is
quite small compared to the case w = sp = O.
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Consider the case w = p with the electric field "in phase" with
the magnetic field as shown in Fig. 1. The particle sees a stronger




magnetic field during the positive half-cycle and a weaker magnetic
field during the negative half-cycle of the electric field. Owing
to the different drift rates in the two regions of the magnetic
field, there is a net displacement of the guiding center in the

vy direction during one complete period of the electric field.

Although such a simple explanation is not available for the
x-direction drift, some insight may be gained by considering the
velocity Eg. (3). The particle velocity oscillates at the frequen-
cy np, in addition to the frequencies w and o to be found for the
case of uniform magnetic field. During the positive half-cycle of
the electric field of frequency w = p, the order of change in the
particle velocity is'q E/wc and implies an x-displacement Ax:sE/ch.
Due to the absence of a pole at w = p in Eq. (3), the particle is
obliged to return this reactive energy during the subsequent negative
half-cycle of the electric field, necessitating a further displace-
ment Ax in the same direction.

The preceding considerations give the impression that the "x"
and "y" drifts are caused by apparently unrelated mechanisms. How-
ever, the isotropic nature of the drift is more likely to be the
manifestation of a yet unknown physical mechanism rather than pure

coincidence.

IV. Dielectric Tensor and Electric Field Penetration into the Plasma

Equation of motion of a charged particle is given by the Lorentz-
force-law. An ensemble of charged particles (e.g., a plasma) situated
in a given externally applied electromagnetic field may exhibit charge
separation and bunching in co-ordinate as well as in the velocity
space. The total field inside the plasma is then a superposition of
the externally applied fields and the fields produced by the particles
themselves.

Plasma dielectric constant ¢ is a measure of the fields created
by the particles as a reaction to the external electromagnetic fields.
From Egs. (3) and (5) we note that both the velocity and position of

the particle in response to an external electric field consist of in-




finite sums of parametric modes. When one considers a group of par-
ticles with different values of p, the bunching effects either in
velocity or co-ordinate space would tend to disappear. We may,
therefore, conjecture that & —+#1 when considering sufficiently
non-uniform magnetic fields and the plasma appears transparent

to an externally applied electric field.

Furthermore, this effect plays havoc with the dispersion re-
lations derived using the "local" approximation for the plasmé
dielectric constant in a non-uniform magnetic field. Also, the
results derived for patently mirror microinstabilities (like the
loss-cone instability), by treating the problem in a uniform mag-
netic field, should be employed with caution.

V. Discussion

The principal result obtained in this paper is the presence
of an isotropic guiding center drift in the plane perpendicular to
the direction of a non-uniform magnetic field. This drift is in
addition to the usual E x B drift and is caused by the non-zero
frequency components of the electric field acting transverse to
the magnetic field. Compared to the diffusion co-efficient due to
the dc component of the electric field spectrum, the diffusion co-
efficient associated with this isotropic drift is quite small for
comparable values of the electric field strength. However, the con-
tribution to diffusion parallel to the electric field may still be
important due to the presence of rather large ambipolar fields in

the radial direction.

In an actual experiment, the departure from the parabolic mag-
netic field variation, the off-axis (non-Paraxial) and finite electric
field effects, as well as magnetic field imperfections will all add
up to produce complicated variations in mc(t). Though this would
tend to smear out the distinct parametric resonances replacing them
by a continuous spectrum, it may be seen by comparison with the re-
sults obtained in Ref. 7 that the total diffusion produced will not

be much altered.




The neglect of the term containing wcr(t) in Eqgq. (1) introduces
an error by eliminating the mechanism responsible for energy exchange
between the longitudinal and the transverse velocity components.

This results in a constant value of lvr(t)l as a function of time
in Eg. (3) in the absence of an electric field, and is obviously
incorrect. Hence we refrain from commenting on the significance of
the pole at w, + mp = O in Eq. (5). Wether this is symptomatic of

a deeper pathology introduced by the paraxial approximation is hard
to say. Thus the quantitative estimates of these phenomena will have
to await not only an accurate measurement of the ambipolar fields

but also a more precise theroetical model than the one used here.
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Appendix A

E (t), the response of a linear system to an applied drive
'% (t) may be expressed as
expljlw- wet] -1

a0
Tt - v\[ & () dw

where it is assumed that the system has only one simple resonance

at w = w_. On squaring one obtains

7y des dbw’ DPLI(P~w t1-1 exply (w’- weye1-1
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IFigure Captions

Fig. 1 Electric and magnetic field variation in time as seen
by the particle.
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