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Abstract

The propagation of electromagnetic waves through a circular waveguide partially filled
with a homogeneous, lossless and nonmagnetic dielectriec rod has been studiea. The characteristic
equation is a transcendental equation where the unknown wavenumbers appear in the arguments
of Bessel and Neumann functions. Approximate analytical solutions are found by appropriate
approximations of these functions for the case where the dielectric discontinuity is small and
the roots of the equation lie in the neighbourhood of the roots for the empty guide.

The results are used te give a rough theory for the Fresnel dragging effect on microwaves
by the positive column of a glow discharge that burns inside a waveguide. It is shown that
symmetric modes of the H (or TE) type should show no effect. Of all the other modes only the
three lowest modes are treated in detail. These are the EOI’ the Hll-like and the Ell-like
modes. For low plasma densities the effect is linear for the electric and of higher order for
the magnetic modes in plasma density.

Comparison with measurements is made and rough agreement is obtained. Some details of the
experimental curves however cannot be explained. At the present stage the remaining discrepancies
seem to be more likely due to end and finite length effects than due to hot plasma properties.
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I. The solution of Maxwell's equations for cylindrical boundary conditions

This fundamental procedure is described in text books of which we only give two refe-
rencesl)g). We first shortly repeat the principal analysis and then specify to our problem.

Wave equation. Maxwell's equation for a homogeneous dielectric (GL, u):

o e e o
V«gﬂ-o v“‘\g“'c.'a—g = (19
‘7'az;— = x - éﬁ?- Eij? = O
V=G c 2¢t
are easily combined to the wave equation: 2
(v JR R NE e

in which Fk denotes any of the cartesian components oi‘{? OI‘OE; . Supposing now fields of perio-
dic time and z-dependence:

_p ~tetii e
k= whe

we obtain for F the equation

tk
5 >

(¢« E =0 wmere V= O V2
+ tk % k‘l—
and k" = Fakﬂ"' z

2 -
ks = w?e

(2)

1T
<7t is the transverse part of the(?e-operator, k02 is the vacuum wavenumber and k2 the trans-
verse wavenumber in the medium.

Transverse and longitudinal components. The fields may be seperated into components parallel
and perpendicular to the z-axis with help of a unit vector1L3 in the z-direction:

F- Tt To=CoPin | F=(tuxxmn

Maxwell's curl equations together with the assumed z-dependence lead to the determination of
the transverse fields by the axial components:

¢, = (K (TR - k1 xYB,) 5 & = i KXk, B, + 1 kotzgx VL E, ) -

Thus for nonvanishing axial components and radial wavenumbers the problem is solved once these
components have been determined. For vanishing axial components the approach of the limits
Bz—+ 0 and EZ_,o has to be considered.

Mode classification. Pure modes are those in which either BZ or EZ or both vanish. We distinguish:

H or TE modes E or TM modes TEM modes

fr= o dy= © le=ku=o
f = Tk K°, B, €e = hKGE ()

Le =~k K 1ty x &, Lo JME koh—?"“s-gt

Boundary conditions. At the conductor which we take to be perfect we have the boundary conditions:

( ’Ltﬁzs\) S and (»Lo)({?') =0
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where 44 is a unit normal at the surface. At the interface between two dielectrics (& ,/u)
and (82,/ l) the continuity of ‘cangentlalg and 5 /4 45— is required. Maxwell's divergence
equations then imply the continuity of normaluz- and ’19' = & g

Circular Waveguide. We now specify to boundaries of rotational symmetry.

Introducing
’ % 22 1 2 { 2>t
\Z = et v T ey

and setting

sin mg
th (x,¥) F(r) cos mg

we obtain from Eq. (2) for the radial dependence of the cartesian z-component the equation:

21 i ° i mt —
Per T ¢ D + k- & ) F:(r) =

which is solved by linear combinations of the form:

F(r) = Cﬁm(kr) - DNm(kr) or shortly = ¢J (kr) + DN (kr) (5)
Starting now from the expressions

B, = B(r) sin me¢ and E_ = E(r) cos mp ’

we introduce the unit vectors?bfin the r- and#, in the p-direction and write

= 2 L 2
v«b—'b('ﬂ"l+ r'DgPﬂ’?. s
Observing
Mo % B, = Ty and My X My, = — Ty

Wwe then derive the rest of the components from Eq. (4), grouping them into H mode and E mode

components.

H components E components
By = Bewvmy E, = Ecosmey
Br= k2 2B g B, =ikge 5 S iy
Be = %{-"—: Beatmyp Be = :}-t:. :‘1" = 2 cos v (6)
A T X T
A PR

The reason why we have chosen the azimuthal dependence of B and E to be 90 out of phase
is that only in this way we get the same angular dependence for H and E components in the trans-
verse direction i.e. the same "mode"

Inserting now the linear combinations given by Eg. (5) with different coefficients for the H
and E mode components we combine the two groups to obtain:

B, = [C, T(kv) + D, Mkr)] v | Ee = [ CoTke) + D NCK)] Cosump
= i k'lc@s g {'m ko [C,T (k) + I;'Ncm]«- E}*lﬂa%,‘[c:_:j(kv)-l-)EU(kr)]}
Ee =- e i Ky €1 Tty s M)+ kB [T +D, Naeo]t

&

(7)




As in Eq. (5) the index m which is common to all cylindrical functions has been omitted. We

did not write down the radial components since for the boundary conditions it is sufficient
to consider the tangential components only.

Boundary conditions for the dielectric coaxial line, Suppose now a circular waveguide'of radius

b which is filled with dielectric "one" (‘g}l,/ul = 1) up to a radius r = a and with dielectric "two"
(.‘52,/1.12 = 1) for the rest. For each dielectric we have the four constants of Eq. (7), that is
eight constants altogether. At the same time we have eight boundary conditions: finiteness of

B and E on the axis, continuity of B =H z? E » B = H and E

~at the interface and vanishing
EZ and Eg, at the conductor. The transverse wavenumber’s in the two media are named l{ and k2

These quantities are unknown and have to be determined from the requirement that the full set

of boundary conditions has a nontrivial solution for the coefficients Célf{e) Déll’{g).
] »

We start by demanding finiteness of Bz and EZ on the axis, ylelding:

The components in medium "one" are therefore given by

1 4 (l\
B}){‘Y‘) = Cﬂ‘jck ") Brranap ; E vy = C J(k P)Co_s n,“f,
i : Ak YV‘Ik ,u) ’(,

1)) (f)
EV(V) ==--— E‘\Mmgf{ 'mh.c JCke) + ke C ':]Ck,.-')%

At the conductor surface we must have EZ(,E) = E((pe) = 0. With the abbreviation

Jak) _ 9 T kels) 58

RREE N F el (9)
N(k,_b) N‘("z {9) 7
we get from Eg. (7) q
w) ¢?) (2)
D;)=—75CE Al -Du = - C,
These components in medium "two" are accordingly given by
(2) (2 (2) x)
Bl- (vy = C ){__Jfk{) ’IB‘N("Lr)]Evhw-.( E (V)= CE [jf"ﬂ') _QM(E:F]JCOSM?
i)

{U_
S
ll

do.wmfa -{ "CH [3’( ko) —-7)1N(klr)} + &, ks CEQ)[ ]Ek;r) + '73&1'(;(,..)]}

) q )i L
E(“:Lr) = ":Z,,H"'““f{—h%_" C;[j(h?) _ﬁﬁ/(tw)_] + éa C,(, [j(lqv)r’tﬁN(k;v)]}

Having eliminated so far four of the eight original constants the remaining four ones are rela-
ted by the boundary conditions at the interface. Introducing

x = kia [$ b/a}ﬁa<=2,'7=k;q,ﬁ>y
Tey=7, Tey=3, I =T, Tq) =T
\Y

1\/&,)=—N, Ngy=N', NG =N, V@)

(11)
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We get a set of 4 linear homogeneous equations:

-8 ; ey = (P03-9W)
e )
=Bl ¢ €2 Ty = C (I-2W)

Vo= Ko m iy C Mo SC T = mkor T, (3-S0) + 4k 7= 50)
\ - 2) 1 4
E?(a) = i%): m k‘gZzC:Ic,‘)+ % C:’j&) = mk;}-(LCECﬁ (7-4) + —‘é’ C : (3'-0W)

In order for solutions to exist the determinant of this system has to vanish.

Dispersion equation. After a little rearrangement the latter condition can be written in the form:

) 1 [¢
c:’ Cé) ¢ s
K k 1 _L:_
K mka | M mky 1
> ke x* % ¥z
\ (o] | (o]
o | = |

I

(12)

(14)

The heading on each column indicates the unknown coefficient C to which it is related. We also

used the symbols

! = {B'A/' I =Tn
e T) M [__

I-Dd'_ IW-Iw

——

Toy | T I=0W T INC Tv

using the definitions given in Egs. (9) to (11). Evaluating the determinant one obtains:

-

(=) Wit _ M (2 =< _
T | €

R, Yy V- TP

(15)

(16)

An almost identical equation has first been obtained by Bondrasj) for the case where the outer
surface has been removed to infinity and the inner "dielectric" consists of a metallic wire.
In his case the linear combihation of J and N functions is replaced by Hankel functions. The
differences to the present problem are that the existence of m # O modes is restricted by the
conductivity of the wire and critical wavelengths exist above which propagation is impeded by

radiation. Eq. (16) is also derived in 4).

In order to solve for the wavenumbers it is still necessary to introduce into Eq. (16) the relations
that exist between the three wavenumbers kl, k2 and kz. This relation is given by the need that k,

in both media has to be the same.

k= T z T

Ky = €, ke - k, = 2. k:l—-‘kz

Writing the last equation as

(/) (=) = By - 2ax®

(17)

We can eliminate k%/kg from the left side of Eq. (16) and obtaln the more symmetrical form5)

1
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Vhl(}l?t-_—t.',z,)( TR - P G (’15 - ‘Z—L‘)(z,f-'f—s "'L) (16a)

For the following it is convenient to use as a reciprocal unit length the quantity

I
k, ke (€.~ €) "= k. (ASY'% Kk g% g5 (18)

&

The & introduced in the last equation is a measure for the magnitude of the dielectric disconti-
nuity. The index p is reminding of the case 81_= 1 - mzp/mg, EEE= 1 in which kp is the vacuum
wavenumber at w = mp. For the two radii a and b occurring in our geometry we write

I

with

l

(ee—¢,)/ €

ake= A and bkp = B (19)
(There is no danger to confuse B with B = B(r) used earlier).
With these definitions and the definitions (11) the relation (17) becomes
7 oy T
.7'!—_ <t — A = a k. g, § (20)
2 2
whereas for the ratio k, /ko we get
-z .2
2 ) A
k}/k. b €. 7 k. a (21)
In view of Egs. (20) and (21) we rewrite Eq. (16) after multiplying by xuyn:
v 2,4~ 8 e R o M_Hn-f Sk —x" L
(1= PAE)AY = [¥x K<Yy 4-8yxK=xpl ] (22)

and we write this equations symbolically:

L2]

EM] ° [L_] (22)

Before trying to solve this equation some remarks may be justified: For m = o i.e. rotational
symmetric modes, Eq. (22) can be satisfied by equating to zero either of the two brackets on the
right hand side. Tracing back these factors to their origin we find that the one containing the
ratio’ of the dielectric constants stems from E mode components whereas the other one is due to

H mode components. Thus we have mode separation where each kind of mode has its own dispersion
equation which is

for magnetic modes for electric modes

M]= o (22a) [L]=- o (22b)

For m # 0 there is no such separation and neither the E nor the B field 1s purely transversal.
At k, =0 (cut-off) the left side again vanishes (see Eg. 16).
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Solutions of the dispersion equation. The dispersion equation as given by Eq. (22) and implying

Eg. (20) is a transcendental equation for the unknown wavenumber, say ¥y, which through Eg. (e1)
determines the more significant axial wavenumber kz. The cylindrical functions contained in[k]
[[Jand [M]are oscillating functions for real arguments and therefore an infinite series of sclu-
tions is to be expected. Solutions could in principle be obtained by numerical calculations. We
consider it however more instructive to attempt analytical solutions by using approximations of
the transcendental functions in regions where we have reason to expect solutions to exist. For
the following we confine ourselves to the case of rotational symmetry (m = 0) and the dipole
case (m = 1). The following idea can guide us in the discovery of solutions: We know that for & =
0 we have the well-known modes of a homogeneously filled waveguide (or empty waveguide for

61 = 82 = 1) which we must approach whenever § <€ 1. This suggests that the solutions may be
linearized in the neighbourhood of the wavenumber of the homogeneously filled waveguilde.

We regard the dielectric discontinuity as a small perturbation that causes small shifts of the
radial wavenumbers in the two dielectrics Kl and KE from their common value kc which they had in

the homogeneous case. We therefore introduce the small quantities

s =k/k, =1 =X%/kb-1 and t=ky/k, -1= Y/kb -1 (23)

(see Eq. 11) as new variables. Later we shall work out approximate solutions by linearizing the
equation in s and t. In doing so we are primarily interested to solve the problem which is out-
lined in the next chapter.

II. The Fresnel "dragging" effect in a waveguide partially filled with a moving dielectric.

Dragging coefficient. The dependence of electromagnetic propagation on the velocity v of the

medium through which this propagation occcurs is known as the Fresnel effect.The motion of fthe
medium changes the wavelength A for the medium at rest into a new value A' which to first order
in v/c is given by

AM/L =k/k' = n/n' = 1 + ¥ /e (24)
where the dragging coefficient ¥ is given by6)
| w M oyt b e Wt 2
R W il = [ 2y 3 L

The two signs in Eq. (24) refer to a wave travelling parallel or antiparallel to the velocity of
the medium.

The derivation of Egq. (25) shows that its validity is not restricted to plane waves in an infini-
te medium but can be applied to any kind of "medium" which has the effect of changing the

vacuum wavenumber in the direction of propagation in the ratio kz/ko =n (w) which then is the
generalized meaning of a refractive index.

This "refractive index" of a waveguide which is homogeneocusly filled with a dielectric is then
given by 2z T T~
2 z -
N o= kg- /kn = € ko /k° (kc = cut-off wavenumber in the
empty waveguide)

2 _2
or =1 = E-1 — kecfw (26)

It is easy to show that whenever n2-1 (which in the homogeneous medium is equal to 4w times the
electric susceptibility'lfe ) is of the form

1'12 -1 = const., - (32
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the bracket of Eq. (25) vanishes, leaving & = 0. Therefore all contributions to n°-1 which are
proportional to w2 can be neglected in calculating 22 .

We therefore have a coefficient 28 given Dby:

® = wi[n 4 WM/ O] = WiLe-1 + Wt de /2w ] (27)

This equation still refers to the homogeneous filling.

Effective dielectric constant. We think of a homogeneous medium which replaces the two dielec-

tries in the sense that it produces the same kz‘ This medium 1s then said to have the effective
dielectric constant.

(B 2 -

v 7 < :
ke = Egki-ki = Keg -k = kg -k (28)

Hence it is evident that for the inhomogeneous dielectric in Eq. (27) £ simply has to be re-
placed by geff:

P - i [&#—l + W Pfep/ AoM ] (29)

Dragging of guided waves. In the exper'imentsﬂ the change of ‘phase angle along a plasma column
of length L due to the dragging effect was measured. This increment is obtained from Eg. (24):

FAN . ( k;_ k;‘ L

- kL 2 nwve
ke L (ve) L &gt + o D Eapy /9] (30)

I

The same expression for A  would be obtained for plane waves in a homogeneous medium with dielec-
tric constant Eefi"
This leads us to the formulation of the following theorem:

The phase change (in absolute magnitude) exhibited by the guided wave through
the motion of the polarizable matter within the waveguide at velocity v is
equal to that which would be exhibited by a plane wave which propagates freely
through a homogeneous medium with &= 8eff moving at the same velocity v.

For further evaluatipn of the bracket in Eq. (30) we will always assume EE = 1 and we express
with help of Eq. (28) &eff in terms of t which has been defined by Eg. (23):

7 T o v -2
_ = = 2 ks o
fp-l = — 2t ke / ko (31)
A final expression for A 1s then obtained:
- v v 2z A€ (32)
A (ot kol %02 S Sy

The functional dependence of t on experimental parameters will be derived for a cold collision-
less plasma during the following chapters for different waveguide modes.
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III. Approximate solutions for the partly plasma filled waveguide for the lowest modes.

There exists already a considerable literature on totally or partly plasma filled wave-
guides and resonant cavities. A survey is given by Allis et al.7 . In this literature however
the interest has been mainly in the case wg wp where the signal frequency does not exceed the
plasma frequency and phenomena like resonance, slow and backward waves occur. The case 4:>m
has - to our knowledge - not been treated in a way that would be directly applicable to our prob-
lem of the Fresnel dragging effect.

Symmetric (m = 0) modes of magnetic type. We consider first the modes which correspond to the H..
modes of the empty guide. The normalized radial wavenumbers x and y are determined as the

n®? root of Eq. (22a) combined with Eq. (20) which we repeat:
K h_...A i . . T (N (>
® T wg= = (22a) ] Y —x = A (20)

Here K and M are defined in Eq. (15). In a cold collisionless plasma § is given by

In the last chapter we have already assumed EEQ = 1. This makes A2 independent of w2:

T z
AT = ako g, £ = ave /e’ (33)

The solutions (x, y) of Eqs. (22a) and (20) will therefore not depend on o According to
Eq. (23) this will be true also\for s and t. Eq. (32) then tells us that there will be no
dragging effect.

gm.od-. We consider now the first symmetric mode of electric type and therefore have to solve
the combination of Eqs. (22b) and (20), i.e. (with &, =1, El =1 -38)

Cl-S)E _..'\—}. = © (22b) : ..r"'__,.:?‘ = Pl akld (20)
x

K and L are again as defined in Eq. (15), whereas & is supposed to be a perturba’cion‘ small com-
pared to unity. The €onfiguration to be perturbed 1s characterized by:

El=.1,A = 0. and x = y or k; = k; = k,.

Inserting this into the above equation and using the explicit expressions for K and L yields:

43l ;1 To ¢) Mo (By) - M ) T (R )
L) L (9 Mo (Rg) = Moty) T. (29)

(34)

The last equation 1s solved whenever Jy equals one of the zercsof J o+ This clearly must be so
because the modes of the empty (or homogeneoualy filled) guide must be reproduced. In this
case we are interested only in the first zero which is given by
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The first zero of No' (v) is at y = 2,2 which is close to r . The first two zeros of No(y) are

at y = -9 and y = 3.95. We now approximate the functions J, and No by parabolae Jy s No » which
have the same zeros:
» el
LX) = (x-w)x+n)= ¢ (x=¢*) ; oy, = Tl x
! (36)
M) = Gx-G-3)(x-%+2) ; M = 2¢, x-g)

The zero of N, !

will then coincide with bo which only slightly differs from the true zero of
NO' at x = 2,2. The constants Cys Cp need not to be specified numerically as they will cancel

o
in the approximations K , ﬁ* for the functions Ko and Mo which are given by:

%% #is - 'J:péx) - ‘ex
L il T i U ~ v (F - -22)(F-G+30L) = (4-a)(F-%) (G+r)
- = 2

TAS- T (NG -3 (G2 30) = (G2 (Y -30) (g + 212)

where we used the bars to denote arguments which are increased by the factor /3 = b/a, as we did
earlier.

Taking now the quantities (see Eq. (23))

g = x/vya — and & = :f-/r:. -1 (37)

“ -
to be small compared to unity, we can neglect their powers > 1 and express K and M in terms
of s and t. The result can be written in the form:

XK = —@AT (1= $/T) with [ o p(1+£) and F == 252 (38)

=t 2 452 . 1 — .46 )
— | + ) -
x L e C(1+3t) with T = 2 - 5 T See (39)
Eq. (20) between x and y reads to first order in s and t:
Pogeris pRppversopl ettt R g b e %>

)
(40)

Using the linearized forms of Egs. (3B8) and (39) in Eg. (22b) and eliminating s by means of
Eq. (40) we can solve for t:




=Z109=

B & BT
SP(1-8)+ 1 (41)

2 &

I

Inserting this result into Egs. (31) and (32) we obtain:

P |+ 2 Ttk we*

- — - i3
ofe = (4ol Lob — Wr S
with

r-"
2 S +
and
LIt R L
2| (TS) (wp) T F3I0o (44)

: 17(-":)1@24- [

For T'=0 which means vanishing thickness of the outer dielectric (Eg. (38)1 A, vanishes.

This clearly must be so since a waveguide with homogeneous filling is approached. However, in
the infinitesimally thin outer layer t will remain finite. On the other hand if Mo o2 i.e.
if the inner cylinder collapses to a very thin dielectric wire our approximation of N by a para-
bola becomes invalid and we cannot use the above formulae.

The curve Zk vs.mi can be seen to start with finite slope from the origin.

The Hll-like dipole mode. The first among the higher dipole modes is the one that becomes the

H
11
the mode becomes of the hybrid type. The procedure is again to use parabolic approximations for

the J and N-functions:

-mode when dielectric homogeneity is approached. We have to use now the entire Eg. (22) and

3.* = ng(x-zq) : j,*= 2 ¢y {x~-v)

]
NS = ey (x-120)(x-280) - M*‘ = 2¢ (x=2r) M J (r)y=0o (45

Here we used the properties that the zeros of ng) and N{(x) to a high degree of approximation
are given by x = 2r1. The constants c} and ch again are arbitrary. The development of X and y

is now around bkc =r and given by

X = f2x = v (1+9 anel T =Ry = ¥ (1+1t) (46)

Eq. (20) becomes now to first order in s and t

i

Q. T T 2 oo
t-s BY/2 , BY= btk = bt s

For K, M and L we consequently find the approximations:




=TT a

*(
e X o 128 - 2/
X -J*‘ S 142y 1= L/ (i+24) where ¥= A-i
jmﬂ?'—' A 5 — 2 (48)
H*S - o= L M= 1.3+ il
dl 7 j’"‘{\?‘_ M*j;,qa | +2¢ 1— Nt wheve ' 23¢ T
*.I'_*_. '_" * o 5 ]_‘ "
gL = 8 Vit o AR M L Sl JUNC WS Y.
TN - TE* ¥ 2 +334 1 — Tt 364
Lt el e lde it ties
R e

»
¥L. becomes nearly independent of t since r'aq’r;. We may then consider this dependence to be

of second order and write

* . . 4236 8"«: 5
ylL® = = T /¢ Wi Ha T, = e > 1+ .Hg= s

With help of Eqsfh6)to(49) the dispersion equation (22) is written in terms of s and t. Setting
m = 1 the left side of this equation becomes

[2] = [1- §R 2] AY= w7 B> [ {143y - §25]

(50)
For the Dﬂ -bracket on the right side we obtain:
2¢t ¥—J 1 +2¢
[M] = [y*x K'= Xy M = ma',_l)ﬁll_c'ﬂﬂ e Ak =3 R T

1
We express M entirely in terms of s. The product (1 + 2 t)/Y appears twice with opposite sign

and cancels. There 1s a product 2s * 2t which is of second order. We shall see within short
that 2t roughly equals B? for KZ‘_ 1(which 1s the case of maln interest). This allows us to
treat this product in an approximate fashion rather than drop it completely. Evaluating the
bracket we obtain:

Treating now as small quantities s/(1 + 2)*) and ' t but not s%r- and making use of Eq. (47)

[M] = —V:‘ﬁ—lg-(n+zd=)"{r.'3:“+ 25[F'Ci+ B2y + T) + T;]} with 58
T; = :t::t- Eigllflah

The last equation will enable us to obtain already a first order solution to our problem (if we
call s = t = O the "zeroth" order sélution). For a vanishingly small dielectric discontinuity
we must approach the unperturbed magnetic Hll-mode which expresses itself by the fact that the
E&]—bracket due to the factor A" 1is of second order in §. We shall see within short that on the
right side [ﬂ] has a rather large value within the whole range of our approximation. The first
order solution is therefore given by

e
r a ¥ie

_ ' A
[M] =0 o 2¢ = - r"c-+k..*—)+l‘.+-i}3' = = 13cyB" (53

I




oL

and confirms the above treatment of the 2s - 2t -term. This first order solution does not con-
tain the frequency w (no dragging).

Finally, the [L]-bracket is given by

1 T, 20-8)yO+p})
13+ Cenpee At - 5 {3+ 2050

AP f--f)f?-r+,%‘ﬁ~-=-w}<5‘”
: &~ I+ zd‘-

From now we shall neglect terms o€ a«" as compared to terms & r:.' . This amountsto a lineari-
zation in f after splitting off al--‘. It is not necessary to do this but it simplifies the for-
mulas. In our later application to an inhomogeneous plasma the magnitude of }" which is represen-
tative 1s only vaguely determined and the errors introduced by the present procedure are unlikely
to be larger than those arising from the imperfect knowledge of a" even for values of a" as
large as .6.

We then obtain for [L]:

(L] = \—.’-/5_7‘T':, { I+ (1 —<1>)z_r} with P =G-8+ B\")d'(;fzds)"r;" (55)

The 4>-term will be neglected later. We see that for small f the [L] -bracket is large, a beha-
viour which is approximately inverse to that of the L-M] -bracket.

For the product [L] [M] we obtain to first order in 2s:

- LAWIAM = DR+ (Y0 B) 4 T R TR -p)]2s (50)
where Ty =(+2p)/ty

We combine Eq. (56) with Eq. (50) for [Z] through Eq. (22) and solve for 2s:

(B X 2 2
oo . m+re -ERG8Y] B oo HAnB- CRG+BY o
- y 13 ¥ Il T -1
FU+BY)+ D+ [0+ TO-OB-B ¢+ T+ I + T (-9 B
The term & -l“,, Bgl in the denominator (which through B? is quadratic in §) has a much smaller
influence than the term & -r'6(1 + Bf) in the numerator and is therefore neglected. As we
did earlier we also have to neglect terms ¥ P’wit‘n respect to termscC f—’ in the denominator,
that means we set r‘g = 1 and we drop the ¢—term:
T 1
2g N+ BY— &, (1+ 8Y) 4. =

O+BH) (§~'+ ) + 4 '

Eq. (57) gives the second order solution for the shift of the radial wavenumber in dielectric

"one" which for small § tends towards the first order solution of Eq. (52) as B? = r'gbﬁl{gé-bo

|
We also give the expression for 2t treating higher order terms in J} in the same way:

AR WIS AP
L xGsaY) '+ T
B Wy LY
B s !

2t = B+ 2¢

(58)
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We calculate &eff.‘ and A from Eq. (58) in analogy to what has been done earlier for the Epp

mode and find

L+ 3 M +4Ci+BY) = L_a;" (59)
oy z B"n- 2
b “A - ol iy L - )‘( (+ Bli)-' wp 4 L‘JPL

=1
In order to arrive at Eg. (59) we have used the approximate equality: |+a¢r(',6-‘ - (I-A‘Ef) o
This way of writing Eq. (59) shows the equivalency with a resonance occurring at mR1< mp by
the action of an electrostatic restoring force which reacts against any attempted displacement
of the bulk of electrons from the ion background. However, at w = t.nné Eq. (59) cannot be expec-

ted to be valid as in our deviation we have always assumed &§ = mp2/w &K1,
Finally & is given by
L
v ¥ M
A = - l“'L & ! ] kS -L:‘J'E‘
t+ ylis BX) 'y el w ¥ (60)

The curve Avs.mp2 now starts with zero slope from the origin.

The E,,-like dipole mode. We will in short consider this mode too as it shows an interesting
phenomenon of sign reversal in the frequency dependence of Eef‘f' We arrive at this mode if

we develop our parabola approximation of the J and N functicn around the zero of Jl, which we
call ry and which for our purpose can be taken to be equal 2 Ty The approximations of Eaq. (45)
with 2r1 replaced by r, are:

' 1
A/."“'=’ 2(x- r'...]
whereas for the wavenumbers in analogy to Egs. (46) we have now
;‘--':/3’(: \"LCH-.S\ a‘f‘d q’/g\‘l= r;_(i'i't) (62)
and in analogy to Egs. (48) we obtain
"
= (1=y+23)/(3-§)
e (63)
9 M* = g/(,og +, 1oy — 42 yT)
K o, 5 i—y + (2-12.8p)t
v = -¥ TEzmsae )t
The brackets of Eq. (22) are now given by
a4 -2
[x1 = [-€B(+z)] A= 6YR7 By [1- 8B (1+2t)]
2 ar () (=x+25) (1425) ¥ ] (64)
M1 = s I, S— ¥ T oPt.lbgs gt
ar (=) (1r2t) (1-¢+25) lr2s | -pr(2-250t
L1 =gl =¥ T S |+ (a--—szcx)t]
Wt’leré Bl - -—:— . C-ﬁ

The situation regarding the relative magnitude of the [L] and [l‘-ﬂ -bracket in the vicinity of
§ =s =t =0 is now reversed. The [L] -bracket tends to zero and the [M] -bracket reaches a re-
latively large (negative) value for small r :




= -

The first order solution is now given by

[L]=0 or (1= &)1 +2¢) et Nite _i+2s 1=+ 2-n35p)t
ST & ""Cz-'-?.'Zrd-)t

Eliminating s by meams of

2
2s = 2t - BL

and neglect of second order terms in s, t and 6§ finally leads to

ANt BY2 + &
ey 3.15_&%;_.2”3( /2 + &S ) (65)

Eq. (65) predicts a change of sign of t from positive to negative values at j”: 1. This will
cause Eeff -1 and Aas well to change their sign at }*: 1. OQur approximation, however, becomes
of doubtful validity in this range as the Nl function deviates more and more from the supposed
parabola as )ﬁ is increased over unity. In the following we want to confirm the result with the
proper use of the {- and q;functions.

We first express the derivatives of J1 and Nl occurring in K and L in terms of Jo and N0 accor-

ding to the rule Zi = ZO - Zl/x where Zl can be either J1 or Nl:

TE-MT _ 307 - AT

7, 0o Lix) | [ = -
= L = - and = — — = e pale
K 3, (%) TleYe 2% T, M= M7, EARY Vi 4 Y (66)
= jq-'cuo/AZ)j—: ol o i
I- ey 7
Numerators and denominators are now agaln expanded around rse. Setting again (Eq. 62):
X =& R =an(+S8) ang Y= qQ= xr(1+t) with o =/§"= a’/b
and introducing the symbols
3. = dutey ;o T = To (xn) Jo= J(n)=o0; T = J ) (67)
with analogous ones for the N-functions, we have the expansions
dolg) = T = j"‘«qti J(F) = Toont ) Jig) = jl-<+(°"'1.7w—3',.¢)t (68)
L = Too, — (v T "'jﬁ"‘t”ﬂm)f s !
Tix +(“VLL£—I.¢—E&?f';Mk)t a(r',_(H-t)
‘B (69)
Replacing t by s and ignoring Noa’ Nla we obtain K:
=T el riiodas Tac)S X (1+.0) (70)
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With help of the ratios:

Qg = j‘“( /jﬂ ‘oo:: o Nu-( /l-( ; 6” = MN/U;(

/

L takes the form -1
l_(o(ﬁ_Q;.‘J-luMo bﬂb)t ]

L = a H-Cﬂraao.—l—-:LoM;"b,.)t R (1+1)

or, linearizing the denominators

B = b 1+ Dk o)~ (v aa)] £ § =25%0-2)
Replacing t=+s and setting J Nlcl) = 0 ylelds

% s Jlr;‘q,,{i—atr,_ { Asit a:.')sg- —cFlr;‘lfn-Z.s)

The first order solution can now be obtained from

(L]

and is given by

o or (:-§)§_%=o

.(-< v, Qo -1)§ + [:I - goc"r;_"(aoﬁaoj')]B:'
X Qg v, :LOM;'( Eoo-—bu)

£ =

71)

(
™ Neo {jb((a(rl =T ) § + :r:-r. [1— qr‘ (:: :::).]B;:}

where the last form has been obtained by reintroducing the old symbols and observing the relation

Yo Tnas = Yo Yrg = 2/mrya.

The coefficient of 6 changes its sign where

/
I = Tx fotry, = Jiag == o Snra (P4 A = e .

¥ = Lo@

which is indeed close to the wvalue f’: 1 obtained by the approximation used earlier.

The results for t, £eff andA can now be given in the following form:

ot = RQ(QBI+ @)

Sl Q, = _g;;“__,% Q=1 [1- «‘r (jnu :ru)]
Qz.'=3ml-.°("'1.1-(_ju]<0 -pordz-‘hg

(71a)

1

1
egp-l = — @ I, b"t"'-‘- Q,_} :”L (73)
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Comparison with experiment

Experiments on the dragging of microwaves by the drifting electrons of a low -pressure
discharge have already been reported8 9). In the meantime some measurements have also been

made with the H mode.

01
The discharge and the surrounding circular wavegulde are shown in Fig. 1. They are inserted into
the path of a microwave interferometer and matched to it by outside tuners. This interferometer
will be described in detail elsewhere

Briefly it may be quoted that the wave coming from the generator is split into two seperate trains
travelling through the discharge in opposite directions. When the direction of the wave trains is
reversed a small shift in the relative phase of the two trains is observed which is attributed

to the dragging effect.

The principle of measurement is essentially the one used by Fizeaull) in his historical measure-
ments with light propagating through streaming water (Fig. 2).

The E01 and H01
dis?g?rge section. They are shown in Figs. 3 and 4. The EOl-coupler~and -filter has been described

waveguide (Fig. 4b) which was surrounded by absorbing material.

modes have been produced by means of couplers and filters on both sides of the

in . The H01 mode filter consisted of a system of azimuthal slots in the wall of the circular

8)9)

In Figs. 5 to 7 as defined in Eg. (30) is plotted vs.1- E'ff‘ In the two previous papers
this quantity had been designated by wpa/w and was calculated under neglect of plasma inhomo-
geneity from the phase shift which was measured in a single transmission when the discharge was
switched on.

In Fig. 5 the dragging of the EOl and the Hll—like mode are. compared. Although the modes are
substantially pure when produced in the empty wavegulide it cannot be excluded that the asymmetries
of the discharge to a certain extent give rise to mode transformation and the presence of a mix-
ture of modes. With the high resolution of the interferometer (approx. .00l degree) already a
small variation of discharge conditions affects the reproducibility of measured curves. Theoreti-
cal curves are claculated from Eqs. (44) and (60) respectively for ¥ = .6 and ¥ = .4. The choice
of g'in this range seems to be reasonable when the presence of the glass wall is roughly accoun-
ted for. However, B*must remain only vaguely defined from experiment as the plasma in reality has
no sharp boundary.

Fig. 5 shows crude agreement between theory and experiment especially in the relative behaviour

of the two modes for small densities. The detalled structure, however, of the experimental curves

is not predicted. Fig. 6 shows measurements with HOI excitation and two different discharge lengths.
The different appearance of the two curves suggests that end or finite length effects play a role.
In ofder to seperate these from the rest,measurements with different sizes are still under way.

Fig. 7 shows measurements with HO1 excitation. The theory predicts a van;shing effect for this

mode whereas the measurements give only small deviations from zero of elther sign and poor repro-
ducibility.

The larger diameters which had to be chosen for this mode resulted in smaller electron densities
and hence in smaller values of 1- Eeff which could be attained without destroying the cathode.




Conclusions

The model of a circular wavegulde filled partially with a rod of cold and collisionless
plasma is shown to explain largely the observed dragging effect for various modes and frequen-
cles considerably above w_, the electron plasma frequency. Physically this behavicur may be
attributed to the possibility of resonance due to collective electron oscillations at frequen-
cies of the order of wp which occurs whenever the mode has an electric field normal to the plasma
density gradient.
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List of Symbols

2

=

S o o
; ro

o
«

R,
- n
oy

N, N
i K, L, M

A D e

=

velocity of light in vacuum

angular frequency of fields

inner radius of a circular waveguide

radius of the dielectric discontinuity

a/b

b/a = I/a

(b-a)/a = /3 -1

magnetic permeability

dielectric constant (in general)

dielectric constant for o rg a, in particular £ 1= 1 - LUP‘L/L\JL
dielectric constant for a<rg b, in particular 32: 1

effective dielectriec constant (Egq. (28))

(52 - £1L/52 (relative) magnitude of the dielectric discontinuity
w/c, vacuum wavenumber

radial wavenumber, in general, in the inner, in the outer dielectric zone
z-component of wavenumber

K, (£2 - 21)1/2, in particular wp/c

rn/b, where Ty is explained below. Cut-off wavenumber of the empty or homogeneously
filled waveguide referring to a particular mode

kja , kea

kB" =Bx, kb =@y

yE Lt i aEKPE

IJ(y), I(¥)

N(y), N(¥)

see Egq. (15)

electric, magnetic factor and product of the two in the characteristic equation

(Eq. (22))

relative deviations of the radial wavenumbers in the two dielectrics from kc, quan-
tities in which the characteristic equation is linearized (Eq. (23))

given by the first zero#0 of Jo(ro) = 0 respectively J; (r2) =0

given by the first zero of J,' (r,) =0
1 1

bic, vt
velocity of refractive medium along z-axis

dragging coefficient

phase shift along a sample of length L due to the dragging effect
¥ 1+ ¥7/2)

1.36 + 3.36 p2/(1 + p ) Y451 1,36

1.36 (1 + 1.479)/(1 + 2.}6,;#)&:-‘-‘)'1.}6(1 - .B9p)

1.36 (1 + 1.24y-)/(1 + 1.685*)3:‘_1'1.36(1 - k)

(1 +2.369)/(1 + 1.68 p) ’_'_“_,1 1+ .7a

(1+4y )/(14:'23)‘1‘1 1+2y

(3 + 2 o) [Tp=01- 4 1,54
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