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ABSTRACT:

The stability of the finite amplitude convective flow in an
infinite, horizontal fluid layer rotating rigidly about a
normal axis is investigated for the case of rigid boundary
conditions and finite Prandtl numbers. Solutions of the non-
linear steady-state equations are derived approximately by
an amplitude expansion. It can be shown by a stability
calculation that all three-dimensional solutions are unstable,
and furthermore for a given value of the Prandtl number there
exists a critical value of the Taylor number above which the
only stable two-dimensional rolls become unstable, too. This
means there is a transition from pure heat conduction to
time-dependent convective flow.




1. Introduction

In the problem of convection in a horizontal fluid layer
rotating rigidly about a normal axis and heated from bélow,
the relevant parameters are the temperature difference 451-
between the lower and upper boundaries of the layer and the
rotation rate. The first one is represented in a dimension-
less description by the Rayleigh number R., the second one
by the Taylor number‘t}. A comprehensive bibliography of the
linear properties of convection with and without rotation is

given by Chandrasekhor (1961).

Solutions of the nonlinear steady-state equationswere derived
by Veronis (1958) for the case of free boundary conditions.
For this case and for infinite Prandtl number a stability
calculation was done by Kiippers and Lortz (1969) (hereafter
referred to as I) which shows that there exists a critical
value of the Taylor number above which no stable steady-state
convective flow takes place. This means that for a given
supercritical value of the Taylor number there is a transition
from pure heat conduction to a time-dependent convective

flow if the Rayleigh number increases from a subcritical value.

For rigid boundary conditions and for infinite Prandtl number
the existence and the value of the critical Taylor number with

these qualities has been shown by Kiippers (1969). Therefore,

it 1s of interest to know the stability properties in the more
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realistic case of finite Prandtl number and rigid boundary

conditions.

To solve the nonlinear steady-state equations we expand the
variables in powers of the convection amplitude, a method
introduced in the nonrotating case by Malkus and Veronis
(1958).

It is due to the infinite horizontal extent of the layer that
the convective flow is not uniquely determined by the
equations of motion and the boundary conditions. To sort the
physically realized solutions from the infinite manifold of
possible solutions, a stability calculation is necessary.

As we consider convection with relatively small amplitude, it
is reasonable to solve the stability equations as well by
successlive approximation as first used by Schliiter, Lortz

and Busse (1965).

2. Fundamental equations

The well=-known form of the fundamental equations ylelds in the

same way as In I the steady-state system

RWX + UX = Q(%X) (2.1)

and the linear stability equations for the infinitesimal

v/ ot

amplitude perturbation x with time dependence @
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where )s‘ is the unit vector opposite to the force of gravity.
UL; is the vector of velocity, vV and W are scalar position

functions., e denotes the deviation from the linear temperature

distribution of the static state. In this dimensionless form
of the fundamental equations the following dimensionless para-

meters appear:

Re guaTd?/xy  T=2Q;N &'/ p=v/x

where 9 is the acceleration of gravity, & the expansion co-
efficient,cttﬁm depth of the layer, ™ the ﬁinematic viscosity,
Y the thermometric conductivity and.fl;the angular velocity.
F> is the Prandtl number. Note that the summation convention is

used.

As in I, solutions of (2.1) and (2.2) are sought by expanding

the variables with respect to an amplitude parameter as follows:
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3 e
X=X, +e' X, + 2 X+
R‘.‘,’ R°+£R1+£1Rz.‘,.-..

~~

){B X1+£YL+£1X3+" (2_3)

G =GC,+ £G6, ¢ 2251"""

Substituting these in the systems (2.1) and (2.2) respectively
yields in the first case a set of inhomogeneous equations and
in the second case a hierarchy of equations analogous to the
stationary case. The solubility conditions determine the R

L o

and G;.

3. Boundary conditions

The layer is of infinite horizontal extent, and all functions
occurring are everywhere bounded. Suppose that the layer is
bounded at z = + 1/2 by a perfectly conducting medium. This

corresponds to the boundary condition for the temperature

Qs Ol r=t 1/2 (3.1)

Since a viscous fluid with rigid boundaries is involved, all
components of the velocity must vanish, and.this yields the

following dynamic boundary conditions:

V= 0V=w=0,2s21[2 | (3.2)




4, Solution of the linear problem

L]

RWX,+ UX,=0 (4.1)

RDW&Z‘ UL?C = 0o V X4 (4.2)

With G'o-'O (4.2) is the same as (4.1), and so only the more

general equation (4.2) is discussed.

First we define a weighted scalar product:

(XY= R(WV), % Ry (wiw) s (e'e),
with X’ and X satisfying the boundary conditions (3.1) and
(3.2). ( )a denotes averaging over the layer. Then the matrix
differential operator(L+R°¥'is Hermitian. Because V 1is, in
general, not definite, it does not follow from the hermiticity
of LL+R.N. and from equations (4.2) that 0o 1s real. Over=-

stability can occur.

It is well=known that the vertical and horizontal dependences
of the solutions of the linear equation (4.2) can be separated

by assuming that

P

A,_X,‘-rof'sz,:O

where a 1s the wave number. The neutral curve 6'°=0 divides the

(Roﬁj}) -plane into a stable and an unstable reglion and on

this curve there is a minimum value ‘R.' R‘_ at &L =0L‘. In the
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following we put a:ac because this is the only case where
(4.2) yields no instability. Then the most critical distur=-

bance has 6,0, and (4,2) is identical with (4.1).

Solution of the linear system (4.1) with the boundary

conditions (3.1) and (3.2) can be written in the form

X, [9®) |2 cu @ (4.3)

h(2)/ me-N

~ Hé) +00
X, (902 Ca O (4.4)
() M=-0

-5
Y is a horizontal position vector and

Won 50 (L v) 1Tz 08 Ko m ke Com=Co
K,

a horizontal wave

number vector with overall wave number A .

To determine the & -dependence of Viw and e we eliminate

in (4.1)Ww and © and obtain an equation for f X

+  \? _a. *
[(azf’ “) + T O+ Roc‘]“ﬂ s
Because we are interested in the lowest value of Ro’ we

consider only the lowest mode, and therefore the solution of

this equation 1s.

{R)= 5 B, coshq;a

IEY



where CI; is a solution oft

3 l 2
(q"-cf) + f‘"q t Ree =0
h(&) énd 5(1) can be determined by the second and third

equations of (4.1).

3 .
h@)= - R = -;T‘B-‘—-z- coshq;2 + BLtQ.t"cosg\o&
=t

o

5(%) 'C( 2 LB — Siwhq;1 +B,,,Si\nha.a)

=1 ; <o

The boundary conditions for'{ and Li (“':‘f‘=‘ﬂ=0|z“t4/¢)
determine B"‘iz |,2.3 and Bq 1s determined by the

boundary condition for 9 (%: O‘ 2= % 4/1) .

3 9.8
"""1-""' Sm\aqsh.
J:.I c‘l
By =
Sinha/r

The homogeneous equations for B' le , and 33 are

3
i BJ cosh 9312 =

B 19 siwhq;=0




The determinant of the coefficient matrix must vanish, and

this yilelds an equation to determine R‘ and Q‘

5. Second=order solutions

The second=order equation

yields the solubility condition

0':‘ <§<,‘, & (X,,X,,)> - R1<5(.,' WX4>
A
X1= 2 wh‘“=~oo...._l'(....+o°

Because of the symmetry of the first-order functions, it is

readily seen that the term <X, 'G.()(”K.,)> is equal to zero.
This gives R =0 because

(X wx)= ((3;04)958,) [R, # 0

R1= O the stability equations in this order are

ReWX,s UX,= & (X, X4 )+ R(xX) +0,VX, (5.2)

with the solubility condition

O . <Y1‘\ @‘ (Q“\(,‘)'f O‘(xilq1)> t 6-4<Y4‘ Vv §4>
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The first term on the right-hand side 1s again zero, and it

follows that 6'1 =0.

To determine Rl and 6'1 we have to calculate the solutions
P

X'L and X?. . We try to find xl in the form

’ +N F(‘Put,t‘-)
X,= f_ G(Pe2) |Cu( Ou
‘ﬂ‘ =N F{(\ﬂ“,i:)

-b

\-Pm-: ku' EL /O‘z

Because of

é.F( ac‘,«rc.‘c)w,‘wk-li Fen® s, ek

l
the analogous. form of >£L is

F' Vo
zf_ 2_ a CiCe W W

7' -N ¢z-00

Note that from the structure of the inhomogeneities it follows

that F, G and H are not only functions depending on the

scalar product of the two k-vectors, but also are functions

of the z- component of the vector product of the two k=vectors.

But in the formulas for Xland x the summation runs over Ls and

L, and therefore antisymmetric parts vanish.

_
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To determine F, G and H one can do the same as 1in the linear

problem, but this yields incomparably more complicated

{
formulas than in the linear case., Therefore it is much more

convenient to integrate the inhomogeneous second-order

equations numerically.

6. The order 53

The equations are
RoWX+ X = & (X, %)+ R (X0 X4 ) = R WX, (6.1)

R UKy = A(Rada) # 8 (%, %) +@ (%)) +B(%,%)

— RWXa + G VX4

(6.2)

The solubility conditions are of the form

0= (3 B(% %) + QX X )Y -R, {X 1 WXeD

O' <X‘: | G(Q:‘ lKIJ + Q (\(.\,i.,\ + &(:Z; |x4\ *a(xl‘X4\>
"'.R'z_ (XJ,\J £-1>* rz<x4‘\v§'1>
The expressions for Fll and 63_ are obtained from these

solubility conditions in the same way as in I, and we content

ourselves with giving the corresponding formulas. For more

detail see I section 7, 8 and 9.
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K
- . ) |
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For disturbances with k-vectors which are coincident with
the basic vectors of the cellpattern, one gets in the case

of rolls the only eigenvalue

G”‘“/M (6.4)
M= (W P lad f (030}t -p ot 9a)

Disturbances the k=vectors of which are hot coincident with

those of the steady-state pattern yleld the continuous eigenvalue

61 3 (Tv1 -T‘H) (6:5)

7. Numerical results

Now we discuss these formulas and the numerical results.

Together with the normalization condition

N 1
Cul =2
Ksi
(6.3) is a system of N+l inhomogeneous equations which -
X
determines R;_ and lCul and which restricts the manifold

of first-order solutions. For negative le steady state

convection at subcritical Rayleigh numbers can occur. If‘TE“

is positive for all values of the angle Y Dbetween the two

-1

st
lkk-vectors ké and k“, R,go is surely valid for all cell




- 14 =

pattern. In Fig.1 the curve Nin,f (T‘“) =0 is plotted.
Mi\nq (T&u\ denotes the minimum of T;:K with respect

to 'f . Above this curve Tt:u is positive definite, and there=

fore Rl is greater than zero. This means that in this region
subcritical steady-state small amplitude convection does not

exist.

In order to consider the stability of two=-dimensional rolls

we have to discuss (6.4) and (6.5).

In Fig.1 the curve T;_i-‘-'- 0 is plotted. In the region above
this curve‘TlL anu1f4+) are greater than zero, and rolls in
this region are stable with respect to disturbances coincident
with the pattern. For disturbances not coincident with the
pattern it follows from (6.5) that for a given value of P there
exists a neutral curve T versus &, where § is the angle
between the k-vector K, of the disturbance and the basic
steady-state k-vector -l:, « On this curve there exists a

minimum value of the Taylor number, the so=called critical Taylor
number 'C’: s at “?'-'- "?c . In Fig.1 (P"C‘_\ is plottet. On the

left-hand side of this curve rolls are stable.

‘In I 1t is shown that from the condition

ka'TLL >0 o1

+) The curve M=0 in the (P“C) -plane is in the region in which

convection begins as overstability.
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where St.K is the symmetric part of T;, , it follows that
all three-dimensional flows are unstable. S;“-:T;; can
be aranged in powers of the Prandtl number, and in Fig.2a-=2c
the coefficiehts of P"‘ P. and P° are plotted as functions
of the angle between the K-vectors i:;and E;.for some
representative Taylor numbers. From these diagrams 1t can be
seen that for P?,l i SfK-T&L is always positive and for

PC[ the minimum of S;“'Tu is at ‘f= O . For ‘(’20, Sik- e
becomes equal to TC( . The curve TC(_=O in Fig.1 divides the
(PYC) -plane into two regions. In the region above the curve
all three-dimensional solutions are unstable because (7.1) is
satisfied, and in the other region all steady-state solutlons

are unstable because the trace of the stability matrix is

negative.

8. Conclusions

In the case of rigid boundary conditions it has been shown
that for slightly supercritical Rayleigh numbers all three-
-dimensional convective flows are unstable and that for a
given value of the Prandtl number rolls are stable provided
that the Taylor number is smaller than a critical value 'C:- .
Therefore, for supercritical Taylor numbers - the critical
value depends on the Prandtl number - no steady-state

convective flow exists if the Rayleigh number is slightly

supercritical. All flows are necessarily time-dependent.
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For values P and T for which Rz_?O holds for all possible
convective flows, there is no small amplitude convection at
subcritical Rayleigh numbers and therefore in this region

there is no steady-state convection at all, provided T 7"C‘_ (P\,
This means there is a transition from pure heat conduction

to time-dependent convective flow if the Rayleigh number

increases from a subecritical value.

It is well known that in the rotating case overstability can
occur if the Prandtl number is below a certain value.

Preliminary investigations are done to study this effect.
I wish to thank Dr. D. Lortz for valuable discussions. The

author is indebted to Dr. F. Busse, who discovered a

mistake in the manuscript.
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Fig.1 p, Prandtl number; tz,Taylor number; on the left-hand side
of*the neutral curve rolls are stable; in the region Tjk>0

steady -state convection at subcritical Rayleigh numbers
can not occur.
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Figure 2a ABC coefficients of pp.p in the expression

Sik-Tii; 9, angle between the two k-vectors;

T, square-root of the Taylor number.




// Figure 2b ABC coefficients of p‘f[:inz inthe expression

/ , Sik-Tii :¢, angle between the two k-vectors:

T, square-root of the Taylor number.
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Figure 2c A,B,C coefficients of p.p.p in the expression

Sik -Tii; ¢, angle between the two k-vectors:

4

T, square-root of the Taylor number,
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