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ABSTRACT:

With suitable simplifications it is possible by complex analysis to calculate the
strength and direction of the electric current flow in MHD generator configurations.
In the model described the electric current forms a plane potential flow for which

an explicit expression can be given.

ZUSAMMENFASSUNG:

Bei geeigneten Vereinfachungen ist es moéglich, Stdrke und Richtung der in MHD-
Generator-Anordnungen flieenden elektrischen Stréme mittels komplexer Analysis

zu berechnen. In dem beschriebenen Modell bildet der elektrische Strom eine

ebene Potentialstrésmung, die explizit angebbar ist.




§ O. Purpose of the investigation

Since the temperature in MHD generator configurations
depends on the electric currents, it is important to know their strength
and direction. The purpose of this paper is to show that with suitable
simplifications methods of complex analysis are a powerful tool for
directly calculating the current field. We choose a plane model
in which the current vector ? itself can be considered as an analytic

function of the space variable z = x + L)/

Methods of complex analysis have also been applied by, for
example, FISHMAN,SCHULTZ-GRUNOW and DENZEL, and WITALIS
( see "References" ), but these authors treat the potential of the electric
fieldas a harmonic function of the two space variables and solve the

arising boundary value problems by conformal mapping.

Our investigation was performed as part of an investigation of
actual MHD generator configurations reported by BREDERLOW and
HODGSON. Our interest here is mainly mathematical . We do not
go into the physical details but take the model and its ( simplified )

equations as given. A sketch of the geometrical configuration of the model

is shown in Fig.1.

Between two parallel insulating walls perpendicular to the
(x} /) - plane there is a stationary homogereous flow of plasma in

the x - direction. There are a positive and a negative electrode with

zero cross sections ( infinitely thin straight wires ) perpendicular to

pe

the (XJ 7) - plane between these two walls. An eleciric current




flows from the positive electrode to the negative electrode, and the flow

pattern of this current has to be found.
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Fig.1

As by -results we obtain detailed discussions of potential flows

resulting from two opposite source - vortices between impenetrable parallel

walls .

§ 1. Notations and mathematical models.

.
v A

As usual, we infroduce = = x + L/ = T and transform
accordingly the basic equations and boundary conditions of our problem. We
idealize the electrodes as infinitely thin straight wires, i.e. as having zero

cross sections.

The electrodes then intersect the z~ plane at the points z=z and

2z =z, and are extended perpendicularly to this plane. The electrode at =

2 7

is positive, the other at z_ is negative. We have a homogeneous plasma flow

—
with velocity % in the x- direction and a homogeneous magnetic field B

perpendicular to the z- plane. Introducing unit vectors




il -

—_—
M = unit vector in the x - direction,

i

‘Bzzz unit vector in the 7 - direction,

—_— _ 7 -
n3- n, X n, ,
we have
PA")Z ) = ‘P\:?ln_?) )?/:cmf>0)

where A > 0O and /3>0 are suitable constants. This, of course,

is a simplification whose physical significance we do not want to discuss.

We treat two cases separofely,(z)flow without walls,

(f,t', ) flow between parallel insulating walls at = = » + L2 ) —@AL<KL + D,

}o|]

We treat case(;')in order to get an insight into the mathemactical structure

of the problem. The distance'{ of the walls in(i'}')is not an essential

resfriction, it just means an appropriate choice of length unit.
The basic equation is the generaiized OHM S law,
0 *=e{E+T¥xg)- 4L ik E

where we assume s, fo be constant. See, for exqmple, [?7.

—
Because there is no dependence on time, & is irrotational .

—_—
For convenience, we set d. = J */6>  and take into account that
- = — ©
Ux b =- et n, with ©¢ = P’{gA This gives us
-_ = TS -~ —> = d)
(’?) d T € —en, - J X iz, =-V
as basic equations, in which ¢>,J and & and, in pcrhcular, the
— ’ —>
dJ - lines are to be determired. £ andj’qre vectors in rhe(xd)- plane.
The following conditions must be satisfied.
In case (&)- T — 0 for | =] — oo ( regularity at
infinity ).
In case (L4): T—} O for |x| — co (regulcriry }i
-— . — A
i’ = j &=, ot /‘2

where J (x £ ./}) is real ( boundary condl’rlon ).




—
Outside the electrodes £ and J. are harmonic vector fields
-_?

and 'rherefore have scalar potentials. It is clear that 7~ f = O and

ﬁ

>

VX ‘: = 0. We have to prove that VXJ = 0 and
—_—

- £ = O. Todo this we apply ¥x  and Ve to (’/)cnd obtain.

1 e e 4 - -9
-= VX = i =
T v (5= TV )+ (R) TR - (7
—
=\h V’ i =
( )i 0, _
because j * has no component in the 7, - direction. We further obtain

0= V.7 = ve ~ ﬁV(JXn)
-
AT (o= 7)-T(vxm)) = FE

We now represent our problem in complex notation. Instead of
> wi

= |« no+ J y :?-: we take = Jx-f- ijf yand correspondingly for the

other vectors.  The conjugate compfex to a=qa + ¢ a, is denoted by
@ = & ™ : 0\7 . In par’rlcular n corresponds to 1 n to c."

=2 s v
and j X ;: to i, . We note that & cndl} have complex potentials L/(z)

and F('_z), respectively, which are analytic functions,
(2) E == W=, j=-Fla,.
From (1) we obtain the corresponding equation
(4') _,)i.:é——CXLa‘f't:@d‘
or the equivalent relations
5 j = R, R ) ~ (T’_u..")‘-' "
1= 1+t 2
For convenience, we define
€) == j= =- =

and note that f(:) isan analytic function.

The streamlines of the I— field are now given by

(F) S(Z = ccnjf
where (g) S(z) _ Iﬁm F(z)

is the flux-function of the electric current.




We first investigate the configuration corresponding to a single
electrode at = =0 . If there were no magnetic field present, we should
have a single source with | streaming radially outward. The resulting
radial lines are distorted by the magnetic field ( Hall effect ) to
logarithmic spirals, all | - vectors being turned through the same angle,
depending on the strength of B. We therefore have superposition of a
source and a vortex. This is generally the local structure of the |

J - field near any electrode. If there is a configuration of more than ;
one electrode, we simply have to construct the whole j—field from
such source ( or sink ) - vortex elements, thereby using the fact that

the E - field does not have any vortices.

With the notations

- - 4
Q = €6 3 ™ @e ( source strength ),
7
RS gy
P = E,b J £ ds ( circulation ),
i
where the integration is to be made counterclockwise round a closed smooth
% —
JORDAN curve with unit tangent vector £ and outward unit normal vector n )
we have
() P+riQ =& fz d=
I_"
—f
t

R,

Fig. 2




A source of strength@ in z=0 yields

{Q (:) = Q 1

— }“—(:-:):_- -——f—-Ci-—-

by =

by = 2T y
and a vortex of circulation P yields
) P — 2 /
i@ =-== /-(-_:):_f_;&.;z
e “ ’ — {

n
The general source-vortex at z=0is represented by

(i O) p( =) = 1T = ) 2 (=) —_5.-’— {C\-j =,
and its streamlines are logarithmic spirals ’

I, F";:F Co-"-—-é( ":-‘L)S‘-'IW/‘—
mo =) T = o

T =€C ;/;41,1 ((_QYJ/P)

We now look for a generally valid relation between

or

Pand Q. Near any electrode which we may imagine as lying at

z2=0 we have locally
AP 1

T

o ~
whereas (see (£))

— b T : 1 : v 7
é:(z) = ('7“;'/;)‘](7-')* LeX ~ X7 (7_. C,’@)(Q—fc P):__
must be a pure source field. This means -
|m(7-(ﬁ)(Q+CP)‘—‘--ﬁQ*‘—P‘-'—O) or
(1) P=RQ.

This relation is valid for every electrode. Given Q, corresponding to
the strength of the electrode (Ql = - G’})/we obtain P \"f (7 1)
and then the whole configuration by superposing either the fields corresponding
to each of the electrodes in case (i) or the fields corresponding to infinitely

many electrodes obtained by reflecting the electrodes, the walls and the

individual fields of the electrode at the walls in order to fulfill the boundary




conditions in case (if,) . The j-field is independent of & , that is inde-
pendent of the velocity of the streaming plasma. But, according to

(5) , we have
(1Y) E@ = (1-if)j@ +id = (=) +iux,

which means that the E-field does depend on the velociry}namely on ox.
This can easily be explained as the influence of an additional field

o == 3F x E . In case (Cd) this means that

| the walls are charged accordingly.
|

The situation is much more complicated for electrod es of non-zero
. -
cross sections, for then v can no longer be homogeneous. But our theory
should correspond closely to reality if these cross sections are sufficiently

small circular areas, because the equipotential lines of our E-field are

infinitesimal circles near the electrodes. If other kinds of singularities

(multipoles AV ﬂ(.z -zw)'q) 0= ) were superposed, the
i

equipotential lines of the E-field wouldno longer be infinitesimal circles.
It is therefore natural to take only source-vortices at the points = = z,

and zZ=Z, .

With this restriction (infinitesimal circles as equipotential lines
of ()b , the potential of £) the solution to our problem is unique for a given
value of Q = Q,, . In case ((,) ;(2) >0 for =z — oo

/
and for any other solution F*(z)we should have £%=) ~> 0 as well,

therefore g(=):= fz) - £%=) should be an entire

function tending to zero for = —» ce , from which it follows that
9(‘2) =0 . In cose(ii) the same argument is valid if =z —> co
is replaced by [x| o0 . In this case £ (=) and \f*@ are

both periodic with period 27¢ and have the same singularities and

residuals.,




We now proceed to construct in detail the solutions for the two
cases. For simplicity, we always assume Q= 2+ , which only means a
7

special choice of units.

§ 2. Flow without walls

Because we are mainly interested in the j-field, which is
independent of e¢, we introduce the positive number
; -c g, (== Z
-~ 1 9_
and rotate the plane so that the elecirodes intersect the plane at o-
and —a. . This is achieved by

(&__'2 + 2, )e’ QA‘?(27—ZL)’

Finally, we again write z instead of z” We thus have

Epem By =, ERReg g o > 0.

We then get y

=) = /LF—{ v+f Lz) F(?)H'(/” F)ﬁj :1”; P
(13 "”**F(Z>=%IZ:2! poy ol

)(‘7 ‘-‘Lh’ Fz> = _ﬂﬁ?'zh\ Wf?’:;‘: '

We shall derive an explicit representation of the | - lines. By intro-

ducing the variable ):’ - RN, ) Loe. = = o __7 S
4 <+ O 7 [
the singular points = = £ 4. are mczpped info C’ T(q) = / cg g
and )2_ g'(_ q) = . The cump|ex

potential is now

HQE): = F=(3)= (1) by T

€~

Introduction of polar coordinates €, & with f- (-93 yields

G == (g (@)= (- Lyg+6),
SCl 3= @-pby¢-




= )=

The equation of the j-lines is now e-C
O-Plyg =C o g=enp=5—) *

i 5 t-C ;
?:E, C_Jxro( ﬂ' )) —00<.i<tb/)/
where (denotes the current flux measured from the line S=0
This is equivalent to i o :
o (E C)m ety a e ()
19 = (t; C)==O=a 3w i)

All j- lines are obtained if C varies in 0 < C < L3,

We note that
=z ({t) = =a for t —> +o00, 2({) —> o0 tot t— 0.

The j~lines can easily be computed and plotted. They are
the conformal images of logarithmic spirals. Some special questions

may now be asked.

The zero line (=0 is the line through == 00 . Its equation is

=)= a L +e.CtMT (f/'/j)

l-e Py (¢
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Fig.3
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We are interested in the asymptotic behaviour for ‘é — 1t 0

particularly in the asymptotic slope. We find

=l = & 7 +w(n‘(£+§;)) 24 o, %_7
) (%(w') ?+(L ( {3)

Lo acq = (t) =~ arvly B+,

t >+
Lo ag=@) = = acdy [
t— -0
where the values of the arctg - function are restricted as usual to
the interval 2(-?(/?_) 7/7_) . By a sharper analysis we obtain
L a [ ~ ) -1 _ . i
'2(-6) 74{_@}_ ( //‘f‘l.(;){ F) ‘{‘“\)

so that the srrargLr line

- = Z‘* 44—1{?)/‘5

or Y= ~ (.’» X is an asymptotic line for = ('LL i O) :

We now consider the behaviour of the j~field on the symmetry

line x= 0 . From (13) we calculate

J(" 7) a +Y (7 # 4 7’) , which implies
J<(L\,)<0 and J'7(57)<Ofor — oo <7<+o<;

Equation (13) is now used again fo give

S(iy) = et oy (iy-a)- e (7).
According to our agreement 0 < C S(z) <7 Qg we take

S(O) = ﬁxv—z (—- ’/) =T f increases from ~ o viae O

TLH +DO) O(/f‘?, ( ‘ il u) decreases from




- 13 -

-—; Y Vi 'S 'llc T/?_ , whereas arg ( ( &3 q)
increases from  — /2 v, O To :/'2 . We see that S (¢ 7}

Y Fig.4

arg(iy-a)

decreases from 21T via T fof,This corresponds to the fact that the
source at z =&  with =27 lies to the right of the v —axis. A simple
consequence is that every j-line, with the exception of the line C=0 4

crosses the axis x =0 exactly once. The line (=0 does not meet the axis
X = O 3

We note that

S(i‘f) is mono’ronic,S(Ly)r-?O for J =)
5(&7)__) Vi o for vy — -o0 SE) = 7.

The equation S( y 7)—"—'( can be explicitly solved for 7 & (C)
so that it is possible to find the points on the Y—cxis which correspond to given

values of the current flux. From

= ;’. . 39 ( Lr-'“ —
C g JT A { e e, | 1 it follows
R AR ¢ 7
(C ly—a _ e +1 _ ..
that - — , whence —— O T = & & ~
. T-t—@'\ 7 ot g ; 'z

C .
Eor \/: x’//:?—i—- we have S(LY)ZC




- 14 -

The corresponding value of { for the j-line

S(‘:) == (; is i = , that is we have ‘ |
- N L C |
= ( C,; Q )_: a ,71:;f;_: = (g (/f 'ﬁ?” ,

_ . C u

un
w

. Flow between parallel insulating walls

We treat this case by conformally mapping the strip
= w ) —_ /.
!/___.<7/< 11,:.}_ on'ro’rhe
vpper half-plane  Tw t >0 with *+ = ¢ g;_z

The singular points (the elecfrodes)zk are mapped cn g Eo= (e A

)

|
! |m
I
! ?lsﬁo)
________ lO___________ /'/ l \'\
IV I m i \
i1 v | R
| Y Y
v -iTy I

Fig.5
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Source - strengths and circulations are invariant to conformal mapping:

7 g
Jt@ d= =~ (/@)= - [d FGz).
As boundary condition we now have that in the t - plane the flow must be

tangential to the real axis. In the t - plane we introduce the flow vector

9' “L) and the notations |
(15) @B = F=) == 40 dt = — [{=) d=.

By the method of reflection we find

(16) g@)=(lif , Axip)_[1=ip | Axid)

\ £, é-f—,} \ E- LL.)_ t

Fig. 6




7
(17) -Gt)=(1-1p) b (%-t1)+(']+cﬂ)&j({_,?;)_
{(1-i0) by (F-t) e (1420) 5 (4% )]

();2) =F=) with $=) = = Flm) = = € (f/ '“ =3 j,(w )
(19) {(=) = fg () with t= ie™,
The boundary condition is, of course, now satisfied. The
regularity condition § (=) »0for x —=> tea s transformed into
53(5)90 far £ w gnd b0 , We Find, Indesd,

7—[.;@+7*-i:(3_{_7—‘7ﬁ + T+ i3 } _ O—é-y

RPN P A
t 7& 71‘

From now on we restrict our attention to the particular case of

'T."j(é)=

symmetry, that is to the case
('g_o) =, = a+ib a>0, -Ta<b<t/,

and investigate the qualitative behaviour of the j-flow. The local

~

structure near the electrodes is evident ( source-vortex ). We note that the
whole configuration of j-lines iss ymmetric to z= 0 ( because the singularities
possess this property ), any j-line is mapped onto another j-line by replacing
=z by -2 , and the direction of flow has also to be inverted. The

i-line passing through == 0 is symmetric to itself.

We shall prove that there are two neutral points ( stagnation points )

in which J = 0, one on each boundary component, if 0 < [)’ < oo

and 73 (l%—-[?t&a,

In order to determine neutral points, we have to solve F’(z) =0

or (f) = 0 . The latter equation, multiplied by

(t-t) (€-4)(t-t)(¢-F ),




= T
leads to
21) At"+RE +(C =0
where

A=t b = (t+6) - if (fr“Z*fzJIl)/

B=2 (le ™I} +2:ip (4%, -4 ¢,),
=)l B p et -l
Obviously, A, B, C are real.

Setting =, = i, L}/ yields

A
/_\/Z Qx(wfﬁup,m;/)#—é (Wf__b(,@‘)rz-)

(282 = PN 2B e (1,0
2x+x,
///Z:' (W)’q +/')’°m74>
By (20 ) we find
Al ==k o sinb + [ ha b
23){ B/4 =~ (£ (2a)+ 3 « (21))
IC/Q‘: 020\ ml: —-[‘1 A a mL=—A/4-
If A%OJ we have from (21)

(29 ¢r+ Bt -1=0, f:-é:-%(— T,

whence f1_ t = -1 for the solutions 1L

(—X -f—X

(= 1+ Beor,)

and, because A and B are real, both values 'LL+ are real, e.g.
{ C ¢
L5 4O t > 0.
It follows
. . o . L l\ )
(25) s & = 9 '1“&7( —(\

On each of the boundary components y = 'f'u/Q there is exactly one

neutral point. (This is no longer generally valid in the general case

&, z, since in that case A/C need not be
< 0 | numerical test computations showed that /A/C >0

J
may happen.)




= T8l

If A =0 ) we have the unique solution t= O; = =oo . There

is no finite neutral point in this case. A =0 happens if

;f' al : =
(26) HGb=p3H%a,
and this splits up into three cases

() =0, L=0, a> 0.

+
Source and sink. See Fig. 7.

(’..) (>=-0 a=0, tho,{ﬁﬁazégl,j.
Vortex pair. See Fig. 8.
(,,,) 0<(1<MJ a = U, 0 ).:":-qﬂ—z/f}(/g b&’q)<w’/2

Source-vortex and sink-vortex. See Fig. 9.

+ The field lines in this and subsequent plots were obfained by numerical

integration of the j-field.
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Fig- 8
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Fig. 10
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The structure of the j~field for the case of two finite neutral
points can easily be sketched ( see Fig. 10 ). 9{2) is a single - valued
function if we make cuts along the j~lines beginning or ending in the

neutral points.

We cannot expect that S(Iy), the flux on the line of symmetry,
generally behaves as regularly as in the case (ﬁ) , where there are
no walls. If the distance of the electrodes from the line of symmetry is
sufficiently small compared with their distance from the walls, we must
expect that there are | - lines which intersect the line x = 0 more
than once. S(Cy) is not @ monotonic function in this case. See Fig. 11.
Nevertheless, if a>0 , we may fix the constant of integration in

S(iy) = /JK (iy) dy

in such a way that _
S(—Lﬁ‘/’l): 27 and 5((&"/’2 = 0,

Compared with case (.) we see that we can expect monotonicity
of S (.'.7) if “n\<<& and (3 is not too great. Observing the special
case ( 33 ) ( to be treated later in this § ), we see that smallness of P
is not so important if | L | 5 ,

A property worth having for physical reasons ( see [’I] )
is that the | - flow near x=( should be nearly homogeneous. It can be

hoped that this is the case if J(O) isreal (and << O ), thatis if

&‘7 (0) = 0.

Noting = =0 N t=1 and

{==ty, - <y<v/2) N {#1=1, Tu t>0]




—
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we see that because of conformity we must have

27 R g() = ©-
This condition can always be satisfied if a > 0 and L = ) (q) F)
is suitably taken. Defining _
28 § (&) = p(a, frh)s= R 4()
we obtain, after a lengthy but quite elementary calculation,
) ol ) BEE Dtk Pl b
(/-9) qff(q)())'L): )ec«_ezkll A-CL}'?-
whence 4_.£ o

KKL)P—:vw>O for L — T(Q_)

o

g(\n)—%-[—o’q&%‘—z—<0 o b — —/2

ThereForeX hast at least one zero i — T /2. < L < ?7/9_

| ™+ e

The solution is unique and is given by

(3_‘3')12.]5=_a4_,:/[.3([3 tfcx).

See Fig.

As a final particular case we treat the case

a> 0, b= 0, (3 > 0 ina different manner, namely by hyperbolic

functions and without intermediate conformal mapping.
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By superposing infinitely many sources and vortices as indicated in

Fig. 13 we satisfy the boundary condition. We have

f=) = ¢ =) +

Source* Vortex (Z)
where
o N . P N ¥ )
(Source[\‘_/ - r//%\ ( B ) - L/L (Z ik
20)

17

f (‘=)=-;§f 1

Vortex

LP& (z-a) A (:—: -1—&) /(
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Therefore

31) f@= Ah(=-)- (e )/’{ ! j

.: - t'\) YK (:’: +(Q
On the boundary we have

Flx e 50) = (- o)- Bxra)z ! j; L\)—%,;MQ}

which is real . It can easily be checked that

A

“ S =

I
N

The neutral points are obtained from ]((2) =0

#
- LT * B
_ ) J = - A where
52) ]
k' 7] C/t\ Co ("{C\
2 ™ = (ﬁo? ,/ \/( / .
If P increases from 0 to m) * decreases from oo te O.

By elementary calculation we find for the symmetry line x = 0

__ £ (2.4)
33 ()= #(:y) =2f- 2Co)-nlzy) 2% 4(2q)_ mé,}

o () < o

(i) <o

If can easily be checked that

( //,) i () J/ — - 92,
...,q / B
We see that S{| is monotonically decreasing if v increases

from = /4 to /z We set S(‘“*/l 2[[ S(/?_) =0 ,and

have _S 0) =7 for symmetry reasons.

The complex potential is not a single - valued function of = .
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We find

3‘?‘) u‘}',ﬁ(z+) LF/{ftrj,d) ok )

A

=, i / ’ Z~ “\) —.0\
(\,;J) S(Z)F— 3/){&((2“& (414—7 Zz+a
pa

Again,S(Z) can be made single - valued by cutting the plane along

the j - lines beginning or ending at the neutral points.
Finally, we sketch the structure of the three | - fields for the cases
[-X) {' =) , source and sink, as in (.) See Fig. 14,

(’*ﬂ 0 "iF < 02 |, normal case. See Fig. 15.

(%K’-r) (: ©0 , vortex pair. See Fig. 16.
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