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Abstract

The following report gives a discussion of the radial oscillations
of pinched plasma columns (z-pinches, 6-pinches and antipinches).
Both the basic mode and its higher harmonics are included. In
stability theory these radial oscillations would be discribed as

m =0, k = O modes. They are, however, not described by the usual
pinch dispersion formula in its limit % =» 0. They need a separate

treatment, therefore.




1. Introduction

For several reasons it is interesting to know the eigen-

frequencies of pinched plasma columns, both of the fundamental
mode and its harmonics. They may be of importance in connection
with, for instance, problems of dynamic stabilization and
parametric resonances, which may possibly be excited by high
frequency stabilisation fields. Radial oscillations are also

of some diagnostic interest. Their diagnostic value is limited,

however, because they depend only weakly on most parameters.

Using the conventional notation of stability theory, we may
describe our radial oscillations as m = O, k = O modes.

They are, however, not included in the usual pinch dispersion
formula, which is not continuous in the limit Xk=0. Taking

this limit of the usual formula we obtain a result in which

one term is missing. Let us explain the physical reason for this
behaviour. Consider an infinitely long pinch column along

which an m = 0, X = 0 mode is excited.

The inductance of the plasma column together with the outside
conductor, which is propotional to Eh,@4; (see figure 1), i.e.
the inductance of an equivalent coaxial cable, does not change
in first order. This is a consequence of periodicity along the
pinch and does not depend on the wave number considered even
if it is becoming arbitrarily small.

If Xk = 0, on the other hand, an inductive term, i.e. the above
mentioned logarithm, appears, and so the case m = 0, k =0

has to be treated separately. For actual pinches of finite length
the additional term has to be taken into account as soon as the
wavelength is larger than the length of the pinch.




The derivation of the m = 0, k = O dispersion relation follows
the well known procedures of normal mode analysis and does not
have to be given in detail. Actually, it can be found in re-
ference /1/, where the author discusses the behaviour of a
tubular pinch column. This is a rather general case from which
one can obtain the results of interest in this report by
considering appropriate limits. Here we want to discuss the
Z-pinch, the 6-pinch, and also the antipinch. The 6-pinch is

a special case of the Z-pinch, which we consider first.

2. The Z-pinch and the 6-pinch

We take the Z-pinch with surface currents, uniform density q
and pressure p, and with superimposed longitudinal magnetic
fields sz and B,y in the plasma and vacuum region. If we
introduce the dimensionless stabilising fields
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where B o is the azimuthal field at the plasma boundary,

the equation of equilibrium
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Assuming an m = O, k = O perturbation which behaves like €
(i.e. imaginary values of ) correspond to instability),
we can derive the following dispersion relation
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where.j:o is a modified Bessel function, X a dimensionless

growth rate (or frequency),
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and C a constant
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h is the Alfven velocity
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and s the velocity of sound

It is the last term of the constant C, equation (5), which would
be lost by simply taking the limit k = O in the usual pinch
dispersion relation.

It is easy to show that the relation (3) does not yield un-
stable solutions. For real positive values of X the function
F(X) increases monotonically and is always larger than

F(0) = 2. On the other hand, C can never become larger than 2,

because 2
T = Do < =
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o c<1 for =2, c<l.2 for ¥ = 35-

c £ 2 for the extreme case Y = 1.

On the other hand, Bernstein et al./2/ have shown that over-
stability cannot occur, i.e. W 2 js real and W is real or
purely imaginary. Thus, X Thas to be purely imaginary, too,

and we introduce a new dimensionless frequency

€Y,
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which is real now and obeys the relation
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M is the mass per unit length of the pinch,

(1o)
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which is sometimes called the line density.

Figure 3 shows the solutions of this equation (l0). It gives
the dimensionless frequencies for the first four modes

if the constant C is given. If, for instance, C = O , these
are just the zeros of the Bessel function Jo , i.e. 2.40;
5.52; 8.65; 11.79 etc. In the limit C =» - o@ the zeros of J,
are 383; 7.02; 10.17; 13.32 etc. For large mode numbers the
differences between successive values approach i in

both cases, i.e. if the radial wavelength is small compared
with the plasma radius, the waves behave more and more like

plane waves.

it D<V=0<P=Oand(‘/——? 1 we have
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If now R=> o¢, the basic mode approaches W = 0, i.e. it

becomes marginal. The return conductor exercises a stabilising
influence on the plasma column and makes it oscillate. This

is due to the following mechanism. Let us assume that the
plasma column starts a radial motion.As a consequence the induc-
tance changes and this leads to an opposite change of the to-
tal longitudinal current. The azimuthal magnetic field at

the surface then varies as

dBp ~ . A A d (13)

v + 1T 2 o
Br’ Yo /fw ’F /V;
where the first term comes from the motion of the plasma sur-

face for constant current and second term from the current change.

The plasma pressure changes as




The pressure difference in the direction of increasing v
is thus
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This restores the initial situation because
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for any conceivable value of 3/' This explains the formal
results given above.

The 6-pinch case is obtained by assuming B\fo= O:
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The equilibrium condition is

2
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so that for k/ = 2 we simply get
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For large compression ratios R/y3 . C is close to zero

and the dimensionless frequencies are practically the zeros
of'jo.

Equation (16) agrees with the results which Taylor /3/ ob-
tained for the 6-pinch. He also discussed the influence of non-
uniform density profiles and of nonlinearity in the case of
large amplitude oscillations. It appears that these effects have
1ittle influence in general. The may become important in extreme
cases only. 6-pinch oscillations have also been discussed by
Niblett and Green /4/, for example. Using the snowplough model
they find an analytic solution for a nonlinear oscillation with
a frequency not depending on the amplitude. This result again
suggests that nonlinearity is not important for our problem.



2. The Antipinch

The results for the antipinch depend on the boundary condition
applied at the outside boundary at the radius r = Ry, (see figure
4) ., We may assume, for instance, a rigid wall at r = Rg so

that the radial velocity has to be zero there. Or we may assume
an ideally flexible wall which would make the pressure variation
zero there. In any case we get a dispersion relation of the

G‘(X,‘X) = :D (19)

where X defined as in equation (4), and D is obtained from

form

C by exchanging R and R;., i.e.
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There is an additional parameter appearing in equation (19),
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which describes the effect of the outside plasma boundary. The
form of G(Xﬂx ) depends on the boundary condition used at this
boundary.

As before one can show that there are no unstable solutions. The
reason for this is that D is always positive. We use g again,
therefore, to obtain
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for an ideally flexible wall.




Figures 5 and 6 give examples for the solutions of both
equations with X = 2 ., For different values of & the
situation is similar.

For /g, =0 we get

P
Gi(o,2) = - 2=
o> G, (01 °() 7o (25)
and
G.(0,x) - ©

The differences of "jf between the zeros and between the
singularities of both G, and G, also approach T .
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Figure 3: Dispersion relation for the Z-pinch radial

oscillations
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Dispersion relation for the antipinch radial

oscillations:

Case of rigid wall X = 2 .
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