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ABSTRACT:

The marginal-stability properties of a class of collisionless
drift-universal plasma modes are studied numerically and
analytically. The familiar "slab" model of plasma equilibria
wlith gradients perpendicular to B 1s employed, and both
hydrogen and barium plasmas are treated. This study extends
earlier work in that specific information is provided which
enables one to decide whether or not a given mode 1is unstable
in a given machine; possible application to the Wendelstein
(WII) experiment at low densities is discussed. Analytic
formulas for the properties of the marginally stable modes

are developed. The marginally stable modes divide roughly

into three regimes: small m-number modes with sufficiently
long parallel wave lengths first become unstable at relatively
low densities ("low-density branch") and are then stabilized
again as the density is increased ("high-density branch");
large m=number modes, by contrast, possess a critical parallel
wave length which decreases monotonically with increasing

density. Departure from quasi-neutrality is very important for
these higher m-number waves; their frequencies at threshold
are very small and inversely proportional to the critical
parallel wave length.
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I. Introduction

Low frequency (w <) drift instabilities in nonuniform plasmas
have been studied extensively over the past decade, with a wide
range of plasma conditions having been considered. A great
variety of destabilizing effects for these modes has been
identified. Plasma equilibria with "low-8" as well as
"moderate-B" have been treated, and both the collision-
dominated and "collisionless" regimes considered. Nonuniformity
of the plasma perpendicular tothe magnetic field provides the
inherent source of free energy available for the instability.
Such nonuniformities have been simulated theoretically in a
number of ways, ranging from a relatively simple plane-geometry
model to treatment in general magnetic field configurations.
Even the simplest of these models has not been fully exploited
as yet; in this report we offer specific information obtained
from the "slab model" (see Section II) which is intended to

ald in answering the question of whether a specific "drift-
-universal"” mode is or is not unstable in a specific machine.
In many interesting situations the drift modes have properties
which differ substantially from those obtained by approximate
analyses. Of course, the results are restricted by the model
used; 1t 1s hoped, however, that they will provide a guide and
stimulus for future investigations.

The vast literature on drift instabilities reflects their |
enormous variety; we make no attempt to survey the literature
completely here. In the collisional regime destabilizing
effects include ion inertia, current along the field, and

electron-ion collisions. An extensive (but not exhaustive!)
survey of the theory of "drift-dissipative" (collisional)
instabilities has been given by Rukhadze and Silin [1],[2].
Experimental identification of these modes in Q-machines has
been made by several investigators. (See, for example,

Refs. [3],[4],[5].)
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In this report we shall be concerned exclusively with unstable
drift modes in the collisionless regime. Moreover, because of

the application we have in mind, we shall limit our attention
to the "low-B" regime and make the usual electrostatic

approximation for the perturbed electric field.

In the collisionless regime the mechanism for tapping the
available free energy involves resonant interaction of the
electron motion along the lines with the perturbed electric

field. In the unstable regime a net exchange of energy from the
resonant particles to the waves is affected by the perturbation
E x B motion which moves particles across the field from .
higﬁgr to lower density regions in Jjust the proper phase to E
provide inverse electron Landau damping. In many regimes of |
interest a competing stabilizing effect is provided by ion
Landau damping. More detailed description of the physical
mechanisms of drift instabilities may be found, for example,

in Refs.[6] and [T].

Because of the stabilizing effect of ion Landau damping, drift
instabilities are not expected to occur in plasma configura-
tions which are too "short" along the magnetic field B [8}.
"Drift-universal" instabilities with k a; 21 , for example,
are not stabilized by "minimum-B" configurations, and it is
believed, therefore, that it is this "length effect" which
accounts for the absence of observation of drift-universal

modes (so far) in mirror machines.

Toroidal machines, on the other hand, may have effective
"connection-lengths" along B which are very long, and it
seems probable that drift-uﬂzversal instabilities will arise
in such devices (Section III). Of course, curvature and
shear effects, not considered here, will modify our results,
but complete stabilization of the many potentially unstable

modes identified seems unlikely.




In Section II we discuss the theoretical models available for
study of drift instabilities, and include a discussion of the
frequently-used "local approximation". In Section III the
properties at marginal stability of drift-universal modes,
driven by density gradients alone, are discussed. Numerical
results are obtained, using an efficient program developed

by Callen. This work differentliates itself from earlier
studies in that the effects of finite density (more precisely,
departure from quasi-neutrality) are emphasized and the pro-
perties of modes with Ik a, far from the "most unstable"
value emphasized by Krall and Rosenbluth are determined. Both
hydrogen (H+) and Barium (Ba') plasmas are studied, and
possible application to the Wendelstein (WII) experiment
discussed.

Values of growth rates and real frequencles will be given in
a subsequent report for a variety of modes in the unstable
regimes defined in this study.

II. Theoretical Models for Drift Instabilities

The majority of the original work on collisionless drift modes
employs a plane-geometry configuration ("slab model") with the
plasma equilibrium varying in a single direction perpendicular
to B (ef [8],[91,[1Q] and [jﬂ ). The most extensive dis-
cusézons of the salient features of this type of equilibria
are provided by Krall and Rosenbluth [10] and Callen [11].

In the usual slab model the magnetic lines are straight with
¥YB included, while magnetic field curvature is simulated
(only qualitatively ([12 ,[13])!) by an effective acceleration
(parallel or antiparallel to the pressure gradient). To a
certain extent, magnetic field shear can also be included ([1Q],
[jﬂ ). While it is clear that is a long step from a plane-




geometry model to a toroidal configuration, the slab model
has the advantage that particle-wave resonances combined
with the important finite Larmor radius effects can be in-
cluded with relative ease. Indeed, finite Larmor radius
effects are included "exactly" =-- within the model. In the
work reported here, we make extensive use of this model;
the purpose of the present Section is to indicate some of
jts limitations and to note briefly the work that has been
undertaken to overcome these restrictions.

Politzer [15], as part of his theoretical and experimental
study of collisionless drift waves, has analyzed the problem
in a cylindrical magnetic field geometry using a modified
drift-kinetic approach. He includes first-order finite Larmor-
radius corrections to the drift velocity and particle-

(versus guiding center-) density for the ions to obtain the
tuniversal' instability. His treatment includes (in principle)
arbitrary steady-state electric field gradients and such
effects as the centrifugal and Coriolis forces associated
with the Eo b, EO rotation of the particles. Thus, on the

one hand, he can indicate the relative importance of these
latter effects (which are absent in the slab model) but on
the other hand cannot include, at least in a simple way,
higher-order finite Larmor radius effects. He also provides,
from his analysis, a means of estimating the appropriate
relation between the "perpendicular wave number" of the slab
model and the azimuthal mode number in cylindrical geometry.
Politzer's work provides an important intermediate step bet-
ween the plane-geometry model and the analysis in general
magnetic field configurations.

Rutherford and Frieman [16] have set up the general linearized
electrostatic problem for low frequency modes by deriving the
appropriate integral equation for the disturbed potential in a
general magnetic field configuration. They exploit their result
in axially-symmetric toroidal configurations, obtaining the




drift-universal modes (and other expected instabilities as
well) in certain familiar limits, for example, in the regime
for which the phase speed of the modes along B 1s inter-
mediate between the electron and ion thermal speeds. Much
more work is required in using this elegang tool to evaluate
the strengths and weaknesses of the slab model. For example,
it i1s not clear at this writing how we can obtain solutions
of the integral equation in regimes other than those

treated by Rutherford and Frieman. Yet, as we shall see
below, the "slab model" predicts unstable modes of interest
in regimes quite foreign to the limits studied in Ref.[1§].

Even in the relatively simple slab model the actual equation
for the perturbed potential is an integral equation. This
can be reduced to a differential equation by expanding the
general operator in powers of the ratio of the ion Larmor
radius, aj to the shortest of the scale lengths, Lp »

of the plasma equilibrium gradients f&]. (In the low=8
limit, in the absence of curvature, the most important scale
length is that associated with the pressure gradient). If
one is willing to drop terms of higher order than (ai/Lp)2
the result is a second-order ordinary differential equation
for the perturbed plasma potential ([QI,EHH, (11] ) which can
be treated by relatively standard WKB methods. When magnetic
field shear is present, WKB analysis 1s essential to deter=-
mine the existence and properties of eigenmodes ( D(ﬂ, Uig,
[j?]); in the absence of shear the WKB analysis has been
used primarily (to date) to justify the so-called "local
approximation" to the dispersion relation determining the
eigenfrequencies of modes localized around the maximum of
the logarithmic steady-state pressure (or density) gradient.
It is this "local approximation" which we will use to obtain
explicit results in Section III.

To understand the local approximation within the slab model
let us imagine that the equation for the pgrturbed potential
has been reduced to the form($ = PU)ex P“L‘“‘Jt il V4 1< Vej ) :
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where the gradients in the plasma are in the x-direction,

K =(e Ky, Kp) and 8 =(0 0, B,(x)). (Let us assume no shear
for the purposes of our present discussion.) In that case,
Z)(u},K,Lx) depends on x primarily through the pressure-
(or density-) gradient (because of our low-8 assumption) and
we might expect drift modes, 1f they occur, to be "localized"

near the point of maximum I* dho| | We then look for

frequencies w such that Reoﬁ I):t(?w,xo)}>0’/ Reﬂgll)/gx’-}x:(“&j
where Xo is defined by (0 D/()x)wz (O . Then, if there exist
nearby points X‘CLJ) and Xz («) (they will, in general, be
complex) at which D(x',w) = D(Xa /W )= & we can expect to
find solutions of a standing wave nature near X, Wwhich
die out spatially as [x-Xo| exceeds [X,~Xy| . To be
explicit, if we assume /x,—-xl[//L_P & | » we can expand
D(w,x) about X, and find

[L[¢

e Ry
Xe-X, Z A/-2D(R %)/ Dy (0x0) | (2.2)

This result, when evalutated, provides a measure of the scale
length over which ¢>(X) changes appreciably.

Applying the usual phase-integral condition for the teth
eigenmode of (2.1), under the conditions outlined above, we
obtain the "dispersion relation"

asai l
D(w“x,) = (U—f/)/~ Dee (wWEx0) /0 (2.3)

(¢)

for the corresponding eigenfrequencies w . Now 1if we define
4

Wo such that ) (Wo,Xs)=0and assume u)“)-— Wy = JLJ[ )/4 o

we obtain the expression (ef., Ref.ﬂa])

c{w(0~r (€+i) /Tipxx(Uo/XJ1

—

(2.4)

l'-“90 ‘\)o %L—-;)Dl_h)u,rto)




Then, if we can determine We , we can, within the present
approximations, determine the e1genfrequenc1es by correct-
ing We according to (2.4). If dwt &090<K |
often be satisfied with the approximation Wo 1itself. As
already stated, this is determined by

, We can

D(wo, K3 %) =0 (2.5)

which, in this sense, replaces (2.3) as the dispersion
relation for the modes we seek. This 1s the "local approxi-
mation" to the dispersion relation, which we use in the
remairder of this report (see also, Refs.[8], [10] and [11] )
Formally, of course, (2.5) is the same result as that obtained
by simply treating a; to be independent of X near X, , a
fact which has occasionally led to some misunderstanding of
the meaning of the local approximation. In fact, the
localized eigenmode must change rapidly in X , on a scale
much smaller than L_, for the above analysis to hold, i.e.,
we must have Lxl‘xal/LP‘gl-

It turns out that D(&LX) , in the approximation appropriate
to Eq.(2.1), can be written in the form

2
’KZ/L P o H(C‘J{E—I“‘X
D(w,x)= - )1 (2.6)
‘LBL + i(wll,é/X)aoL

where (i@d <, X) is a complex quantity of order unity,

Ky , and ,ll) is the local ion Debye length.
}1(&3|< ) is written out in the next Section (Eq.(3.1)).
Working out the required derivatives of D (W, x)we find
typically in the drift wave regime

(l’/q

[)(|"X'.L. [;LD‘
Lp "-;/92 K ’b w)

(2.7)




and

L 211/
J' s (p+p) LADit Q% | =
G =) T (2.6)

where o is of order unity. Thus, provided the microscopic
lengths, ay and ‘A-DL , remain sufficiently small compared
to Lp , the local approximation is Justified (for moderatezﬂ)
over the entire density regime, including the "quasi-neutral
1imit",

This latter statement, however, requires careful inter-
pretation. For direct application to experiment (ef. Section
III) the quantities )~D[/QL; and CL;//L_F are fixed, while
K Kt- increases roughly proportional to the azimuthal
mode number, m . In this case, high m-number modes see the
plasma as a "] ow-density" one, i.e.l</LDL—° 00 . Looking

at the problem this way leads to the conclusion that the local
approximation is best satisfied in the low density limit.
Clearly, by contrast, 1f we understand the low density limit
to mean A‘DE /a;»00with K RDL fixed, then the local
approximation will break down (see Egqs. (2.) and (2.8) ) un-
less Q:,/[_f>9 & . Fortunately, this is not the limit of
interest (see Section III).

Finally, we point out that the reference frame used in the
slab model is not the rest frame for either the ions, the
electrons or the plasma as a whole. Rather, it is the field-
free frame (Efo(local) - 0). Hence, as is well known, the
real part of‘Ehe frequency must generally be Doppler shifted
for comparison with experiment. In particular, the velocity,
(perpendicular to B, and 7 no ) of the slab-model-frame
with respect to the rest frame for the plasma as a whole is
approximately the electron diamagnetic velocity when the

temperatures of the ions and electrons are equal.




III. Threshold Properties

In this Section we consider the properties of 'drift-universal'
modes in the marginally stable state, using the slab model of
the plasma equilibrium. The specific results reported here

are for nonuniform equilibria described by the steady-state
distribution functions appropriate to the slab model ( [8],

[19], [11])

) 2 ”
:£5 (D”', 0&:/’”‘52)

T |
[I*EICJH Q}a‘x -Vt

where s =1 , e , the geometry is that described below
Eq (2.1), and we have neglected LdB/ax]/B compared to

n. &ino/zLx]x x, Pecause of our assumption of low B.
Clearly, these distributlons represent a locally constant=
temperature plasma (QLS = Qéj ,/Ms ) with a weak density
gradient in the x-direction, measured locally by é l.p
In the following, we shall identify x_ with the "x_" |
defined in Section II; X, is then located near the maximum

of hy [|ono/clx|.

The weak dependence of the fs on the guiding center
variables,X{-j%s introduces, of course, the usual average
diagmagnetic "drift velocities" in the y-direction for each
specles, which are necessary to balance the pressure gradients.
It also introduces a velocity-space anisotropy which, as it
turns out, brings in odd-order derivative terms in the
equation for ¢)(x) (ef., Eq.(2.1) and Ref. [jl?). However,
these terms turn out to be unimportant within the range of
applicability of the slab model [11] and we do not discuss
them further here.

While, in the interest of simplicity, we limit our attention
in this report to the case described above (density gradient
only) the computer programs used, which are adapted from
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Ref.[jﬂ , are capable of including temperature anisotropies,
gradients in any of the temperatures as well as the density,
currents along B , and an acceleration field in the

x=direction (to simulate magnetic curvature). "Loss cone"
effects can also be simulated.

We now adopt the "local approximation" described in Section II,
determining Wo instead of the actual eigenfrequenciesca(ﬁ)

(see Eq.(2.4)). Our approximate dispersion relation then be=
comes Eq.(2.5), which, for the f; given above, reduces to

([81, [ho]): %)
: N W -3, _ |
KU'DL‘ - -(l+ @)—PL‘ &i—f Z<'7‘;’Z‘>—ﬁe ovd ‘E‘;ﬁ#Z(%M:{/@Z)

:——.H(‘*’c[ff'“’“) (3.1)

where we have assumed k, >0, and dropped the subscript oM
on . Z(w) is the familiar plasma dispersion function [j&]
and we have introduced the additional notation, G=-E;/7}/q.e= 14
e
\R“fe

-b N
(r: mﬁ /m‘./ﬁ(:’e:ﬁ(b“jc)[ﬁs 2e JJOCLJ)/ U*-_—- k)/'{te: - l'l—z‘%/ele{
[

/

The density-dependent paraqeters are evaluated at X_ @

O
/_ __'.. O(No

o
» AN - . &g
€ Ne oy [X=Xo //I'Di m} P is the ion plasma
frequency (at x ) and we have assumed [W[J?: . Solutions

of (3.1) with Im(@)> 0 1imply instability. Note that B, 65.1.

For a given value of density (AJ%J there is a maximum value
of kz , above which drift waves are stabilized by ion

Landau damping; thus, as noted earlier, drift wave instabili-
ties are not expected to occur for plasma configurations
which do not admit sufficiently long wave lengths in the
direction along B . Similarly, for given kz , there 1s a
minimum plasma density below which there are insufficient

particles to provide the collective motion required to
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support the wave. Hence, for each kyai s We C

determine

/
a threshold curve for instability in the (/<Z,tp;/ kg/ﬁf )

plane. Krall und Rosenbluth [1Q] u%f this fact

to determine

a formula for (kz)max versus kzylp; which provides a
sufficient condition for stability against these modes. In
essence, their result is obtained by maximizing the thres-
hold value of kz/é' versus k_a, at each density; the

y i

success of their formula in the sense for which it is
intended will be apparent in what follows (Figs. 2, 2a, 2b).

The actual threshold conditions for onset of instabllity

according to (3.1) are, however, strong functions of

kyai (or bi) in interesting parameter ranges.

For applica-

tion to particular plasma experiments what is actually needed
is to determine the conditions for onset of instabllity of a

particular set of modes (e.g., particular values of kyai);

usually the modes of interest are much "more stable" (in the

sense that much higher densities or longer parallel wave

lengths are required) than an estimate based on Krall and
Rosenbluth's sufficient condition would indicate.

In addition, it is of considerable interest to

determine the

frequency of the mode at the onset of instabllity. It turns

out that a simple analytical formula (3.3) can

be given for

this frequency, which, for a wide range of values of kyai,

is accurate (at threshold) over the full range
which admit instability. More importantly, the
along E_, at onset, 1s often comparable to or
than, the ion thermal speed and the frequently
approximation,&J/K%d;J» ] , 1s not applicable

of k,'s

phase speed
even less
=used

in this regime.

This fact can also be observed in the results of Krall and

Rosenbluth IBQ], and may, among other effects,

have signifi-

cant implications with regard to the amount of magnetic shear

required to stabilize a given drift mode.
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To determine the general threshold properties of the unstable
modes described by (3.1) we proceed as in Ref. LJTJ and first
1ook for the zeros of Im H( + 10) . Introducing E- s X+,

2 We/R; = @ka“‘ea‘ K = Keay,

/

we have for z =X + 10 5
5 _X/KE dX
o=pi(XtF)e 1-”"5 (X-xx)/Te €t
o
which can be written
y 3
K?"—* )/< Sh f/@) (3.2)
A (94/3 /‘/J/;) ‘&“(-xyi-@)f

We assume for definiteness Wx > O (density decreasing with

the spatial coordinate x). Then, general consideration of a
Nyquist diagram for H(tW + 10) shows that marginally stable
solutions of (3.1), if any, exist in the range O0<X x# .
On the other hand, (3.2) shows that K (X) corresponding to
Im H(W+ 1i0) = 0 increases from zero quadratically with
X and then is cut off sharply at X = X%, with a maximum
of Kl' near xs. (Above this maximum K, drift waves are
ijon Landau-damped at any frequency. ) It is not difficult to
show that KW@X, xx for © near unity, while o 91/2
for large ©.

The properties of (3.2) described above indicate that for

any KK o there are two solutions X(K) of Im H(&+ 10} =

in the range O X {xx . Usually, only one of these solutions
will also satisfy the real part of (2.1), and, in fact, this
will be the smaller of the two frequencles. For X<{ x#xand ©
not too large (3.2) can be solved analytically, since then
‘gw[(x,‘-x/y(x;fe/w e - (1t @)X/ﬁb*; the result. is, to a good

approximation,

X TA L1+ 0 K
KPi " ~/«’»~L Nife) t ‘_{" ~. 5 (threshold) (3.3)
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In the last expression we have assumed 4;79 & 1. The condition
for the validity of (3.3) is essentially that the first term
be large compared to the second; for kyai,50.4 and € not
too large our numerical calculations show that this is well
fulfilled at threshold over the entire "unstable range" of
kz/z' (ef. Fig. 1). Even for smaller kyai , Eq.(3.3) is use-
ful on what we call the "low density branch" of the small-kyai
marginally stable modes. We note that in the region of
validity of (3.3) the threshold phase speed, along B , is
nearly a constant, depending on kyai s © , and the ;éss ratio,
and is generally not large compared to unity (Figs. 1 - 1b).
Nevertheless, in cases where (3.3) yieldSJBZF?WJﬂﬁﬁﬂglan

alternative expression for (3,3) should hold, provided it is

also much less than wxz :

ua(%hveshoLJJ = e

(\+5)+ KA, - e

The two conditions mentioned above for the overlap of (3.4)

(3.4)

and (3.3) can be fulfilled for a proton plasma only if

91/281 21 and hence require (from (3.4)) kg,\%i:$>1 and/or
@>»1 . For a © = 1 proton plasma (3.4) holds, at best, only on
the "low=-density branch" of the stability curves for kyaiﬁ>0'4

and 1s only a fair approximation for larger kyai (see below).

Numerical results for the frequency at threshold for a wide
range of values of kyai were obtained using the programs
developed in Ref. 11 . Threse are presented for T, = Ty (6 = 1)
in Fig. 1 for a proton plasma. Comparisons with Eq.(3.3),

shown in Fig. 1, verify its usefulness. Also, because it is

so frequently used as an estimate of the drift mode frequency,
the quasi-neutral limit (kADi—bo) of (3.4) is shown on Fig. 1

for reference. Clearly, for modes with kyadJQO.S the
frequency at threshold is always much less than this "standard"
value except at the maximum value of k,/g¢' available for
instability. That this effect is primarily due to departure

for quasi-neutrality can be checked by using in (3.4) the
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appropriate values of kal?Di at threshold, given below 1n
Eq.(3.6). Eq.(3.4) and the numerical results then agree
within about a factor of 2.

Numerical results for the threshold frequency for a Barium
plasma are shown in Figs. 1a and 1b. The effects of varlation
in © are illustrated in the latter Figure.

To obtain the threshold, (minimum) density for onset of in-
stability at any kz/e' , we need only insert the solutions
of (3.2) in the real part of (3.1). To obtain a marginally-
stable solution of (3.1) it is sufficient[11] that

Re H(u% + 10) 2 0 , where q>o==XOJ?1 is a solution of (3.2).
Thus,

1y =\ _n. Xo+ X</ Xo 3 3& J \
A3, = -048) o 2 7 (8) Lo 1, (06

(3.5)

where 2 (w) denotes the real part of Z(w). (Z (w) is negative
for positive real W , so we obtain solutions with real density
and positive real W when the final two terms dominate.

In the region of validity of (3.3) the last (electron) term

can be neglected altogether, and we have approximately

Kodp = fiss ;gr(ﬁ;(e‘%,/ﬁﬂc)'){ (1+5)

or

e

L
'SUNY

I u))ke/ «/((@”/ét//f/} ))} CH@) (3.6)

Note that the threshold density goes to zero as k /6 tends
to zero, and becomes infinite (l(l - 0) when

ks e TRl PR G.7)
R | ¥

E
e
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The approximate threshold equation (3.6) can be regarded
either as giving, for each kyai , the density for onset of
instability for a given kz/é' or, as in the work of Krall
and Rosenbluth, as determining a "critical plasma length"
below which instability will not occur for a given mode.

In the latter case they identify TT/kZ with the plasma
length along B .

(To obtain the sufficient condition for stability of Krall
and Rosenbluth [1@}, note that [Zr(w)’ has an absolute
maximum of 1.08 at w ;’0.9 , that in that case Bi must
be very small for moderate © , and hence :/5181251/J211,
Then, from (3.6)

t 2,> -~ 2, - i
€ ~ Ko t U g) = 193 (Khoo+ 1+ =
Kl \M\‘n /.Oc?//cl‘j—ﬁ_ Tr <

This is Krall and Rosenbluth's formula and has been used to
determine the dashed curves shown on Figs. 2, 2a and 2b.
These curves indeed provide an upper bound on the unstable
range of kz/e' at each density.)

To determine threshold properties for particular modes,

(3.6) can be used with fair accuracy for kyaifio'j (biiz0.0S).
More accurate values, which do not rely on the approximations
inherent in (3.3) and (3.6), have been obtained numerically
over a more complete range of values of kyai ; our results

are displayed for © =1 1in Fig. 2 for a proton plasma, and
in Fig. 2a for a Barium plasma. The effect of variations in

e (for Ba+) are indicated in Fig. 2b. It is useful to note
that in the regimes for which (3.3) and (3.6) apply both the
threshold density and frequency for a given kyai and ©
depend only on kzﬂe' and it is not necessary to specify

é'ai as a separate parameter on these curves.

As can be seen in Figs. 2 and 2a, modes with values of

kyai 0.4 have two marginally stable "branches" (one
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corresponding to the minimum density for onset of instability,
the second corresponding to a maximum density (at fixed

k /") above which the mode 1is again stable). These branches
have vastly different properties -- this situation arises
whenever both solutions of (3.2), for a given k,a, , yield
finite densities from (3.5). On the "1ow density-low frequency
pranch" the threshold frequency is given accurately by (5.3)
until one approaches the maximum kz/é' for such modes
(Fig.1). On the "high-density branch", on the other hand, the
threshold frequency is very well approximated by W# (see Fig.1).
We consider thils case more carefully below (Eq.(3.8)). In a
subsequent report we will show that these branches maintain
quite different properties in the unstable regime.

The stabilization at high densities of drift modes with low
values of kya (see Figs. 2 and 2a) is an important phenomenon
which deserves comment. The stabilization in both the low density
and high density regions occurs, of course, because of ion
Landau damping overcoming the destabilizing effect on the reso-
nant electrons. However, in the high density regime thls comes
about not so much because of a decrease in the wave phase speed
relative to the ion thermal velocity as because of the fact

that &) approaches Wi more and more closely as k)_D - 0 at
small kyai . In that case, the electron density perturbation
becomes more and more closely in phase w1th the potential

perturbation, virtually independently of € /kz o

Indeed, in this regime, approximate solutions of (3%.2) shows
that for marginal stability
CJ*& _f
3 ~ (1 ~‘)
/3\@4_ ‘_l'_ I'<tdl.
- U*‘CH'Q)e (3.8)

fe VS

LJO-LJ-E-:N—

(Values of w , closer than this to (g lead to stability
and vice versa.)




_

The validity of (3.8) is restricted by the condition
2 2 2
- U SKa i
3 t 2 * ¢
QLB @U+tE) we « |
] 2
/T fe 2t

and thus requires l--J-‘\f/chL_,L greater than about 3 for H' and
greater than about 3.6 for Ba' (cf. Figs. 1 and 1a). Such
high phase speeds occur, at threshold, only near the quasi-
neutral limit (kgjl% & 1) and for small kyai. In fact,
insertion of (3.8) into (3.5) shows that the real part of
the dispersion relation can be satisfied under these condi=-
tions only for kyai less than a critical value: with the
help of (3.3) we find

kyai)crit = 0.44 (3.9)

For values of kyai larger than this stabilization cannot
occur (at finite densities) by the approach of CJO to Wk
and requires instead the usual decrease in 03/k2d1 . This
accounts for the essential difference in shape of the

stability curves in Figs. 2 - 2b for large and small values
of kyai'
As can be seen in Figs. 2 - 2b, marginally stable modes with
. ] : .
kyaj_{kyai)crit ngiblt a maximum value of k,/¢' at finite
densities; as k,lD decreases below the value corresponding
to this maximum (typically, k?Ag = 0.1) the threshold value
of kz/é' also decreases (this is the "high-density branch".
From (3.2) it can easily be shown that for © = 1

2 %
Kmax - e =X ¢ |

—_—

X’.L )(*X (3.10)

Combining this result with (3.5), with © = 1 , we find that

wa X 1 1 Iy
_l(_t_— ar kya—"< KKy ql‘—{-Ku{o) < (3.11)
¢’ a 3
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which agrees very well with the results for kyaj_(_kyai)crit
shown on Figs. 2 and 2a.

Unfortunately, because of the limited validity of (3.8) 3%

is quite difficult to give an analytic formula for the shape
of the stability curves (keA% VS, kz/@') for values below
that corresponding to the maximum kz/é' . However, we can
show that as k2A%-90 there is always a finite minimum kz/e'
for marginal stability. Using (3.5), its value can be
determined, in the regime for which (3.8) holds, by the
relation (for @ = 1)

. 2 1 | o)
Ke . Ke, 2,2 ~f ! 2% I/kyai 5/0"1? Kz
__;- = .__; (K A_ ‘*‘70):-"- }\yal - — e < _.._’_-

€ % Vs a €

. . 2 =g

which in turn implies (uu;/kzdi)max = (kyai) (see Figs. 1
- 1b). Therefore, because of the restriction on (3.8), al-
ready mentioned, (3.12) can be used only for kyaif;O.EB .
Nevertheless, a finite minimum kz/é' always exists at

finite kyai‘:kyai)crit'

Computer results defining the shape of the "high-density
pranches" of the marginal stability curves for a Barium
plasma and for small kyai and kADi are shown in Fig.3.
These results confirm the behaviour discussed above and
enable one to study marginal stability properties near the
quasi-neutral limits for small kyai‘ Comparison with
Egs.(3.11) and (3.12) is satisfactory in the regions where
the latter apply.

The threshold curves in Figs. 1 = 2b can be used in a
variety of ways. To illustrate one possible application, we
consider the "Wendelstein II" Stellarator (WII) experiment
in Garching. This circular torus has a major diameter of 1 m

and contains a Barium plasma with a plasma radius of a few cm
and an ion temperature of 2200 °K. The toroidal magnetic
field is 5 kilogauss, and the device operates at measured

(3.12)
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densities of from 107 em™ to 102 em™ . Under these condi-
tions,Jl,i %D X 102 sec™] , whileh')pi varies between

3.5 x 107 and 3.5 x 10 sec™1, At the higher density the
mean free path.).ei for collisional electron-ion scattering
is approximately 1.5 m, while at the lower density,leig;100m.
The ion gyro-radius is 1.5 mm. Measured density profiles
indicate (€') .. ¥ 1 em™!, while the radius at which this
maximum occurs lies between 1 cm and 1.5 cm. The temperature is
nearly constant in this region. It is clear that collisional
effects are important at the higher densities and the present
theory would require significant modification for application
to that case [j] [3] [}Q} For n = 107 - 108 however, the
present collisionless theory is applicable. At 107;
ﬂi/wp =1, and)_Df ~a, %“_ 1.12 mm®. Because of the way
the plasma is created, it is usually assumed that T_ = T, for

e 1
the WII exXperiment.

For these conditions ét'ai = 0.15 and kyai 2 0.1 "m" (where
"m" is the usual cylindrical mode number), insofar as the
present slab model can be applied to the stellarator geometry.
If we assume that the maximum available wavelength parallel
to E is determined by the major circumference, then

koa, =3 x 1072, and kz/g - 2 x 1072, Then, for an "m = 1"
mode, at n = 107 s Ok AD =10 2; for a "m = 3" mode,

2k® A5, = 107'; for an " "m = 10" mode, 2k2)§i - 1.0 , etc.
Figs. 1a and 2a then indicate, under the above assumptions,

the existence of a large number of unstable drift modes, the

properties of which are tabulated (for n, = ‘lO7 cm—j) in
Table (3.1).
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n 1" 2 2 1
% By £k )‘D.l Stabllity kz/é )thresh L‘))thr‘esh
0.1 1 10™° stable 6 x 10~° W
0.2 2 4 x 1072 unstable 2.5 x 1072 W -
0.3 3 9 x 1072 T e W
2 -2 T,

0.5 5 2.5 x 10 unstable 7 x 10 kzdiyﬁﬁn(ﬁi/d?z)
1.0 10 1.0 unstable 5.5 x 1072 "

y y L L g L
5.3 3% 10 unstable 2.1 x 1072 y
5.0 50 25 stable 1.2 % 107 "
6.0 60 36 stable 9.4 x 1070 "

U 4 J J & J

Considerations of this type thus indicate that for this density
in the WII Ba' plasma, drift-universal modes with "m"-numbers
from approximately 2 to 30 would be unstable. At B, = 108 H

HmH

assuming we may still neglect collisions, the - 1 and

"m" = 2 modes would become stable, while "m" numbers from

% - 160 would be unstable! Moreover, only for the lowest "m"
values (below 5) would the mode be of the type for which

Re (W) £ w, . For all other unstable modes the real frequency,

at least near threshold, 1is proportional to kzdi and generally
much less than(J,. This effect is due largely to strong de-
parture from "quasi-neutrality" (as expected from Eqs. (3.4) and
(3.6)) but is also partly due to the fact that QJ/kéii
(threshold) is not large, especially if 915,1 . (The extent

to which this latter fact remains true in the unstable regime

will be discussed in a later report.) Deviations from these
results if © # 1 can be estimated from Figs. 2b and 1b;

however, the qualitative conclusions remain unchanged.
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Of course, one must have the usual reservations, already noted,
concerning the direct applicability in toroidal geometry of
results obtained from the simple "slab" model. Our purpose here
is primarily to indicate the rather wide range of potentially
unstable modes in the collisionless regime, and, further, to
point out that -the unstable higher m-number modes are unlikely
to have frequencies either near (J4 (in the fleld-free reference
frame -- see Section II) or, for that matter, near the more
general approximate value given by (3.4). It is our hope that
these results might stimulate further research concerning

modes of this type, especially with the use of a model more

directly applicable to toroidal configurations [}6].
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Figure Captions

Fige.

Fig.

Fig.

Fig.

Fig.

Fig.

1

1a

1b

2

2a

2b

Frequency at marginal stability for drift modes
ina =1, H+ plasma, as a function of the
critical parallel wave number and kyai . For
sufficiently small kyai there are two "branches"
having very different properties; for kyai larger
than a critical value (see text) only one "branch"
exists. Note the extensive threshold regions for
which uﬁ/kﬁii is near unity. The analytic formula
is Eq.(3.3) of the text.

Results similar to those in Fig.1, but for a
e =1, Ba+ plasma. Because of the heavier 1lons,
W /kzéi moderately exceeds unity, and Eqs.(3.3)
and (3.4) of the text are in fair agreement.

Illustration of the effects of © = Te/Ti for
a Ba+ plasma.

Marginal stability curves fora © =1, HY plasma:
threshold and/or cut-off density as a function of
kz/é' and kyai . For a given mode the unstable
regime is to the left of each curve shown, For
kyai - 0.1 there are two marginably-stable
solutions for values of kz/e' between 5 X 1077
and 1.5 X 10"2. The "nigh-density" branch for

kyai = 0.1 , at the lower part of the filgure,
corresponds to the upper frequency branch in Fig.1.

For values of 0.5 only one marginally

k_a
y i
stable solution exists at each kz/g' (see text).

Results similar to those 1in Fig.2, but for a

@ = 1 Ba' plasma.

Tllustration of the effects of © = Te/Ti on the

marginal stability curves for a Ba’ plasma.
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Fig.3 Extension to small values of k%&%i of the
"high density" branches of the marginal stability

curves for a 6 = 1 , Bat plasma.
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