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ABSTRACT

The MHD-stability of special axisymmetric toroidal equilibria
with a hardcore and closed field lines is demonstrated.




1. Introduction

Although abundant literature on the stability of scalar
pressure MHD equilibria exists, only very few absolutely
MHD-stable equilibria are known so far. Most of the literature
deals with special perturbations and the stability criteria
associated with them. In many cases the impor-tance of the
derived criteria is not clear. On the one hand other more
dangerous perturbations may exist and on the other hand, some
criteria may impose too severe restrictions when the wave
length of the perturbations considered is very small and hence
the application of macroscopic equations becomes doubtful. Many
considerations are restricted to low[$ and may become invalid in

high ﬁ systems.

Although absolute MHD stability may be too strong a requirement
- it includes stability with respect to small wavelength
perturbations and ignores stabilizing effects such as finite
gyroradii ete. - it would be desirable to have a more complete
list of absolutely stable equilibria. These may serve as the
starting point for a more refined stability analysis. And, as in
the following paper, some of the most dangerous perturbations
may impose Jjust or almost as stringent restrictions as the
requirement for absolute stability.

The equilibria considered here have been extensively studied

in ref. f1] . They are axisymmetric and have closed meridional
magnetic field lines produced by toroidal currents. Ref. [1]
presents a very useful form of the energy integral in which two
components of the perturbations are eliminated by minimisation
after Fourier analysis in the ignorable coordinate. Moreover,

a necessary stability criterion is derived in general, and
necessary and sufficient criteria are derived in two limiting

cases (low ﬁ , almost circular fieldlines).

(1] Bernstein I.B., Frieman E.A., Kruskal M.D. and
Kulsrud R.M. (1958) Proc.R.Soc. A 244, 17




We shall show in this paper, assuming "reasonably" shaped flux
surfaces, that these equilibria can only be stable if a hard
core field is superposed on the plasma currents. In addition
we give some more stability criteria in the general finite ﬂ
case and show that stable equilibria actually exist, i.e. that
the criteria derived can be satisfied.

2. Notation, equilibrium equations and energy variation

In this seetion we give a brief review of section V in ref.]1
as far as is needed for our purposes. For the reader's

convenience we use the same notation as used in ref.1l.

If a stream function y = ¥(q%) is introduced the(ﬁeridional)
magnetic field B can be written

B = -QGXV‘?/T (1)

in cylindrical coordinates (r, ©, z). (%« is the unit vector
in the e6-direction). If N = const are orthogonal trajectories
to the flux surfaces y = const, the set (H” 9,};) forms a
right-handed orthogonal system which will be employed alter-
natively with the cylindrical coordinates. From jxB = VF we
obtain

1
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r is a function of Y only and is related to the currents
J =@ by

Ply) = Jlv (+)




The energy variation of the system
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For absolute stability it suffices that {We be positive.
Supressing the subscript »~ and minimising §Ww in the limiting
case w=2 ylelds

{W = 1;\(@ dW(y)

where

N - = (L (g [ &) epmx ] ©

and [ = quh(o{x 3/13" (7)
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D= - Ee(8Y8) - - 7 (o) (9)
o [dx 727 (10)

L'+ V'/yp

k is the vector of curvature of the B-lines.

5. Some necessary stability conditions

First we shall show that in practical situations we must place
a current carrying hard core inside the plasma in order to
obtain stability. For this purpose we assume that there 1is no
hard core but only plasma currents inside the plasma. We show
that {W then becomes negative in the neighbourhood of the
magnetic axis, provided that the surfaces are 'reasonably"
shaped there. Setting

d 6 = JDdy (11)

we introduce a new variable 6 with the period

T = [dD 8
If we choose
X = ﬂd'm(?.'ﬂ'd/Z' } (13)
then
fo~ fdg3p = (X = 0
and '

s - [4 [ (%) e P 0]




Obviously

W) < (Fg), JGE) e« b fxds

and with (13) this becomes

fw < [_Q%Jmm %% +op! J-% | (15)

We now introduce polar coordinates g,? around the magnetic

have to lowest order in

axis r=R, z=o (Fig.1) and calculate :

PH rR, D and 2 by expanding with

respect to ¢ . Assuming analyticity 3

of the flux surfaces (cf. [2] ) we L ¢ e

Fig.1

b o= (- etemu)e” 18

where § = f~§ and ¢ < |.

§ is a constant which gives the inclination of the ellipses
(16) towards the z-axis. Differentiation of (16) yields

Y* = ngi-alunlu J &3leuk

From this and (1) we get
; 7 /2
¢ = Ik (I-Zcfcmlu & &” ) , (17)
Using rot B = j it follows from (1) and (3) that
plo= - WIR (18)

Since the curvature of the ellipses has the opposite direction

to ¢ , we get

[2] Mercier C. (1963) Nuclear Fusion 3, 89
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from eq.(9). K is given by

)l - et emln) )
" , frEetit (20)
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Finally, we have to calculate L, eq.(12). Because of eq.(3)

) AL i o sy
T S T E (@1)
where "
d sy e(1-2etcn2u+c’) d (22)

== ELCG*;ZM_
is the element of arc along y = const. Therefore, from (17)
(19), (20) and (22) we have
(f"€¥)ﬁ i .
Z = j - ¢ colin oo (23)

Ly (1-etcnint ¢7)°

Note that in expanding with respect to ¢ we have used r = I+ gee-

The integral in eq.(23) can be calculated ’ to give
R
y(1-c")

In evaluatinggw(ﬁ,) we have to find the maximum of D/r"R"
From (19), (20) and (17) we have

Z 2
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and together with (18) and (23) we finally obtain from (15)
o E L
(W 2 [—(lrt) Lf] Z-;_R_i'

It follows that §W=<0 if € £ 03% . By a more refined
but somewhat lengthy calculation it could be shown that dweo
at least up to £ = 0.9. An exact minimisation of {W in the
neighbourhood of the magnetic axis is sure to give a negative
§W for still higher values of ¢ .

We conclude that the plasma 1s unstable in the neighbourhood

of the magnetic axis for all "reasonably" shaped ¥ surfaces
(not too large £ and hence not too slender ellipses). As an
expedient we place a current carrying hard core at ¢ = 6. Since
the plasma should be separated from this we assume that the
hard core is surrounded by a vacuum region and that the plasma
starts at some surface ?c with p=0. It can easily be seen from
the equilibrium equations that the plasma currents must be
opposite to the hard core currents where the pressure increases
with ¢ - This means that the hard core field will be weakened
by the plasma currents and may reverse its direction.

We shall show next that the magnetic field must reverse where-
ever it becomes zero and that the plasma becomes unstable
wherever the field reverses. Equation (2) can be integrated
over 1 to give

n

l(]{ -
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where the notation q = ?l}iﬂ_ § éé? has been introduced.
Note that q is a positive quantity and that R in él&d;x

is the absolute value. After integration over Y we obtain

$ By - J&AJL - [qdp
|+ v

]




48 T

Since the left-hand side is positive and hence increases
towards both sides from a B=0¢ line and since 9 is positive,

AP must change sign when a B=0 line is crossed. If we exclude
the singular case in which j becomes zero together with B , we

can conclude from Vp =) x % that § must reverse.

In order to prove instabillty, we consider a special perturba-
tion Xi with DX}/%I = 0 . Then from (6), (10) and (21) we get

G - x5 [dy (M ) P') '

Virgp L
Now as B2 0 we have D~ ﬁ from (9), ij'jﬁ from (8),
L~ 1/ 8°* from (7) and therefore the first term in parenthesis

is 0(B). On the other hand, p': j/r = O(l) according to eq.(4).
Hence the Pi-term dominates in the neighbourhood of a B=0 line,
and we have

2 Dp'
fw o= X[ dq Ef’, . (24)

Together with B, VY and ¢y also reverse and according to eg.(9)
D must change its sign. Now if IAJFbPVB is positive on one
side of the B= 0contour, it will be negative on the other.

(We assumed that j¢=o and therefore pi=j /v does not change
sign). Since X; can be localised to the } surfaces where the
integral in (24) is negative we have proven instability.

The stability condition thus derived is that the magnetic field

should not reverse.

We shall conclude this section by proving that a certain average

of the field line curvature (signed) has to be positive:

Ipdy - w_dx (25)
is a necessary criterion for absolute stability. We mention that
a4 very similar criterion has been derived for stability with

respect to interchanges in the case of an axially symmetric
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equilibrium at low (b [3]
h_“_ ﬁ > ¢]

&R

However, in this case the criterion is neither necessary nor
sufficient for absolute stability [4] .

We prove the criterion by decomposing a general perturbation
into a X -independent component X; and a remainder X} = X- Xt
and by assuming that

[y =25 g -0

on some surface } = (oot -

Note that kW = =2 ' K is signed. Then

&
) oS4 [ (GR) e 9% |

+ Lr'XIJrUDXj(XK

ﬂd@]

(16)

X can be chosen such that Jf]Ddeﬁ?=0 for fixed Xr, Xr

can be made so large that the last term in (26) dominates. In
addition, X} can be given such a sign that JWJ(%) becomes
negative and we have proven instability if the integral in
eq.(25) becomes zero. On the other hand, since it is positive
in the vacuum field which surrounds the hard core ( K is
positive for all X since the vacuum field lines are everywhere
curved towards.the hard core), it must also be positive in the
whole plasma domain.

[3] Rosenbluth M.N. and Langmuir C.L. (1957)
Ann. Phys. 1, 120

4] crad H. (1964) Phys. Fl1. 7, 1283
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Physically, condition (25) means that the fieldlines should not
contain too large sections where the curvature is directed away

from the hardcore.

An equivalent form of (25) is

V” 7 r’l'L (27)
This form is obtained from grad ( | * B2 )y = (R-7)R
by insertion into (9) and using the definitions (7) and (8) in

JJDA1'> 0 .

4, Absolutely stable solutions

Thus far we have obtained a number of necessary conditions by

considering the energy variation at certain singular field lines.

We now turn to a more general consideration of the energy
variation and show how equilibria can eventually be obtained for
which.gk/is always positive.

Let us again decompose X’into a x -independent component X; and
a remainder Xj = X- X1 . If we choose

Xe = [dxIDX [ (47D (28)

then
[dIDXz = 0 (29)

Since we have to satisfy inequality (25), X; does always exist,
and this decomposition is always possible. This enables us to
Split JFWY&) into two independent contributions:

(W) = fwply) v dVWE(y)




= 1T =
where
fwig) = X1 A“”’U‘{{‘JD) w'max] (30)
’ V' rrpL
furly) = [y (e (25)" + p7 0% ] 1)

Ir dWrly) > 0 ror all Xr with Xr/oL = O and ir J\-Jx(tf) >0
for all Xg with fa(}( IDX;: 0, then dW(¢ > O for all X
and we obtain absolute stability.

Provided inequality (25) is fulfilled then J-hﬁlq) is positive
if ri > ¢ . Therefore, JM&QJ>Oimposes a stability criterion

only in the region where |7 decreases towards the wall. Using

[Iody = VAR
this criterion is
i_ il)
-p' = ¥P C:, "’LL, (32)
Frp

which imposes the very strong condition that the plasma pressure
may not decay to zero within a finite distance from the hard

core. On the contrary it has to decay more slowly than the curves

b s b o[- mrt’ 44 | (33) i

If we want to achieve low pressure at a wall which is located

at some distance from the hardcore, then we may get a limitation
on the maximum plasma pressure by this condition. (Of course
also the equilibrium equations give an upper limit of the
Pressure maximum)
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In the low pressure boundary close to the wall we have p1‘4‘V
and {plL' # V' | Neglecting small terms in the integrand
eq.(33) can be integrated to give

PV'r = const.

be
In a straight cylinder these curves can easilsthown to give

2
P/q ¥ = const.
which shows that P will decay reasonably fast in the boundary
layer.
Since Jk&Iy), eq.(31), is positive for small |p (according to
eq.(32) p' is small if P is small) we have the result that

P}P ty v”/V' > U (%2a)

together with
v' > o  (27a)

are necessary and sufficient criteria for absolute stability

in the boundary layer.
We add two remarks about the boundary layer.

First, the condition of finite pressure up to the wall was
derived from perturbations with infinitely small wavelength in
the ©-direction,m - o= ., We can show that this necessity arises
from long-wave perturbations as well.

If we assume that our perturbations are constant on the B-lines,
?/ax - ¢, then we obtain from (5) after minimisation with
respect to ym

* " B.z Dl i
[Way) = X[ dy %_lg__ - p' 30 |
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From this we obtain in the boundary layer the stability con-
dition

= V‘ ~ xr l[j'ﬁ‘lo{x
[IDdy
which again requires finite pressure throughout up to the wall

and allows only for a somewhat faster decay.

Qur second remark concerns the practical significance of this
condition. As we have seen in the case of a straight cylinder
the pressure can decay rather rapidly towards the wall

(p ~ §_1O/3 for y = §/3 ). On the other hand, finite resistivity
and other diffusion effects will enforce a low pressure layer up
to the wall even in cases where an ideal MHD equilibrium would
be separated from this by a vacuum region. Therefore, in
practice the low pressure layer of our equilibria will be no
disatvantage.

We now have to consider 5“5@4 eq. (31). In the appendix we shall
prove the inequality

w‘(fjndx)nL@L

fwr 2 |4 J)(_rzt N T + p'D (34)
I § L {?f”GJQJgf%%aﬂk P ]
which is valid for all Xg with

[Idxedy = o . (35)

Therefore, if

i ‘. Yir l(.( J'D"(I,)tyl/gl

“r b ([ Tdy) DT Ay = \36)
t g X

then Jxﬁf will be positive.
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First we consider the region where P?*J > O . If also 9'7 0
then absolute stability is warranted provided that our previous
condition (27) is not violated. If we let P 1increase slowly
enough on surfaces where D takes on negative values, stability
is still achieved.

In the region of decaying pressure PY$) < U we can achieve
stability by choosing iPV smaller than ,4/lumﬂ (inequality
(36) ) and according to inequality (32). Both inequalities
require that the pressure does not decay too rapidly towards the
wall. Since 4 stays finite, condition (32) will be dominant at
lower pressures, i.e. close to the wall.

Thus it is shown that by choosing p(y) appropriately we can
actually obtain solutions for which IV is positive for all
possible perturbations. The most stringent restrictions which are
imposed by stability requirements are the need for a hard core,
the existence of a low pressure boundary layer up to the wall and
the exclusion of field reversal.

Conditions (3%2) and (36) - the latter condition being sufficient
in conjunction with the others but not necessary - may impose a
limit on the pressure maximum. More precisely, they may render
possible only a lower pressure maximum than the equilibrium theory
without stability considerations.

For completeness we give an upper bound of the pressure which is
implied by the pure eguilibrium theory.

J > B = Up can be written as V (p- 8%, ) = (R VIR,

Using div B = 0 , we get from the Gauss theorem

Yo
Yo is the inner flux surface where p < 0. (ﬁ:?)ﬁ = V- (8R)

4(@#@1/?,)# = f %1"({
Lf

does not give a contribution since the normal component B“
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vanishes on the flux surfaces. From this we get
1 1
p SRty L[ 8

[ [

Hence the maximum fluid pressure must be lower than the average

magnetic pressure on the plasma boundary with the interior

vacuum region.

Remark

We have seen that VQJ can be chosen such that stability is
achieved. The equilibrium problem posed by a stable pressure
distribution is the following:

around the hard core we have the well known vacuum magnetic field
of a ring conductor up to a certain flux surface Yo o For ¥~ ¢o
we have to solve the elliptic equation

ply ¢ _ 10 IR
‘1’%* Y e * TR

Kb~

with the boundary condition y =Y. on the given flux surface
4, = const. (Dirichlets Problem). Solutions to this problems
are known to exist[ASI .
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Appendix. Derivation of inequality (3%)

We consider the quantity er ir and derive a lower bound
for it under the constraining side condition '[Q? dxy = o.
a and y are both assumed to be periodic functions in x of
period L . Then

Clnhl/L
- . A1
y 2‘(:43 e (A1)
?k = ?;
and
L 117!( t E 3:! b }
[y - ;(f)ngLz(,_) %o’r ( 2)
L
The constraint j‘ Y dx = 0 pecomes
— . ) "
.Z_aky,, - 0 (A 3)
where a = Z_,' Ax e”"r’“/L has been used.
From (A 3)
a.y, = Z ak?k

k+ o

Applying Schwartz's inequality we get

(avye) "
R i I

2 fyk

ket g;,’“k’
and hence
Zlaol ™ T Tyl 1 i |
e Ilplt 7 == (gt 2yl

Ea {mf" (" “ H_Ja [ )k407 ,Elakf ( 7 + i ?k
or ' . ao'r. .
L7 S
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From this and (A 2) we get, using

L L v L .
a. :Ja.dx/l_) 2[%[1': ;{Uta(y/L ; ;fdv/ °!ao(k/f.

o

L 1,
(}1(-1' (f&d)!’) fjf_f{

x A
5 e ‘ (A 5)

L
f‘;' dx 7
[
d
From this result we can easily derive (34). Put

Ad ¥ = Y1@1_70(1

then

’ eyt Xz )
[ 4y 575 (’a}‘) = J55 #
and our side condition (35) writes
[ 2% s - o
r R -

"which means a =,D/r”81 . If (A 5) is now applied, we obtain by
going back from dx to JZ and using

Lo [ - [B7Tdy

XNt N I0dy) e et BT
d{z_ i’l kS ( Z = g ’_L
f. LAY ¢ ) (fr R JAK) j.%T%n n (A 6)

If this is inserted in (31), we obtain (34).
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