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IPP 6/79 Rudolf Gorenflo Monotonic Difference Schemes for
Weakly Coupled Parabolic Systems

September 1969

Abstract

By establishing discrete analogues of the monotonicity lemma
of Nagumo and Westphal monotonic difference schemes for weakly
coupled non-linear parabolic systems in one space dimension
with non-linear mixed boundary conditions are constructed
and proved to be convergent and stable in the maximum-norm.
The method allows the restrictions usually imposed on the
boundary conditions to be relaxed.

Es werden diskrete Analoga des Monotonle-Lemmas von Nagumo
und Westphal fiir nichtlineare schwachgekoppelte parabolische
Systeme in einer Raumdimension mit nichtlinearen gemischten
Randbedingungen aufgestellt. Dies fihrt auf Differenzen-
schemata, die in der Maximum-Norm stabil und konvergent sind.
Die Ublichen Einschrédnkungen fir die Randbedingungen konnen
so gelockert werden.
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1. Introduction

We study a class of monotonic difference schemes for

the weakly coupled parabolic system

N L

(1) ilz{(‘,f,“,%&>>~a_w%._)+f ("r{), A4 2, K,

with initial conditions

and boundary conditions

s
(3) w (04 =g, or B~ thEY= ¢ ()  for x=0,

ou,
(%) Hﬁ (’/, ‘f) = sz (é) or (4') ):! i 7#'?_ (1(‘ u) = 7!«1’ (i’) for x=1.

In these equations |<=\4(&f) is a vector with the
K components g (x,f); /Q=7) 2) i 3 K . The notations
f f’ ¥, P 7 4 j’ should be regarded as analogous. All
functions are supposed to be real. The system (1) is parabolic
if each £ (x t = ‘:F ::”) is a non-decreasing function
W R TR Tk
of zk . We suppose that a solution “(*ﬁo exists.
For a fixed & and one of the boundary components x=0 and
X =1 we suppose one of the two indicated boundary conditions
to be valid throughout (Q < ¢ < T. For example, if K =4,
we might have the boundary conditions (3), (4') for £ =1,
(3'), (4) for 4& =2, (3'), (4') for A =3, (3), (4) for A =h.

In this case, or course, ,3 J 71 3 F% ) 74 are undefined.
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On occasion we shall make a distinction between two

cases:
(a) There are only boundary conditions (3) and (4).
(b) There is at least one boundary condition (3') or (4').

The system is described as weakly coupled because the
coupling 1s only via y , but not via its derivatives. The
possibility of generalizing implicit difference methods to
such systems has been mentioned in [4] , p. 48.

In the following we need the notion of quasi-monotonicity

( [1{] s P. 42). A vector function
F(z) ] (E—(’z)} F;(z))...) F‘}fz))) 2=(72‘”z2)l..| z'K,)

is said to be quasi-monotonically increasing if F—ﬁz) = ﬁ;ﬂE?)

4

4=/,.. K. Vector inequalities are to be

for =z gff)tizézi
understood componentwise.
It is known that w depends monotonically on r)g) yh vl
if -F, -r(ff:) and -?(ﬁ;g increase quasi-monotonically in
the vector variable =z. This is a special case of the lemma
of NAGUMO and WESTPHAL ( [%1] , chapter IV). This lemma states
that if u¥ satisfies a system analogous to (1), (2), (3),
(3'), (4), (4"), put with ngﬁ.fﬁ\fx instead of T 89 % ¥
then ¢*> T, 3*>j} Yaf>f/ 7«*>f/ imply that «*> w . In order
to make the definition of quasi-monotonicity always applicable
those Fﬁ and ?& which are undefined may be set equal to zero.
Of course, under the weak conditions stated so far, « is

not uniquely determined by (1) - (4'). In order to set up

implicit difference schemes which have a unique solution we




must impose further conditions on $)r5 1 . Our difference
schemes will be constructed so as to have similar monotoni-
city properties to those stated by the NAGUMO-WESTPHAL
lemma, but with‘>> replaced by ;: » this being advantageous
for numerical purposes. Inclusion theorems for the solution
of the difference problem can then be deduced from the
monotonicity properties. It follows from these inclusion
theorems that the schemes are stable and convergent in the
maximum norm if the solution u of (1) - (4') is sufficiently
smooth.

Of course, monotonicity of a scheme 1is not necessary for
convergence in the maximum norm (see, for example, [i] i
chapter 6), but nevertheless there is some motivation for
studying monotonic schemes. One reason is the availability of
inclusion theorems which may be useful for computations in
interval arithmetic and which greatly simplify proofs of
stablility and convergence. Another reason is their appeal to
physical intultion since they reflect the monotonic dependence
of densities in diffusion processes on initial, boundary and
source densities and on influx rates. Monotonic schemes for
diffusion equations are discrete diffusion models.

For completeness we quote [L] P [é] p [é] as reviews of
what 1s known on parabolic difference schemes and as sources
of literature references. The results of this paper generalize
some results of KRAWCZYK (see [5] ) who investigates an explicit
and a fully implicit scheme for one parabolic equation with
boundary conditions of types (3) and (4) but with a more general

shape of the boundary.



The present author thinks it simpler to decuce
monotonicity properties of difference schemes not by discrete
maximum principles but by a theorem on non-negative matrices.
This can be found in [}] s P. 297, and reads:

Theorem 1: If A:(a,l) is a real (n,n)-matrix with a >0
o) )

JJ
fu 16 <0, qihéo for j++%, and
' i-7 -
(;E; + 5 ){ a., | < e . 7 < < B
Loa &:[1_‘? jle iq ® )

-7 .
then A 2?(9 (this means that all elements of A . are nen-

negative).

We could also use Corollary 1 of [10] , p. 85:
If,4=(gi&) is a real, irreducibly diagonally dominant (n,n)-
-matrix with a,, £ 0 for all J*f: and a ,>0 for all 7 < én)

4 I h o d -
then AT 0.

2. Difference schemes

' 2
Let be a positive integer,-& =1/7, = ‘ﬁ , m>0.
| s [
With ; and n being integers, N = [T/-::‘J , we define a net J{ by

) Nz(‘(xa‘; i) 1,‘":,,1)‘ 06 =], 0én < N} = W(ﬁ,f).

The set

(5') BW: { (,'(d.l'fn) l h= O o4 .J‘;O o4 J;]L; A W

is called the "discrete parabolic boundary". We are interested
in obtaining a net function

(6) 'y . == (/{,lz (X}) -én)

vy P




tending to the solution u# =

42
‘\]]n
initial-boundary value problem (1) - (4') with L= 0 .

(x.'fﬂ) of the parabolic
d

Actually, what we are really interested in, is to obtain an
approximate solution of the problem in which =0 and for

(5t ) ﬁ;:o , for (4') ?1;20 . But in order to deduce
monotonicity properties we do not yet suppose these functions
to vanish. We define

¢ =t (), v =R, 8 T ()

it 2 ! 2
and agree upon the following usage of indices:
|

Indices ﬁ‘ bl f are always used to enumerate the

equations (1) or functions%1 uh etec. corresponding to them.
?
The index J always enumerates the points x or the correspon-
]
ding values of net functions, the index n always corresponds

to the values ¢ . Sometimes, we denote by U . a vector
| g]

. 1y
with (,(L " A %.2,.. . K as components.
VP
Let & be a parameter with 0 < @ < . For any net
function \?" we define
:|‘s1n
= (~ (' - (= = %
(7) {_nﬁ-@'—' O—fru-? = O) f” f"+ Gt)
vV o =0l +(-eV =Cy - . (-0)y
‘é'-l.;'H-@ OL it 1 ( ) f’hj'n ! \Q;“‘G ﬂ’,nﬂ 9)7/ )T’M@ @?fr,u+:+( 6)7“."J

(8) ﬁflnﬁ-(;(\/):ﬁ&(f“*@)l{lc’h1.“‘ l/4_,"()" B '%‘OIM'{—@!['/ - \/ )

Lelop )0 K 0,n

7“'1"*‘(5 \/) Tj("*'g \/ ~7]H [t}#-{—@) A 1}»1"" ‘/ J,n )"
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CVC) and 7& (}//) the arguments Vﬁ , and &/r

In
n"n-i.q T _I.on ],”
¥ .5 to ba baken with wWs=» for b&b , with &' &+ by 1insar

interpolation for é

(10) SV =—1—-(\/‘. - Y

- /
(11) sV =_4_(l/{_ —Zl_‘ +l/"’|"+@)’

az) §$°V; -2 (v ()},

'7,:14—9“‘/{!10, @ r‘rz e &

T _2 _ _ V)],
03 &V, Jnee 3 {Vﬂ‘]—'f.wo Vg™ Hanee V)

The definitions (12) and (13) are motivated by the fact

that for a sufficiently smooth function wyn we have
l
_.,..,“(o).-_ =5 {mr(/«)—-w"(O) Z..r(o} L ) u_'ﬂ):_--—{ur-(f £)- w(’f){-t,h(ﬂ} M)

and by remembering that we really are interested in systems
with ﬁk =0 in case (3'), t =0 in case (4'). We mention that the
boundary approximations (12) and (13) are a generalization of

a8 boundary approximation used by ISAACSON (see [12] i PP« 223

- 228, for a presentation of what is essential for us). They
are of first order inA, in contrast to a second order
approximation used by BATTEN in [2] . In contrast to our
approximation BATTEN's approximation does not lead to a scheme

monotonic on the boundary. We shall also see that the error of
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pl
the approximate solution given by our scheme remains 612‘)

under suitable assumptions.

We now write down the difference scheme, always

taking zé== s £, o5 k</

) )

_e [ ~Su U -
(14) Atlz‘\\i‘ﬂ - -{-h (\J‘\ 't"*-@ ’ L["Jin ! g)d"i”*'@)g '(3)].!'1"@ +‘£:th-)”1‘@’
1€; €]-1, 0<¢m £ N-7,
(15) ufﬁhjlo 91,@) j @ 0=, = (7'
In cases (3) and (4) we have
Li6) uh e P and

{17) ('{/Q]]‘n: ‘7/[1‘"

respectively. In cases (3') and (4') we have
=1, (0t
(18) quﬁ,o,n F&(r’

.“
and * 4o nt®

fn—@) L/.J“Ln ) 7% m—@(u)‘k Y

(19) AU, =1 (1 "
4ne0’ ﬂ,l]jn{.@ 4 iél,”_@)—r

QJN’ k

)

e
respectively. In case (16) and (17) we assumel & ﬁ‘j)ﬂré9
that

éé'o;:‘fglo J jﬁ\J :m’\,o ’
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Remarks: 1. In this scheme L( ."is taken at time ‘fn

i
so that it splits into k:systems of equations for each of the
set of unknown quantities ({ﬂ . See [4] , P. 48, where the
|_]‘.
case<>"1 for given boundary values of ¢ 1s mentioned.

2, Without changing the order of approximation we could always

weite T, 0, ) %, 0%y, instead of t

T ;
H‘\h ”_t- @ ) Y,{hn"f@ ) ﬁ) ”i'@ ) —‘!' }.;’H'@

For later references we note at this place some
LLIPSCHITZ assumptions on partial differences suitable for our
theory. Some of these are not always needed in the following,
some of them could be relaxed in special cases, but we do not
want to make our presentation still more cumbersome. Let
744 £ K ana 1et u(g o l_’?, be constants with which the in-

equalities (20) - (27) are valid.

K
. [ —
20) [,(x ¥, %, =, =, )= 1, (x =, 2,3, | € 2 =, -=.1,
(21) ‘F&(x‘ 'fT—) -z_) 21:124“)2 F&( _Zl: - z Z") 2, 2‘;:‘—%

Condition (21) means that # increases quasi-monotonically in z.

(22)"F{()(,f')z“;zlz ) -p(x‘éz)z !4F[—-:*ZQI};
23) 0< < 1 (.t =, z,:[ )” floti= =g 2%) o if 22!
2{ - 'z.‘

(24) lr& (f, ;_)_m(-tl Z)J ‘S? % [‘i‘I - a‘( if f“}, is defined,

<
(25) In‘ z) ?g[fz)[f 2 |z -= \ ir 7{:’ is defined,




= 40 =

26) p, (£,F)< p(t=) | =22 ,_5; ==

and if s ?4 is

(27) ( ‘2) 7(f2) defined.

Conditions (26) and (27) mean that-r and —T increase quasi-
-monotonically in =.

Unless otherwise explicitly stated we assume (20) - (27)

to be valid for the rest of this paper. The essential

implication of (20) - (23) is the existence of real numbers

T | )
; FJ@’ mz depending, of course, on x t) v, 22, o=

) ) ) J
such that
&(x'%‘; =7 u) ;( ézz l)_ = gé('z_',;l—z.::,)f-‘
e8) T ! T y
* F{ (zg % >+JZ (Zz. =% )) }“f;’,éléufl/’é{’ﬁ’
0 <y 4’[& < fﬁ
the uﬁ‘lg being non-negative for' 4:{:*& This can be seen by

splitting the total difference on the left side of (28)
into partial differences. An analogous statement is true

for F and T which we write down for,v

(- Z&') ) 74'4§0 Lee {;{4: ﬁ)

K
(29) p fz) 7 (11:2.) VL 2

Lf
With other suitable numbers ?i,k(29) is valid with }g
‘:I

replaced by 7.
In Section 5 we shall have to impose further restrictions

on r and ? .
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3. Existence, uniqueness and construction of the

solution of the difference scheme

If¢® = (0 , the scheme (14) - (19) is explicit, and it
is trivial that a unique solution exists which can be

calculated by proceeding from time f% to time f’ We

nel "
therefore suppose 0(@5/[f‘or the remainder of this

section. Then the scheme 1s implicit, and we have to show
under what conditions a solution uniquely exists, and
propose a method of calculating it.

At each time step we have to calculate the values of L(

at time fﬁ ) from the values of[j at time fﬁ and from the
+

boundary conditions at f and tn g By looking at the
+

scheme we see that i1t can be split into F(subsystems Zf

7.4)& <K , the subsystem W being a (generally

\

non-linear) system of equations for the unknown values

({ . The subsystem EP is linear and of the
‘h , n+ 1 | k

familiar tridiagonal form if :2 and z“ appear linearly

&
in # Cx f =, f“f")' For the non-linear case we propose
an iterative method modelled after and generallzing the one

sketeched in [%] , PP. 191 - 194, for the particular:
g 1

- £(3r)

To be specific, we pick an index 4 and suppose boundary

condition (3) at x = 0, boundary condition (4') at x = 1 to
be valid. This means that the difference scheme has to use
(16) and (19), but not (17) and (18). It will be clear how
other combinations of boundary conditions should be treated

and how the final conclusions of Theorem 2 are to be drawn.
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The values u are unknown for 74()‘ ‘5(¥ .
{n‘)Jn“"’ ‘
Our iterative method reads

by P @
(30) \/; )= /__J(V( ))_, V u{v

1<; <],

(31) F}(V):(’?—,\)V. + T Q(x‘i,?fH@, W, 5m@ g\{*‘("“@)gugld-,u
6§* \/4-@ @) 3(.{ )+)\L(£_h-+)w'rh
; v

J |,]|
'Fb‘ 7_{} _J_/{)

(32) g‘r(\/) "’(4*\) V:} + At 4‘3{, (4’ tm—@’ u-,:))ni‘& 74 (-t?HQ’ u’;‘, Jvm""
u"--?,:)v;l@v'*-(q—@)u&jh»’ (/(“i_”? ].-\,(J(K' jn)‘i‘
Yy o) OV -0V ;@)(a )47( 4,, e,)fw)

In these equations \/( L and Vdenote vectors with + AT Hh 7'”9

s g

|J]n+@

(v .
components V and V respectively, 3 J' -4 j

d J
) .
The values of \/; and \/f , nheeded forJ = 1, are given by
V _ V(\?).— U

¢ LOP‘H*’I
the difference scheme exists if (30) is a contraction mapping

.=;xf . A unique solution of
Lone?

in the maximum vector norm for \/ We shall see that this
can be achieved by supposing f to be sufficiently small and
by restricting the parameter)\ which we still have at our

/(\'F)
disposal to a suitable interval. We shall obtain l« — L/

(}‘ £,“n1~f

for v — o0 .

In order to apply BANACH's fixed point theorem we

form the differences F(V) F(V) for - éd‘ = :7.

Applying (20) - (29) and putting L\/—-V—V we obtain, with



4

suitable real numbers /3 ar

-5 -

I 2_{ and lﬂ[«:(‘ O(J» J- <75

IT' < ¥ relations (1t should be recalled that 17-—1~r£2
3

(33) E(V)-E(’V)=@- - 2)@”1)1{»& @/A(gg + % F,,)

2

(34) F(V) F(V) (1 A\~ 2)\@/«}[ "“A@/"(f* F) d+7
+xo_(.-ip)u/ .25 £ -7,

)

(35) F"](V)-f—“ (V)= {1-)-r@xf y -8y, (4423)}1342 ey L/

107

All the coefficients of the u,f, at the right-hand sides of the

equations (33), (34) are non-negative if
(36) 0< Xt < ?_f/fs,

371) 0L\ < 7/('7+ 2 Op ).

The coefficient of ./ at the right-hand side of (35) is

non-negative if
(38) O<\€///(7+@Tﬂ?+2@[_}\ (7+‘»(£))

Supposing these non-negativity conditions to be ful-
filled we can proceed to absolute values of the Lﬁf to
Obtain inequalities, and by simply adding the coefficients
We obtain estimates in the maximum norm. The sums fS. of the

|
coefficients are
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_g? = fa) — & @{*(H‘1—- Tﬁ_ F',,) < //—-X because of (36),

§ = 9-"x £y Q_{d'-_-/:)—/f,

S ==X NOT R g - 208k, SA-N(1-0cpy 20,1 8),

-

BANACH's fixed point theorem is applicable if

SZMQXS§§<7.
7€i{J J

We see that 0< S < S¥= 7-) (7-@1—(7? ~% @f" r? K) and
because of T = r'&l we have S¥< 7 ir (38) is fulfilled
and if £>0 1is so small that

(39)  Op A4 ((UZ-;-Q[") 7-a <1

for some constant >0 . In the interest of rapld convergence
x should be chosen as large as allowed.
We collect the results as

Theorem 2: Let 0 <@ < 1. Then the difference

scheme (14) - (19) has a unique solution if (36) in case (a),
(36) and (39) in case b) are satisfied. The solution { can be
determined by using the algorithm (30) or an obvious modifi-
cation of it, where (37) in case (a), (38) in case (b) is
sufficient for convergence if A is kept constant.

We note that neither monotonicity of the difference
scheme nor quasi-monotonicity of f, -r, -7 are necessary

for the validity of Theorem 2.
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4, Monotonicity

Let

oy ¢*Zq, ¢ Zp, ¢TIy, T2, V= U

and imagine the scheme (14) - (19) written down as (14*)

. (19* ) with the unstarred variables 3, f s T,4 replaced
by the corresponding starred ones. Suppose that the
conditions for existence and uniqueness of the solutions u

¥
and u (see Theorem 2) are fulfilled. We look for conditions

~ under which we have ‘n/z O . Of course, we have \n/ >O,

)0 T

f- l from which we see by induction that we shall achieve our goal

by seeking conditions for the existence of a dependence of

on l"/.‘.’ n ’ ?*.-}ﬂ ’ 'f"f"(f » ff-’r via

0y n+ 7

. non-negative matrices.

To be specific, pick and index "20 and an index % and

-": suppose for the purpose of presentation (as in Section 3, there
i—"_is no loss in generality, modifications for other combinations
‘ of boundary conditions are obvious) that at x = O we have (3)
and (16), whereas at x = 1 we have (4') and (19). Subtraction
Oof the unstarred from the starred difference scheme yields, by

taking (20) - (29) into account and omitting inessential

A L.é l,,‘%“{ J%:Jr”+ (L FJ)( (?d,zl 4 A & &Lé/}nfa

. 27
" (P _VQQ nt@ }+ ?% {%]‘?#f-@—%], "*@}“-(‘tf){ Jn+@

: indices n at the coefficients o " _ ete.

E ” B |
AW =2 5 + (F-1 & -7
._ ' 4|Jl {' 16“@ 4 d {‘IJ n+(-,f 51—4’ )V + @ ( )ﬂ‘}‘ ne® ) J ] J
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with suitable numbers v % bounded as
KL a’ £ &

in Section 2.

For abbreviation, let V be the column vector with

n

components ij . 7éd‘ & J , and let ‘Sn be the column
\))

vector with components

LLT _{); M+ @ /h(rf )Kf }ﬂ) ‘—\Z‘Q( \A/ for J':1)

"”'o L% gli"i” -fé':,/}n

A
i -1) T, o . Fd AN _‘/
T e T e My, tor 220 20,

._,({ {41\] nfo-r%%{:__z ucx‘f— "!"K[ZJ‘ )?(, )IV ] + for J = J
+/“‘£(2 +(2]‘£) (‘f" ‘f)‘;“_e

Because of (36) and (see Section 2, quasi-monotonicity)

\

@, i = O 12 .L,l 0 for .f{‘-'?'f- ,gh has the desired

monoton101ty properties.

Let further I be the identity matrix, A= (a. . )
LIJ
a diagonal matrix with qd' ; = & 0 and B = I = ('7-@)/.4/\14- 'C"A
' )

where M= (n1 ) is a tridiagonal matrix with

., = - 2, for < < 7-
m»fl:)"’ ‘)} + 4 = =4 « //’
Mmoo =+2[ M. . =i T. = ’-é- /1 for é { ) 7

P 10 ot B

; L
m:\,‘ 3_'}:— ZX’—J } m,‘]l_) = ¥ ZX':J (7—!-— j?ﬁ'k)+(l,7/& ?Z,r;f




= 1T =

All these matrices are(gl:l) -matrices. Then
& ’

+BV + S

n

='—{‘\«@M\/ﬂ+

n+1 1

from which follows

(41) V/ =CRV +CS

N+ 1 L n

) -7
which ( = (I-I—{“@M) . We want (20 ana R=0 .
We again recall our assumption (36) and immediately see
that all non-diagonal elements of P]are f?O. This means that

in B we must inspect only the diagonal elements. For

A J“f we have

b= 1= (1-0) 2y +Toy, 2 J- oo (1-©)2p T
J J [T

from which we derive the condition

P
(42) o<f < 2(7_0)?

This is, up to oﬁ)—terms, the same condition as the one
obtained by ROSE in [7] for the simpler problem of one
parabolic equation with linear boundary conditions. ROSE,

however, does not use our boundary approximation. For j=:J

we have

g 5
b= 1= -0 {2y (1r ke, D+ Patr J YT
> - (r- @)f.{z F(¢+,a,,()+(u<’17} — T

from which we derive the condition

T- T <

(- )10 (144y) +  £¥ }

(43) O</- =
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To (42) and (43) we must add a condition of smallness for T :

(44) 0 £ 57/><

Theorem 1 now gives us conditions for C:?O Clearly,
the non-diagonal elements of I+/A@ M are (0 » wWhereas for
< _' < .J-‘f its diagonal elements are 7+ z/u@[ >2/~\OJ =
sum of absolute values of non-diagonal elements in the row with
number J . For J:J we recall the assumption (39) from which we
deduce

/?1—!&@ m_],.] > 1+ 2@/" KJ“ QP’K?(ZP-"':/}"&)?Q@” f(] ra> @/" 'Ml J”’I._

We conclude that C?O and collect the results as

Theorem 3: Assume the inequalities in (40) to be
valid. Let (36), (42) and (44) in case (a), (36), (39), (43)
and (44) in case (b) be fulfilled. Then the difference scheme
(14) - (19) is monotonic, i.e. we have Mi* :> L(L 75?4 < k(;

l,iﬂ" ta)(
in all points of the net N given by (5).

Comment: It might be illustrative to consider

©L
Theorem 3 for the familiar heat equation %—;L - —g——h—n—
X

with boundary conditions (3) and (4). We then may take o=(%=0;

Y: = K = // » and the monotonicity conditions reduce to

(42") 0 <p < ,,(;r_@) .

This stands in contrast to the well-known condition for

stability and convergence in the L -norm, which reads

p

(g2} 04/« f——/]f-—)- for 0<£@ <//2/ r}@for 7/2 {@57

2(1-28



k.
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See, for example, [6] » P. 189. In this case (42') is sharp

,_(; 2(1-6)

and .4=='4/2 , the value [1( ) becomes smaller if the initial

as far as the coefficient of‘@ is concerned. If r~>

value 3(0@) is enlarged, the boundary values Y(%) and %-ﬁf)
being kept fixed.

5. Extremum principles and inclusion theorems

In this and the next section we denote by o = u—(}) f)

a solution of the parabolic problem

rj d\. )lu. —
(45) T +(x oo oy ks ), 42,2, ., K| 0dxd ] 0 €€

with initial conditions

(46) v (1 0) = 4, &
and boundary conditions

(47) "1(01 £)=p (€) or (47') - * Y (tv)=0 ror x=0

J

WOIQ/QJ
x ﬁj x | 9

(48) v, (1,4)= ﬁ(f) or (48') + 9 (+,v)=0 for x-1.

We recall conditions (20) - (27) for £, P> 7 .

Analogously, let V/throughout this section be the
solution of the corresponding difference scheme
9% v )
(49) A\/{)l) = {Q (‘J‘;{.n{-@ ) \./,J',n 7 kyjn+6) jmi;"f@ ’

4 ‘ . ; &
1< k<K, 44‘}{3,7) 0 <nw €N,
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with initial conditions
(50) V[" % = 3 7 L

SRR 2y
and boundary relations

(51) V, & ‘f'&)h or

k,0) ¥

(51') A\/g

]

C2
“ (0, thce i Voun g, V), £

0, n
(52) \/‘&]J n - lf/;h,n ox
~)

' | - §
(52") A\é&n: AC IR S 7::.)”@(\/)’ l{,)J,M@),

We shall occasionally use shorthand notations whose
meaning should be clear. For example, we may write A V= F'[\/j
instead of (49), or 4ﬂk€=-€l\q with i =0 instead of (51').
For any set {G%} of real numbers, the symbol Aﬂ(%1 of course

means (@ﬁ+-'_ G%/X/Af'. We always assume the monotonicity

!
conditions of the preceding section to be fulfilled.

After these preparations we can now generalize some
results of [5] (where =0 and ©@= 1 are treated for one
parabolic equation with the values of the solution prescribed
at the boundary) and formulate discrete maximum and minimum
principles (see [Hi] s, PpP. 244 - 245, for such principles
for the system (45) ). Assume case (a), that is (49), (50),
(51), (52).




Theorem 4: Let the monotonicity conditions (36), (42),

(44) be fulfilled. Let &k be a fixed index for which

3) £, t W, 00)C Ae, 1<, £ -1,

£

for any net function L\/ with suitable real numbers Gln .

Let further V §A+L:n on é?ﬁ (see (5')), where A

in
1) :
is a constant. Then %;4:"§A+G—h for all (x‘.‘ t, ) e .
Proof: Take L/ . -/4+ G: and 14/1 . \4, .
N kjn d. e, "
‘\, é LV/ ! & ( -
for ?‘—‘-& . Then S lim 4{““ — for 7 €J = (] 7,

AL/Q*PE [L\/]‘—‘A@n—{'& (x.

A\«\/ - ‘P [L\/T =0 for /&#:Ie . From Theorem 3 (monotonicity)
we conclude that V>\/ and particularly A + G > V
)

)'tm-@:"‘/a,.j nJGJO)_' J

d)

Theorem 5: (Maximum principle): Let the monotonicity

conditions (36), (42), (44) be fulfilled. Let 4 be a fixed

index with
£ (x.
e ( J

for any net function\/\/. Then \/{ . assumes its maximum on

| s € £ J-1
Ji—n+@1 -,.il‘n)olo) - O) e i ]

itln
the discrete parabolic boundary 37&.

Proof: Apply Theorem 4 with @nz Q-
Analogously we can prove the

Corollary: Let (36), (42), (44) be satisfied and let -k

be a fixed index for which

.
50 £ (gt W, ,,00) 2A6, , 1€, 2],
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for any net function L/i Furthermore, let Lz ; EZ A'f Gln

':}Jn
on 00l . Then Vg‘ 2,44—G%Ifor all (xﬁtn)e 7.
:,j:h !
(54) is valid with & -0, then V| . assumes its minimum
h '&}-}Ih

on the discrete parabolic boundary o 7,

Note that it may happen that some components kz obey
a maximum principle, whereas other ones obey a minimum principle
or neither a maximum nor a minimum principle.

To state an inclusion theorem more general than Theorem 4
and the Corollary we apply, for case (a), our shorthand

notation: Let (this is equivalent to (49), (50), (51), (52) )
A\/"{[V] =0 for 71 <) ‘{(7' 7_)

(B5) V" 70 for J‘-zo) V-—“}l/ for J‘:’ 2)
]/:} for h——-O)

and let U be the solution of the "disturbed" scheme
AU“‘{J[uE::’/ for /]édt'{-Jﬂ?J

(56) u‘—‘ %’/ for j:O) Uz? for j‘—: J

where the disturbances '?f_. (F—tf' 5 ?f:-?" i 5 —} represent,
for example, rounding errors arising in numerically solving
(55) or truncation errors from inserting the exact solution
v™ of (45), (46), (47), (48) into the difference scheme
instead of \/ We define/{ by

(57) X:}mx(mi h!“ b X\(f“?’)ﬁuel i el (- 4@’4 f@i {}

l
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the interior maxima being taken as maxima over all relevant

net points. Take

Kt |

n

4 P - Kf’
(58) L\/n= a‘/tl( (é g f) -f—/{e,“

Then we have

Theorem 6: In case (a) the inclusion

599 U, -wW <V, <l +W 70K
A n % ‘&u)

lc‘]]n “},n ‘h ") ’

holds in all points of the net 1?, lq(being given by (58).

Proof: For reasons of symmetry we content ourselves
with showing the right-hand inequality. We shall do so also
in the proofs of the other inclusion theorems. Let

L
koiom ui. & L‘/”
and observe that l\/h}_ X and therefore E‘ L E 0 HE
on }32 . It is easy to see that LV; satisfies the digf;rence

|?|Ih

inequality .

(60) AL‘/}Q }o( l(\«/n -f—/(- with L/o I/Z .

.;{ W (f)

d t
differential equation by whose solution we obtain l¢g= ur{%n).

= O(Kw—(f) + /t 3 w"(O)=/{ » 1s a majorizing

By splitting

(61) AL - FR‘]:AV+(AU~{’[U]) -(4‘[?]— F[L(J)

c L g R
and taking (57), (60) and 3(9:; ént( y 5 (6:— 0 L{
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into account, we obtain

43 " ”P(I3n+olc. Sr gzc

‘dl ;JH‘I) ‘ﬂhj"h"@) .Llilh{'@
= AL+ 5 -2 e W B ALy —akW 20
L 4:JHH49 4= 5'4|h n n /Z n —
because ,d ,_ |f§ o (see end of Section 2). From the

nil
monotonioity of the scheme we conclude that g':> L/’in az.

Inclusion theorems sharper than Theorem 6 could be
arrived at by considering the signs of the disturbances and
their maximal deviations from zero to the positive or
negative side separately (See[j5] ).

In the case (b) of derivative boundary conditions it
is more difficult to obtain inclusion theorems suitable for
proofs of stability and convergence. We shall therefore
restrict ourselves to two particular sets of additional
conditions leading us to two inclusion theorems. For the
remainder of this section, 1et[J satisfy the disturbed
difference scheme, for 7 éﬁé/(,

0 AU, =l teer Ul M@"glufz,d,m@ Uimo? 1<)
SO PR o, 0 014

(64) ujz’o, =¥, ” -

64') AU oln--ﬂ{(o,t%@, ol t@(u), SZC(ZMG) H&,o,n+® )

or
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Note, that we suppose the derivative boundary disturbances
to be written outside‘? as part of ;ﬁ

Because of the lower order approximation of the deriva-
tive boundary conditions it is advantageous to majorize
interior and derivative boundary disturbances separately.
Define therefore "/i' and /K% by
(66) Y = Weex {w« ]"’é , B

{f{z-c‘)_r’]n ,l\."‘t'e

Fd] -

V/Z:\’K ’ (’j“—a)z“] l )

o ‘(‘?‘\0)&'”@,) "’Z’Tﬁl(‘f"?")ﬁ,'m_@ I})

42N
! )
the maxima of IF‘gI,| ;J—y/! being taken over those values
of'& for which (64) or (65) holds,

X ~ ~
(66') /'{ = weuX { “/Zel\/:( }‘-410’,”_@/) Ea;tx lrﬂ)J)yH-@l}j

the interior maxima taken over those values of é for which

(64') or (65') holds. Finally

(66"") )(== W(I)K%)

In order that, with W/ ‘ > O)
1))
(67) Q- - U, + W
1)y " /&:\J\" PR
be = Lz . » some difference inequalities must be
14 "

fulfilled. Let

@ = AT - 4[g]

and observe (61). We shall have E:E? \/, o &y
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(69) \"/Q ‘ 27{

li]\h

for i::O, A::J ,and those values of-% , for which (64) or

(65) 1is prescribed,

(70) g,é
PEL

for 74 j 1 and those indices }‘"O and J J and
indices ‘ for which (64') or (65') 1s prescribed.

For 4< J 1  we have

At the boundary ‘J‘=O we have, 1if defined,

K
= T -5 2y - )
(73) ghl‘ol 0 A%IDJ L T {‘éf ol Nt @ ’%7 “‘) (&,01 n%l,ro) n i (f‘ X:l?,uo; n /2"-??,0,”

} <

' W W .
ktk .;,lgn {on Zﬁ,& 0,n -ﬂom—@ ﬁ&oh £onro {Q',,)”@}
An analogous equation holds for f , 1f defined.

%,J‘n

In order to get lower estimates for these quantities we
introduce, in addition to (29), the condition that fﬁ

and 7{ be non-decreasing functions of z& , which means that

(74) 1w s =7, .20 fox ;\‘=Of ,j‘:(]-
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Then we obtain conditions (observe (36) ) for J:O and :}f-’ ; 3

K
W AN .
(75) fA |A|'ﬂ /t N d&{r—? V ‘] (-ﬁ kf)l SJ G?]l )
b3 WA A W
(fc"#( 2"&,1&131” {’ljl u& |J|'“'®} r&h]: %ld
where D = \A/ _ \,/ D =\4/ and S =€ 7)'}//]

'{a,ﬂ,n 4%.,4,11 {,D,h 4 'grn” 43—‘7 n ]"

By imposing still more restrictions we can now formulate

Theorem 7: In case(b) under the additional assumption

that &‘ 5 7& (if defined) are functions non-decreasing in ;_% 5

but independent of =, for{ +4{ , we have the inclusion (59),

£1

\\/ﬂ being given by (58) with /Z from (66'').

Proof: Since]»/n is independent of‘J and aﬁ , We can drop
2
fSW and S L/ in (72) and-Din (75); since 7T depend only
on T and =z, , we have e =40 for 4/+.4 in (75).
‘£ 4', g' "‘ , n
We can also drop the term 7 L/ in (75) because of
' j "‘H)l”*’a
(74) without destroying the sufficiency character of (75). We
then see that (60) is sufficient for (69), (72), (75) to be
satisfied. Now, L/ﬂ satisfies (60) and %2 X . Theorem 7 is
thus proved.

We state our final inclusion theorem for special orders

of magnitude of "y and /t

Theorem 8: Let case (b) be given and let ;( q£ Z ZL,Q
aZ0 , b=0 (see (66'), (66'') ). Then the inclusion

(76) u2\~\f\/. =2V &£, %W

’t\'n 417 ﬁu;)“ 4“}1” J‘r"
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.holds with
_ 2 St, 1
M = CleT " ok (R(x,-1),

if the positive constants C,S, P are sufficiently great
and '£\>O is sufficiently small.

Proof: By choosing C\sufficiently large we have lv/” \‘;E_
on QW . We use the abbreviations y,f= R(A’J‘-‘E’), A:aj—;f Y.

d d
and note that

y 7 2 B 2 . L
St ¢St $A = Rk y oe) (AJ,._RAJ, o¢)

)

A A =RA ik (R/2) O, A A REsa (R) + O®).

> ;=
Taking into account that all Z,“ Ty for 0

and{’ ) (see (24) and (25) ) we conclude from (73) that
>-1 _ _ ) -
S.&,oj . 4 +A\r{}n ch -Z +/3 A n+O+ ‘&1 o”e L{,m—@}

2 (b LC(pR sink(Ri) - Ty K eni(k)e” T |+ O) =2

For reasons of symmetry E‘ is also a lower bound for g
-]

L Jim
We obtain e >0 for J=0 and sz by choosing &
'F‘p.-iph
sufficiently large and subsequently 4 sufficiently small.
We now have to consider the interior indices, 1 é ) 7,

From (71) we conclude that

Sk, >oa 4t + AW - Ku\/ p} g [-FJ \,/
....—-cve -}-C‘Z1 St {(S Ku—rkz)mfy (ZR&WQ,”}-FO/(QQj
2 £ ot Ce™ (S (Kot MRYk(R)- Rk (R2)) 4 OF)

+&
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which 1is ;? O if 13 is chosen sufficiently large and ‘e
is sufficiently small.

Remark: For the case K = 1 with a linear parabolic
differential equation and linear boundary conditions
difference schemes have been developed by various authors.
The usual assumption, however, is that %E; and %EE
are non-negative, which covers important physical
applications. The present author is aware of only a few
places in the literature (see [13], p. 58, [1@, [15] for
the heat conduction equation, I}é] for a linear equation
with self-adjoint elliptic part). These authors, however,

do not use monotonicity methods.

6. Stability and convergence

In this section let again the monotoniclity conditions
be fulfilled.

Stability and convergence of the solution Vfor /ﬂ——‘?O
of the difference scheme (49) - (52') to the solution u of
the parabolic system (45) - (48') is easily established if o~
exists and is sufficiently smooth. Actually, convergence
will be of the type of "stable convergence" in the sense
described in [9] , of the order of magnitude of

max (rounding error, descretization error)

from which it follows that in numerical application one should
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insure that the rounding error is at most of the same order
of magnitude as the discretization error.
For obtaining theorems for convergence of the solution LL
of the disturbed scheme (62) - (65') to the solution v
we use the inclusion theorems of the preceding section in
a two-fold way. Firstly, we assume(1=if to be the

round

solution of the disturbed difference scheme, Lv/

round being

an estimate of the error caused by rounding errors X}ound
or /{round’ /tround Secondly, we assume (/“J to be the
exact solution of the parabolic problem (45) - (48'),

s * _
,Zdiscr or /[discr’ /(discr being the discretization errors
resulting from inserting v~ into the difference scheme (49) -
(52') which is not exactly fulfilled by (. Applying the

inclusion Theorems 6, 7, 8 we see

VARC-AW/ -V <

from which by application of the triangle inequality it
- <
follows that I L{round UJ S \”/round + \Vé

Now, 1f U is sufficiently smooth, which we shall assume,

I round round’ discr’

iser®

then
Z:iiscr' = Uéfl) ’ /{:iscr = ﬁ(e)s

as may be obtained by TAYLOR's theorem. It is sufficient
to assume that U(;,ﬁgis four times continuously differentiable
with respect to x and twice continuously differentiable with

respect to L in O <x <1 0 £¢ < T | This means that
&L 2
g L7,




Our convergence theorem can now be stated as

Theorem 9: Assume a solution u*:-o-(% f) of (45) -

(48') to exist in C*’ 2. Then this solution is unique and

can be approximated by solving the difference scheme (49) -
(52') for \/ with a fixed value of & satisfying (42) in

case (a), (43) in case (b). If this scheme 1is disturbed by
rounding errors bounded in absolute value by j{ =:(§zé2)

(in approximating the derivative boundary conditions rounding
errors may be an) ) then there exists a constant /M with
which the disturbed approximate solution LL converges uniformly

to U~ such that

{ug ("J)fn) - Vg ("(JJ‘t—h)l é M‘ez

In these inequalities 7<4 <K , and (x.) ¢, ) is any point
d

of the net |/ = }Z(‘K, 'r_’).

Remark: In the case 9 = 1 we may let . —> oo for 1—70, ——=0

>

¢ 2
but then we have to replace 2t by £+t

Weaker convergence theorems can be stated by relaxing the
smoothness conditions on uv-. Of course, in order to guarantee
the existence of a solution weCu’e, we must impose more than

the LIPSCHITZ conditions of Section 2 on -F, F"f‘
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Appendix

Numerical case studies +)

Ih order to test the applicability of the described
difference schemes, several problems were treated on a
computer (IBM 360/91 , with double precision, equlvalent
to about 16 significant decimal places). We present

results for three cases where the exact solutions are known.

Case 1 (explicit computation): Kﬂ=1 0 € x < ﬁ 0 < té’Q} rzaq)
=0 3.

3T ):1 -(u-—*—*(1+x))/(’f+f’)

3@&) = C’f+x)2+’]
wix, 4) = (’l+x) +(1r%)
d

% 3
e = 2 of x= Q, 3

s

l
+=
2
—-?-_
~

il
=N

X

Values are given for t= 2, firstly for computation with
£ - 0.1, secondly for £ = 0.05. In order to demonstrate the
order of convergence, we also give the values of the quo-
tients of the errors resulting from dividing the error for

4 = 1/10 by the error for A = 1/20. These quotients are in

+) The programs for these case studies were written by

J. Steuerwald.
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the vicinity of 4, which corresponds to quadratic convergence

in 4.
Results for t = 2
U U
X forA=1/10 |for&= 1/20 | exact solution w REEAE
quotients
0 9.991009 9.997751 10.00000 4,0
0,2 10.43101 10.43775 10.44000 4,0
0,4 10.95101 10.95775 10.96000 4,0
0,6 11.55101 11.55775 11.56000 4,0
0,8 12,83101 12.23775 12.24000 4,0
1.0 12.99101 12,99775 13.00000 4.0
Case 2 (implicit computation):
K=3, o0 <x<1, o0<t<10, (‘=4) ® =1
3, 3% ~t _2 3 _ 32
_—af = - cnI—rQ'ﬁ. Wy + 4, + Bx; v (K-T)F& —-L;-_—f (S'b’z—';?x-
= XX
2 )
2
jﬁﬁi = - W, 4+ U, - vy Uy — aﬁ'f L Tx
at 8 3 Y s Y x 2 o 7,
)u_ bl _tmﬂ_)( 4..
L o “3 v &
St u3+u4+u2+——§-x—f-—e -@:—7)3
2 ¢
T W x
T
4 ol 2 )
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tir
rq_ M HJ) 7'-'-‘['(41-/’—-2__
Pa= - b fo= =t -

2% % 1 3 2 2 3
= _ = _ I
P3 u'_3 %4; 73 “.3 L{2+ e

'-fdl.—zE(-—
W (x,f) = e =

~

& ot
w, (x, t) = x-1)" e )

X

‘&3 (X,%)-:e (&)

The functions }k )Yh) YZ may be calculated from the

boundary conditions and the known solution w .

We give results for f= 1,
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t =
U, u,
erroxr
X foi h=1/fi0 | U, Fo h=1/80 4, quotients
0 370 1324 | 0.368 4437  |0.367 8794 3.993
373 8774 0.%69 3823 0.367 8794 3.991
370 3514 0.368 4987 0.367 8794 3,992
0.2 .388 5735 0.386 8938 0.386 3%26 3.993
.155 7741 0.151 9587 0.150 6834 3.932
.352 3925 0.350 5050 0.345 8741 3.992
0.4 JULT 6557 0.445 8866 0.445 2956 3,994
.052 34258 |0.048 84579 |0.047 67718 3.992
.300 2664 0.298 2835 0.297 6207 5,092
0.6 .558 1947 0.556 2170 0.555 5563 3.994
.014 16955 |0.010 60800 [0.009 417714 3,992
.219 1239 0.216 9581 0.216 2341 3.992
0.8 LT37 2651 0.734 9u37 0.734 1683 3.994
.006 060278 | 0.001 959398 (0.000 5886071 3.992
.116 9573 0.114 5019 0.113 6810 3.991
1:0 .003 749 1.000 939 1.000 000 3.991
.007 076982 | 0.001 773360 |0 3.991
.003 818850 | 0.000 9570639 3.990
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For larger values of i , the errors show a strong

exponential growth. Whereas the solutions u, and U4

rapidly decrease to zero, and u, remains bounded by 1,

apparently the numerical solutions LL& increase exponen-
tially. The reason for this seems to be that the correspon-
ding homogeneous boundary value problem has exponentlally

increasing solutions for appropriate initial values. This
) Q
L and ik
3‘.1& >2&
(see, for instance, [if] for the case K= 1). In numerically

may happen when some of the

are negative

solving the problem, the inevitable discretization errors
give rise to exponentially increasing numerical solutions.
It may be concluded that the reason for this effect does
not 1lle in an instability of the difference scheme because
the errors decrease by a factor of about 4 when the mesh

width is refined.

We give some numerical values

absolute value of
maximal error for
. 1/40 error quotients (rounded)
_{1/80
2| o0.lo4 2845 between 3.984 and 3.988
0.261 7314
3| 1.547 754 between 3.978 and 3.982
0.389 0659
4 123,194 18 between 3.972 and 3.976
5.839 464
5 [348.8270 between 3.966 and 3.970
87.956 T7
10| 2.695 425 - 1O8 between 3%.936 and 3.940
0.684 858 . 108
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The largest error always ariseat x=1 for the error
components , UQ;- uL‘,

case 3 (explicit computation):
K=1, 0<x =<1, 0<¢t<£2, /~=°-7; =0,

3“ = Wt - z(nt)":.. (7“{)‘%7 st x=0,
3/2
i“ = - UL3/2+ (4(-4' ('f‘l'f)z) +4' Q-'L = 1/

(4+x)2 L (" * t)l-

&

oo

w5
1

Results for t = 2

LL for Li. for error
* 4 =1/10 A =1/20 W exact quotients
0.0 | 10.002 00 10.000 50 10.000 00 4.o
0.2 | 10.441 99 10.440 50 10.440 00 4.o
0.4 | 10.961 98 10.960 50 10.960 00 4.0
0.6 | 11,561 98 11.560 49 11.560 00 4.0
0.8 | 12.241 98 12.240 50 12.240 00 4.o
1.0 | 13.001 99 13.000 50 13.000 00 4.0




This IPP report is intended for internal use.

IPP reports express the views of the authors at the time of writing and do not necessarily
reflect the opinions of the Institut fiir Plasmaphysik or the final opinicn of the authors on the
subject.

Neither the Institut fiir Plasmaphysik, nor the Euratom Commission, nor any person acting
on behalf of either of these:

1. Gives any guarantee as to the accuracy and completeness of the information contained
in this report, or that the use of any information, apparatus, method or process disclosed
therein may not constitute an infringement of privately owned rights; or

2. Assumes any liability for damage resulting from the use of any information, apparatus,
method or process disclosed in this report.



