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ABSTRACT

An integral equation for the electric potential in Laplace-
-Fourler space 1s derived for the class of distribution
functions:

i = 8 5 ) enple] [ B e i )

(which lead to density profiles everywhere infinitely diffe-
rentiable). The problem of the stability of the solutions
reduces to determining the singularities, in the W-plane,
of the solutions. A necessary and sufficient condition for
the existence of singularities not independent of Ko 1is
obtained. The problem is greatly simplified in the case of
quasi-neutrality.




I. Introduction

The linear stabllity of a Vlasov plasma whose equilibrium
distribution function depends on space coordinates has been
treated hitherto by approximate methods: local approximation
(Galeev, Oraevskii and Sagdeev, 1963), W.K.B. method (Krall
and Rosenbluth 1965; Davidson and Kammash 1968). Such methods
are applicable only when some severe limitations are fulfilled.
When considering only wavelengths |(;f much larger that the
mean Larmor radius of the particles, but still small with
respect to the inhomogeneity length (.Rir!<£ K;J <<($r g%i)'i),
the integro-differential equation for the electric potential

degenerates into a differential equation

?
%—;fz + D (%K Ke) Y =0
and the W.K.B. method is applicable. If, moreover, the perturba-
tion grows sufficiently in time before it propagates over an in-
homogeneity length (Im(w)> L dn D_Eﬁ_(_l_l_l_! ), it 1s not necessary,
N dx Ky
to treat the boundary value problem, and we can apply the
so-called "local approximation" by solving the equation
Dy =0
Here we shall consider an initial value problem and use the
well known property that a necessary and sufficient condition
for a function f (r,t) (or its Fourier transform f (k,t) ) to

grow indefinitely in time is that its Laplace transform
A il < -
L
Fe,) = far ¢ 4(e0)
0

have a singularity (not necessarily a pole) in the half-plane
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We show in Sect.Z2 that ‘«P(UJ, li) always has singularitles for
finite (@ . They may or may not depend on the component of k
in the direction where the equilibrium plasma 18 lnhomogeneous
(in our case k, ), the difference between the two kinds of
singularities being that the former correspond to instabili-
ties which may be absolute or convective in the x-direction,
while the latter correspond only to instabilities absolute 1n

the x-direction. In a warm homogeneous plasma there are no

singularities which do not depend on k.

In Sect.2 we deduce an integral equation for ? , where k, 1s
the independent variable, and ky, kz and () are parameters; the
eigenvalues of this equation (1if they exist) are singularities

independent of ko .

There is an obvious connection between eigenvalues and the
so-called "eigenmodes".

An eigenmode 1is a solution of the integral equation, of the
- ?’(L,t,‘KwKi)=tcw°(ka’Hi)sy(L;K}rké)'Of course, this is
possible only for particular, probably singular, initial
conditions. The corresponding Laplace and Fourier transform

has the form

ff'(wbﬁ) = )
w - wo(K”Ki)
and (Do(Kg,Ki) is therefore an eigenvalue of the integral
equation forlf . If one neglects the possibly existing singu-
larities in the @ -plane which depend on k ,, /\F is the
asymptotic form (in time) of the exact solution ? for an

arbitrary, sufficiently well behaved initial condition.
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1f we write the integral equation in the usual form

§(Ke) = §7(2 ) + MK (ke Kiej ) Y (kL) dKe

where A.represents W (or some function of W) ), the correspond-
ing (non-symmetric) kernel 1is a meromorphic function of A
the solutions might have either "dispersive" singularities

W (Kx_) or singularities W independent of K, (not
necessarily poles) or both. Existing theories do not apply to

this type of equation (Goodwin 1966).

We shall not try to determine the eigenvalues or give condi-
tions for their existence. Our aim 1is to find what conclusions
can be drawn from the asumption that singularities which do

depend on kx exlist.

On this assumption we derive a necessary and sufficient condi-
tion in order that \-P(w,lf_) be singular at w:wo(ux) or

correspondingly at K, = Ko(w..) , in the form
x 0

(1) ,D(m,ﬁ):o
where D 1is a functional of the equilibrium distribution

function and of the particle trajectories (Sect.3).

To obtain this result one must introduce in the 1lntegral
equation (as we shall see in Sect.2) a function of the form

F\o(w) S(Kx- K.,(w)) . Difficulty in determining Rg(w)
(see Sect.4) makes it impossible to draw a definite conclu-
sion on the existence of such singularities, also when

D(wi‘-&-) = 0.
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This difficulty does not appear in the approximation of
"quasi-neutrality" (see Sect.5). In that case, the dispersion
relation has a particularly simple form, and because 1t 18 no
longer necessary to introduce the function Ao(w) S(K:{'KO(W»
it is legitimate to assert that in the approximation of

quasi-neutrality
])(ﬁpifS) =

is the necessary and sufficient condition for the exlstence of

singularities in the 0 -plane which depend on kx'




I1I. Integral Equation

Let us consider an infinite equilibrium plasma described by

the following equilibrium distribution function:
o . 2 ’ .v ' 8
TR HEA ”)wr{ { —*——"‘)dx + T4 ¢ }};&“:”

B,(x)= B, -b(x) ; b(x)yo0 ;j*;; by « w0

,lv
" 2o for aff Yo .

i

)
f%“ 95 e
which leads to density profiles everywhere infinitely
differentiable. We shall study the stability of FO with
respect to electrostatic perturbations. When considering
two particle-species, the chosen equilibrium distribution
functions lead to non neutral equilibrium: we will neglect
the corresponding electric field in what follows.

The perturbation f can be obtained from the linearised
Vlasov equation by integrating along the unperturbed

trajectories of the particles (characteristics):

, e (Y9 ,
Blo,me= fRLE), 43k [ VOEE)-GE; (Y

where
R=(xY,2) = R(r, v, t-t) =R (r,,w)
w=t'-t
V= (Ve Wy V)= Ve, v t-t) =V (v, 0w




3)

and
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Then the Poisson equation can be written:

~AY(re) = T bre jjdvﬂ +Emi,jdt TYREMT,E; (1)

The only condition we impose on the initial perturbation
is that it be limited everywhere and its corresponding

charge, and hence its total energy as well be finite:

f[ 4—"]//‘1-”’ Filoero <7 5 Hleeee

It is easy to see that if this condition is fulfilled for

m

t = 0, it will be verified for all € . This means that
o
the Laplace transform of fi is L2 in x , and applying the

Fourier transform to it is Justified.

We shall now proceed ad absurdum to show that the Laplace
transforms of f and LP exist. The property that they are
L2 in x under condition (4) will then be obvious. We shall

show first of all that

im
> =0

jm
u
)
<
i

v-E _,
£
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is not possible in a region e . This will be proved for E
vectors which only have the x-component; generalisation is

easy. From the Vlasov equation it follows that

5 G)
-E

If 1lim :EF = 0 in a region &, it must hold asymptotie

<

E—>eo
cally in t that

5) E = D¢ (%%)-1 = H(E) +&(x,t)

Dt
where 1lim vVE =0 for xEgo< .
E»ce E

From (5) it follows that, for t —p 0© , E does not depend
on x 1ine¢. On the other hand, (5) is an equation for f;
together with Poisson's equation it gives an E which
depends on x 1inoC because Fo depends on x: which 1s a
contradiction. Then lim V E

E—>co —-E—#O

almost everywhere.

o ’
NowYPoisson's equation it follows that ttm T _ ih 0
E>oo TE

almost everywhere, at least in a finite region P of v. Then:

t—>o0

fim j éfEl 40

£

and therefore:




Lim _"E’_
(6) E>eo JE| + 0

From the Vlasov equation it follows that

| 2E) < IEIWE)

that is:

4im | Df
m Am S < BIIREL 4

= o0

where (B — o0 ) is limited.

g -yt
If we now assume that gv_r_:'m E e -—» o© for all
finite Y» 0 , in a region o< of x, it follows from (6)

that there would be a region ? of v where

21 .—Yt
vm, # e el 0l

t—>oeo
for all finite Y >0 ; but this property contradicts (7).
The use of the Laplace transform is therefore legltimate.
In an analogous way one deduces that the electric field

§t

in x , hence E. (UJ,P_(_) cannot be an entire function of

cannot decay faster than &~ (0< ) finite) everywhere

for real .li

We take now the Laplace-Fourier transform of (3):

O Pluk) = Gk + [4g K80 k)
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wnere K = (Ke, Ky, K;) | K' = (K, Kq K )

- £) "3y E
Glo) = 2 ’-I'Tl'ejdte ]]/dw"“]/dw (8,5 )e=c
Kk « L [eT (WK ;) CT (K K jw)
DR Koo =K tif g K, -<n
v
L . jf t,wu- LKy x)_ﬁ? Lk(r-R) ’ '
C (K K;u)= ,. dv dua e [reiyg

The existence of the Fourier transform can be shown
directly by proving that the kernel of (8) is 12 in K;,
and Ky , for all @ in the half-plane Im@) Y . This
property allows us to use Fredholm's theorem; (8) has

therefore one and only one quadratically integrable

solution lP .

From now we shall consider “3 and Ki: as parameters and

write as arguments of the functions only W and Ky

(written shortly k). As long as W) lies in 1its convergence
half-plane (wl?'T ), the products c¢ + are integrable and
therefore the first two integrals in (8) are pilecewise regular
functions of k, 1n the half-planes Im(kx)<;1 and Im(kx)
> -a respectively. Their sum is regular in -a (Im(kx) { a,

and the same is therefore true of (p (k).




It follows that a solution of (8) cannot have a singularity
in the strip -a  Im(k,){a 1if 1t is not already
singular on Im(k,) # O..Because if is regular for real k ,
an Im(@ ) ?,Y ,tF (w’l( ) (k real) would have no singulari-
ties for any value of () . Note, however, that eq.(8) 1is

not the most general Fourier-Laplace transform of (3).

One can also add any function whose "image" in (x,t) space
is identical to zero, i.e. any linear combination of
functions of the form Ag(®) S(K' Ks(_w)) , where Kg(Ww)
are analytic functions with Im(ks(m) ) #0 for Im(w )Y

and A (@) are analytic functions.

In other words, before transforming one can add to (3) the

functions (identical to zero):

xy0 and o'«g,xco

[ (060095

¢ (Ks("’)"': (:)'X-] .
E=0

wheve KSI(U)go ,{’,or w1>,‘(

and

.

(k@) AE)x  L(Kg(w) T)X
L(SU) 8 J ;fx,<oa.v\o\oi4)t>°

Mn.[e e

w hen K, g o for WYy
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The introduction of the S-functions can be seen as the
analytical continuation of (8) in the W -plane, when &

leaves 1ts convergence half-plane Im(w )

> T , where

eq.(8) 1s originally defined.

In the next section we show that the solution of the equation
one obtains in this way has singularities depending on k.

It follows that a proof that the functions As(u)) and
ks(u)) can be uniquely determined is at the same time a proof
of the existence of singularities depending on k. The
functions ks(u)) wlll in fact be uniquely determined in the
next sectilon; for the determination of the As(u))'s, only

a plausible argument will be given in Sect. 4 ,

III. Singularities of the solution

The integral equation for lP therefore has the form:

=+ 20

(9) Pw,K) = Q)+ Rs@) 3 (K- Kg(u))+ & sz[c*(u',xsw)_ c(-‘i“‘“’)‘]tf(m,k’)

K'-K+id K'=-K-La

-ad

It follows that LP has the form ‘P = g— As S(K-Ks(w)) +TP’




Let us now consider that value of '-P where one of the k_,

say k_, becomes real. Then (9) becomes (changing for

simplicity A  in z‘ﬂ'LAo):

(19 amiAolw) §lkKotw) + FlK) = G(w,k)+2miRo(w) S-tutwl

: c(koku) € (Ko, K; u) W) (K K;w)
| - S e

Ko~ K+l  Ko-K-ia -K+id Kl-K-(a

P
Eq.(10) implies that lP nas singularities at the points

k-_l-_“,'.-'-'. Kot ina (Yl-‘-l,?a)-..) which are poles when the c™ are
entire functions, which is the case when _'Bt= :Bo(lowP ).
By analytical continuation of the integrals in (10), one

o P~
obtains for the residues IP; of‘J..\f at theese points:

K= Ky ) nol ‘PR(Kn)= Cm-) LFR (Kn--!)
K= K, 9 (K)=ch A
) e °
K = K pr_ (K<) = -C.:, Ao
K =Kpn,n<l 'LP’R (Ka) = G CFR(KM)

o

[\l

+ f- ok - - - - [ = . -
From now on we shall consider only the case :B?_*-:Bo; it

is, however, possible to apply an analogous procedure to
o~
'BE.( x) = —b(x) . When B =B, , \P is therefore the

sum of a meromorphic function,AL{JM , and an entire function
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lfg . From the Mittag- Leffler's theorem, (Sansone et al.

1960), 1t follows that A ?H can be written:

B « I
Ao‘-ﬂv\ {( ) K - KK—[K-n) %(Ln}

S
If we further impose that AéPM be quadratic integrable,

the exponents"f,."n must be zero. Then:

02 Ay = ,{f-nxn'%%,\}

N<=

From (11) it follows:

o n=n-1 +
= A Weo Cn
(128.) Tn > 0
~ nlan-) _
A"“— = Ao g C—h,‘

The allowed values for k, are those which let (12) con~

verge; i.e., the values ko which let:

o~

) o An + ’K-n+q}

m— oo

( q finite). This condition is of course necessary. We

show later on that it is also sufficient.




- 19 =

If we define thé quantities (+Ao) and E; (n= ,1,...) as
the values of a function ﬁ'+(k) at the points k=k =k +
ina(n=0,1,-) and the quantities (-AO) and 'R:n(n=1,2,..) as
the values of a function i’-(k) at the points k=k_ =k -

ina(n=0,1-=), eq. (13) can be written:

(14) Hiw {K*(Kn) # K (Konag)} =0

mn—>roe

~
From (12a) it follows that AY(k) satisfy the difference

equations:

(15) AY (Ko4ta) = a* (ko) et ﬁ*(Ko) ¢t (Ko, Ko¥iaju)
H_ ~ P~
(16) A (Ko-ta) = RA7(ke) €5 = A (%) ¢ (Ko, Komia juw)

The solutions of (15) and (16) are given by Titchmarsh

(1959); the solution of, say, (15) is the product of a
+

particular solution A(k) and of a periodic function pt

with period 1ia.

The convergence condition (14) now has the form:

an - Am LA () PHkn) + A (Konrg) Plug)] o

n—>o0o
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From the definition of A *(k) and & “(k) at k=k_ it
follows that

(18) AT (ko) PT(Ke) + A (Ke) P~ (Ke) = 0
must be valid.

From this equation and (17) it follows that

(19)  Avm A" () A" (Ko)
- - - =O
n—> o9 A (K"h-'\‘q) A— (KD)
This equation has a meaning only if
Lom A+(Kn)
n— co A.. (K-n,‘_q)
exists. In that case, we can define:
. ¥ . ' T K)
20) D(wk) = fm A (Keina) ALK

A (k-tna)  AT(K)

The equation D(W ,k) = O is a necessary condition for the
existence of a singularity of EF at the points Ko(m)j:ﬁYLQ
(n =1,2,..) where ko(w ) is a solution of D = 0. It is
also sufficient if the following property of the A"t is

+
satisfied. Let f\“ have the asymtotic form:
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AT (Ken) = 2@ [1 ¢ €¥on)]

+ -
(lim E-(I“) = 0). Then the series Z "“an [ +(n) € (—n)]

n-=>co =\

must converge (it is for example sufficient that

| «TEN(elm =€) | < fn“‘r, §30 )

From (Titchmarsh,1959) it follows that A * (k) is defined for

Re(k) = 0 by:
le "
N 1€ +eq t L}_( 4 0
log A (W)= [de & & [d' ,
L ta
L€ ~o0 e -l
(20a) a
~ e+ =0
7 CK 0
+ |de & & J'&
&t ta
)
~ié - pa -

o K

e fo-%c (-r-g +K't (o @)

'fa-%_ C ("‘K""K *ia w)

A ¥(x), Im(k) = 0, is defined as the analytic continuation

of (20a).

It may be interesting to see how the homogeneous case can

be obtained al the limit a = O.

As first condition we must have

Aum a'n =0
m—> oo
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Then the dispersion relation (20) is an identity. The
functions ¢’ and ¢~ become equal, The difference
equations (16) are now homogeneous algebraic equations
for A T(k)=A “(k). The solubility condition is ¢' = € =

¢ =1, which is the well-known dispersion relation.

Eq.(9) takes the form:

Ao §(kke) K = G k) + B §(k-Ko) + A, C(K)o(Kk-Ke) + )Y (K)

It follows that:

i

B (l"c’)Ao
q,' G

I -cC

U

Therefore there is no condition on ko and Ao

It 1s thus seen that the g-functions which were introduced
in Sect. 2 are not necessary in the homogeneous case because
the Fourier-Laplace transform of A x (k-ko) is identical to

e
zero and A, B and k_  do not appear in T !

We have shown that if the solution to ({Q) has singularities
in the W -plane depending on k., they are given by (LO).
This means that if the A 's are zero, the singularities in
the () -plane do not depend on k, and the (possible) in-

Stabilities are absolute in the X=-direction.
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IV Entire part of the solutlon

~

We have calculatedﬂgﬁﬂ, the singular part oflf, by introdu-
cing the functions As(u.)) SU( 'Ks(w)) . Because the
inverse Fourier-Laplace of these functlons is zero, only the
fact that the As's are different from zero or not can prove
that the singularities we have found are singularities of the

solution to (§Q) or not.

We now give a plausible argument which determines the As(u)).

The conclusions will be that the As are different from zero.

— ~
We have written (-f = A, 3-}- Aq Lfm ¥ ‘-fc}

If this "ansatz" is true, A 1s a given functional of the
kernel and G and could also be identical to zero.

Had we introduced a different value for AO, let us call 1t

A; , eq.(| ) would now have the form

"fC,(CUJK) = G(Q,K) Jdll( [ (KJKJm) C (.H “‘ K; ‘-'J) ('.(k‘,K w) L(K—nqu

-K+\a K'-K-ia

+jd+xp?]f<: (K)K;w) %(&9 +2ml (A, -Ay) § (K- Ke)

Its solution has poles at k = koi ina, with residues pro-

portional Co (Ao-RL).

i

M
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w PF

Let us now suppose that G '—‘(K" Kl)-F , Where kl 1s, of

course, a functional of Aj'. Division by (k - kl) gives:

K'-K 4ia K- K14

\F(C"'K) - f-(m,K) F = x.)J‘K [6+(K 'Kiw) - c(ﬂ'dw) ClK;0)-¢ (kHak; w)}%(,(')

FBSOK) 4 oK (e K2y LS Bewd

where
~ Ya (0,K)
A =

and B 1s a free constant.

If we choose A' 1n such a way that kl = ko , we must
have (A - A ') = 0 1in order that the coefficient of

g(k - k,) remain finite at ky = k-

From this argument it follows that if AO 1s determined in

such a way that:

(22) ¢ G (o, K)+# A m)Jd ] ik 0) - k- 4K W) CTkik;w) - C("*‘*k“)h‘,;g

K! -K+'a K'-K-ia J
K"-’-Ko

~
q% 1s an entire function. From the quadratic integrability

of the kernel it follows that q% is L2 in k. Since we know
that there 1s only one i solution to (3), H Q$ﬁ'*} 1s

the required solution.
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V. Quasi-neutrality

All these difficulties disappear in the approximation of
"quasi-neutrality". One then obtains singularities depending

on kx without introducing the (S\—functions.

In this approximation the term ? in the integral equation 1is
dropped and (9) becomes:

+ 0

<+ ly. -r 1y
(23) 0 =GwK)+ 'Zmlg_-Hs(w)g(lk-ks(w))-l-l—‘“-_jdk'[c (ki) <0< %0) ].f(w,kf)

K'-K +ta K'-K TG

- 00

By letting one Kg, say Ko , become real, one sees that

Aog O must be valid. The analytic continuation of (23)

for Im(K) »o has the form:

-0 et kyt0) 0 i S ax"* D) (o) - Jau'c G55 o, 11) Gyl ) =0

-K+L0 LK -Lo ‘
.+ , ) _ |

or -iC'Y +de ]Kq + G =0
A necessary condition for the existence of a singularity

with Im(K)» & is then:

() et (K-va,K;w)=o



f———
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For a singularity moving to the real k axis from below

the necessary condition would be:

(25) ¢ (k+ia,Kyw) =0

From (24) and (25) it follows that ‘f(w,K) only has

+=
poles when £ = are entire functlons.

Let us show that (24) and (25) are also sufficient for the

existence of singularities.

: ;
In general the equation (C (K-La,Kth)-': 0 will have
many solutions Kg (m)).s-.-.oﬂ)__ with Im (KS) >0
as Im (W)—> + o0 too.
Let us assume that the solution of the integral equation

remains finite at k = kO(U)), for example. Then:

400 ;
26y 1, = [a K (k' ko ;0) Ylok) + G, Kow) =0

- 0O

Let us now consider:
<+ co ;
CON P Ejd“' K (K kstj0) 9 lo,k) + G (ks @) | s#o

for the same arbitrary initial condition.
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In (26) and (27), the integration is always performed

along the real k axis so that the change of that
integral when one chooses ks instead of ko depends only
on the equilibrium through the kernel (since the ks are

the roots of D=0, which depends only on the equilibrium).

On the other hand, the change of G' when Kk, 1s replaced
by ks depends on the initial value. Therefore, in general,

we have:

I # 0

for all S %0 , which means that LP(w’ KS(W)) has a pole
for all .S# 0 . In this way, we have shown that, for one

solution ko(b)) at most, Lf(w)K) might have no pole.

Note now that the solutions k (W) and k(W) (with S#0)
will intersect at points which are independent of the
initial condition. At such a point: K¥ = Ko(Ww¥)= Kg(0¥*)

one would get:

(28) P ) = g (0% ko(@H) = Y (0% Ks(ut))

Eq.(28) is a contradiction since LF@D,KoUQ) would remain
finite and \f(w,Ksﬁﬂ) would diverge (except for some value

(0 which depends on the initial condition). We then




- P -
conclude that conditions (24) and (25) are also sufficient.
The solution ?(QHK) is unique because the homogeneous

equation corresponding to (23) has obviously only the

trivial solution lf:o .
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Conclusions

Because of the particular class of unperturbed distribution
functions which were chosen, it was possible to derive an
exact dispersion relation for the whole plasma.

In the usual treatments (local approximation, W.K.B.method,
..) one considers in an approximate way only single modes.
The difficulties which occur in generalising are of

different types:

1) Considering inhomogeneous magnetic fields may add
a new set of singularities of (P to the already
existing set: When lim b(x) ~ exp (- P'”J)) pro.
x| —> oo
2) When densities decaying in x faster than exponentially
are considered, the singularities K, + iLna are

shifted to infinity.

In the above treatment the question of the validity of
linearisation is obviously not considered; the approximation
I#le(lEﬁl might break down locally (in x) even for short
times, depending on F;i and the initial perturbation.
Furthermore, except for very small (or equal) ion and
electron gyroradii (Ri = Re) we do not have an exactly

neutral equilibrium.
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