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ABSTRACT

An exact energy balance equation is derived from the first-
order moments of the ion and electron transport equations.
Thereby the particle loss of a stationary plasma through an
isobaric surface is expressed as the sum of several terms
each of which contains a specific force (E-field, colli-
sional friction, anisotropic pressure including inertial
terms). The equation provides a general frame of inter-
pretation for any stationary diffusion process or loss
mechanism of a plasma. In particular it is shown that
GALEEV-SAGDEEV diffusion in an axisymmetric torus cannot be
explained by the friction term ngf or the Joule term,ﬁﬁ_&;;
but comes about by pressure anisotropy. This result rests
on the assumption that the perpendicular resistivity 7}_ 1.8
not altered in order of magnitude by the presence of
trapped particles, an assumption that is plausible on
account of recent work by HINTON and OBERMAN. For TOKAMAK-
like parameters the effective pressure anisotropies
required for explaining GALEEV-SAGDEEV diffusion are very

small, of the order of 10_5 to 10_6.
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1. INTRODUCTION

It is well known that the diffusion of a dense plasma across
the magnetic field is linked to the frictional work Jnje by

a socalled energy balance equation Ll], [2}, viz.
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Here n = particle density, v = mass velocity, p = pressure,
é = electric current density, and 12= resistivity. The
integrals extend over closed p = const surfaces. Equation
(1.1) is derived from MHD equations or two-fluid equations

with several assumptions, viz. isotropic pressure, p = p(n),

stationarity, and othersconcerning the collision term.

Recent theories of enhanced collisional diffusion (ECD) in
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toroidal plasmas apply to the regime of ¥SE§,TEEEﬂEEffLEEHEEi
where the assumption of isotropic pressure breaks down

([3] - LIOJ). The question arises whether this enhancement
has to do with enhanced collisional friction, enhanced Ex B
drifts, or with other effects. We shall derive a more general
form of eq. (1.1) that holds for anisotropic pressure and
general collision term and that allows to discuss this
question. This generalized energy balance equation will be
exact and, hence, will offer an independent means of checking
the consistency of results on ECD. The new energy balance
equation is derived from the first-order moments of the

plasma transport equations. A second expression for the



particle loss could be gained from the second-order moments
of the transport equations; but we shall not make use of

this second possibility.

The generalized energy balance equation can be written in

two equivalent forms We shall interpret the various terms
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occurring therein. In particular, a certain term that
dominates PFIRSCH-SCHLUTER diffusion can be shown to arise
from Ex B drifts rather than from random walk under rather

general conditions.

Throughout the paper a SEiEiSE?E?WPQFQE¢E%AP¥?§TEaEpEEE§PEEEi?n
with closed 1sobaric surfaces and confined by a magnetic field
is considered. This implies the existence of stationary plasma
sources. We shall consider a model in which the sources are
located on some material surface, e. g. of a toroidal ring,

while the plasma volume itself is assumed sourcefree. The

plasma is also assumed to be fully ionized and quasineutral.
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2. ENERGY BALANCE EQUATION

In this section the generalized balance equation will be
derived which replaces eq. (l1.1) in the case of anisotropic

pressure, nonzero inertia, and a general collision term.

One starts from the transport equations for ions and
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electrons
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where the notation is standard, and j :L,e, We shall not

need to specify the collision term. Defining velocity moments

of %i in the usual way one derives in particular the momentum
equations for ions and electrons, which we write in the

following form, valid for quasineutral plasma:
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Here §, =+ ge=-< C., L. are the collision terms,
with j;;4¢ge ::C‘; and [ : I are the total kinetic

pressure tensors of ions and electrons, viz.
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where PL and p, are the usual pressure tensors of ions and

electrons in their respective average rest frames.
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Equations (2.2) may be combined to give the equation of

B e i S

motion and the generalized Ohm's law, which we write in
A
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their time-independent forms:
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We have introduced the mass velocity U the electric
current density j the collision termf; and the kinetic

pressure tensors F) and Cl. They are defined by

’WLE = /'Vh,;\f,: + (% = M +/l/ue})
3 = aag (95 Ue))
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C = L, //416 ;

The scalar pressure P , introduced in eq. (2.4), is defined
by the trace of E_ in the usual way. It is assumed that
conservation of momentum holds for collisions separately;
i.e. one has C; :Q;Q; Ce=Ce: j Cip = Cee =0
_C{,e

do not contribute to the collision terms g;j

¥ g;4::;0, Even though collisions between like particles

, they can affect
the pressure tensors f? and thereby contribute to the momentum

balance of egs. (2.2), (2.4), (2.5).

Scalar multiplication of eq. (2.4) with my and of eq. (2.5)

with hj leads to the following relation:



(2.11)

(2.12)

(2.13)
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On account of the parallel component of eq. (2.5) this can

be written also in the following way:

e goedP = nie (8-, ) - 4o (1), —me-(P4R),
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where | designates the component perpendicular to‘E. The

plasma flux through an isobaric surface is given by
P T i e e N S
‘ ds .
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Hence r1may be expressed as
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or equivalently as
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Here and in the following all surface integrals extend over

surfaces F)= const, if not indicated otherwise.

Equations (2.14) and (2.15) are the desired generalization
oL.the energy balance equation eq. (1.1). They provide
means of interpreting any stationary plasma loss process,
and an independent check of diffusion calculations. It is

seen that in either of its two forms [j consists of four
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terms that contain products of fluxes (é,fn@f ) and forces
(collisional friction, E-field, anisotrgpic pressure
including inertia). In a self-explanatory manner eqgs. (2.14)
and (2.15) may be written as

r
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and as
| = IC_L + ,E-L T IQ,J. + ’:;P .

Let us first discuss the terms of eq. (2.14/2.16). In |

the collision term g is usually written as Qj or %jj in

the fluid approximation. An expansion as a s&h of-;e;eral
terms involving different moments of %} would be more
rigorous [11] . For our purpose - discussion of ECD - it will
be good enough to assume C to be of the order of lw' or LZ'J'

where q contains the distinction between 1h and LLL.

The term

)
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vanishes when

j'jmoln:—_o and j-gmc[PEO . Then lg =0
E =

follows from F-gfoAQ% dAvj.:(D by simple vector analysis.

This case is realized whenever [3 is isotropic and P ::F(hy).

The term

cl, . . 7 A
R Rt
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vanishes if Q is isotropic, i.e. \/’ ; _.gmleand ] gmiQ
and/or j 51u&P = (. The latter is certainly true if ID is
isotropic. Finally the term E;P vanishes by definition when-
ever’E is isotropic. Of course,_E and_£¥can only be expected
to be isotropic everywhere if the inertial contributions may

be neglected (compare eq. 2.3).

It is instructive to discuss egs. (2.16) and (2.17) also in

[12] ).

In this case one assumes isotropic ion and electron pressures,

connection with PFIRSCH-SCHIUTER diffusion ([2] ,[9] ,

P:P(m.)} Q= Q(fn)) and _g_:’)’(;/ where y is the resistivity

tensor. Then
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and consequently the PFIRSCH-SCHLUTER diffusion flux is

given by:

dS
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or equivalently by
r}".;, = FCL+ ]F),,-MLP] VL(V(JLJJ} _“_EL'“/_'J.J_).

It follows that
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where | ; 1s defined as
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For small aspect ratio(-§<3l4) the following additional
e~ T T
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result holds [9]:
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where (/Jr is the rotational transform of the B-field. If
L/zgzé 41 the PFIRSCH-SCHLUTER flux is approximately given

—

by |, X

- -

lew = Jes

R%EEEEEE§,ES«EEEVgeneral alscu§figg we shall interpret the
first two terms of eq. (2.17§l We limit the discussion to
the case that the equation

jly E s C'gfﬂi P
deté;mines jl- to sufficient accuracy. Then the flux ﬂéL

has a simplg interpretation. From the definition of 'EL and

from eq. (2.25) one obtains immediately

§ol§ E \P) gnu L dS

Hence h;l arises from E\B drift, and not from any random
walk process. This holds in particular for the PFIRSCH-

SCHIUTER diffusion [ 12J )

1 i1
With the aid of eq. (2.25) and (=) the flux lu may be

expressed as

fos 5

3{nJl\J.

Replacing the quantities in the integrand by averages yields
the following diffusion coefficient for isothermal plasma

Wbt]’}, P = P
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Here the gyroradius R@and the effective collision frequency

y are defined by

C J
(2.29) R, = —g V2Zme KT,
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In the fluid regime DC¢ is the total diffusion coefficient
across_E_ for configurations with (ﬁ; E,=0 , e. g. for

suitable straight configurations.

It follows from eqs. (2.24) and (2.28) that the PFIRSCH-

SCHLUTER diffusion coefficient has the following form

(r/f? <<'i)‘;
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ey D . = td. = RV .(’1+ WL)’
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3. ENHANCED COLLISIONAL DIFFUSION

In this section we shall give a brief review of enhanced

e e

collisicnal dlffu51on and then interpret the results by
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means of the energy balance equatlon eq. (2.15/2.17). For

e I I e

simplicity we limit the discussion to diffusion in an axi-
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symmetric torus with magnetic surfaces of circular cross-

e e

section, and with /K <3:41} g/?;— e

The various theories on ECD in an axisymmetriec torus (f}] 5
[4] R [9} ) in essence agree that for electron mean free

paths

B RL:
> (R

e

the diffusion coefficient is enhanced and obeys the GALEEV-

SAGDEEV formula

w f¢ B Lﬁrl(ﬁ 32
beoo =46 Ry & (3

Here R is the major radius of the torus, ¥ is the distance
from the magnetic axis, and J),. is an effective electron-ion
collision frequency. The latter is sufficiently well defined
by noting that according to [9] PFIRSCH-SCHLUTER diffusion

obeys [compare eq. (2.31)!}

rJ
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(3.4%)
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It is worth mentioning that.b&s.does not diverge for v — 0O
because eq. (3.1) will be violated for ¥— O . Hence the
largest value of EGS within the range of validity, eq.
(3.1), will be

Maiay -~ l? f ”

where lLa is the thermal velocity of electrons.

Other important features of ECD in an axisymmetriec torus

are the followling ones:

a) The diffusion fluxes of ions and electrons through a
closed magnetic surface are equal (ambipolar diffusion);

S e I .

b) the diffusion fluxes are 1n§ngpdent of the radial
electric field E, ;

c) 1ikQ\P§fE}E}QMF9}11510nS do not contribute to the
diffusion; therefore y,. enters eq. (3.2).

These results apparently hinge on_gfiﬁzmmgggz_and its

consequence, conservation of the corresponding canonical

momen tum ( ] Ll}J t14] ). Results to the contrary [}J

appear to be in error ( [4] , [9] e

It has not been proved that the inverse holds, too,i. e.

P n S

that in non-axisymmetric tori the diffusion is ambipolar
only for appropriate E-fields. This though seems plausible
in the case of §Efficient asymmetry and has been used

N e T T e e e

explicitly in [7] )




(3.5)
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For the following discussion of ECD in connection with the
energy balance equation it is important that the GALEEV-
SAGDEEV diffusion can be recovered from a simple-minded
random walk model without drift term. This model uses the
distinction between transiting and trapped particles in a
torus [3] . The orbits of the trapped particles, or the
projections of these orbits in a moving meridian plane,
are called "EEEEEEEf. By virtue of the collisions the
bananas undergo a random walk process, and inspection
shows that the consequent diffusion flux of particles

that are trapped or nearly trapped is much higher than the

one of free particles.

This is shown in the following way. The validity of the
simple formula

Awrz- _/]-fn
D = (7,-») A

Y

is assumed for the partial diffusion coefficient of a class
of particles with particle density AqL , random walk step

length A+ , and effective collision time ( = time between

o~

steps) T . The other assumption is that it is the electrons
i S

that determine the diffusion velocity. It is shown in [3]
that the trapped electrons possess small parallel velocities,

if E{;:O is assumed:

‘/ + ]f v
‘ﬁ‘yn\ < A\T" VY ? ~o U, T '
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(3.8)

(3.9)

(3.10)

(3.11)
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Collisions change Y, of (nearly) trapped electronsiin an

effective collision time

2 A
- A, V2 =l
T, & V, . (”‘_l_\_j_'i,m) oY e
t Lo,

and thereby introduce displacements of the order of a

banana thickness R

A Vg R ¥ o }Z 21 j"" T
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In addition, by virtue of Au << U, one has

.A%t_ M AL“ V
=t B - <1

Ve

for trapped electrons. The diffusion coefficient ﬁt‘ for
(nearly) trapped electrons according to egs. (3.5) to (3.9)
is virtually identical to the one given by eq. (3.2), if

is identified with jéi , as 1s reasonable.

On the other hand the quantities for free particles are,

according to [3]:

o 2?‘,' ’v-i'ﬂn, . .
by = R T ) T 2L S =L

2 G- *
b{i ~ Ry (= )P,s'. << D{—

The conclusion to be drawn from this model is the following:
Enhanced collisional diffusion ("banana diffusion") is caused

by a random walk process. Effects of EJ(B drifts may be ruled
e e T . e—
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out; at least insofar as they will not furnish the leading
contribution to ECD. This is contrary to the situation in

PFIRSCH-SCHLUTER diffusion.

We are now prepared to discuss the ECD formula, eq. (3.2),

in the light of the energy balance equation, in the form of
eq. (2.15/2.17). In order to do this we assume that the
collision term g; is of the order of magnitude of QfJ' and
that eq. (2.25) is valid. These assumptions seem r:a;onable
on remembering that ECD theories use near-Maxwellian velocity
distributions and, thus, near-isotropic pressure tensors.
Furthermore we use the assumption of small aspect ratio; con-
sequently the enhancement factor (R/quf/l is large. We ask
which of the terms of eqg. (2.17) can be responsible for ECD.

r

Starting with the term ci

it follows from eq. (2.28) and
from V=xV,; [compare eqs. (2.31) and (3.32} that

_ B i 2z
j)CJ_ = Ry ¥ Ee J23 B DG'-.S, »

if the usual perpendicular resistivit QL is used that holds
- =

for a plasma without trapped particles. A calculation of the
o T e P P
parallel conductivity Gh by HINTON and OBERMAN [15] for a

plasma with trapped particles yields a decrease of 0, merely

of the order of the relative number of trapped particles:
H.O. y A h‘t‘ ) T/‘_-!“'
7/ e s W Il —

We shall therefore make the assumption that the order of

P N

magnitude of I3, , or rather of the perpendicular collision
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(3.14)

(3.15)

(3.106)
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term &u_, is not altered by the presence of trapped particles.

cannot account for ECD.

It then follows that the term EEL

As to the term [EJ. we have shown that this flux arises from

ExB drifts (see eq. 2.26). On the other hand we saw that

ECD can be explained by a random walk model without drift
e W G

motions. Therefore it is obvious that EL cannot yield the

main contribution to ECD.

It follows that ECD must be explained by the fluxes ]ELL
and/or YLP arising from pressure anisotropy. We discuss
these terms for isothermal plasma with WZ:&T;_in order to
be able to compare with eq. (3.2).

Putting
o (V02), = ] g P

and employing eq. (2.25) one obtains

P

£ o ’
[;LlA = - & "ET lgfﬁil l UIS .

.

The corresponding diffusion coefficient is

< KT L.

hQL = (=P =B = Loy R DCL

where <#> is a suitable average of «x and an effective measure
of ion pressure anisotropy. For isotropic pressure <f@{>‘:: O
holds. In terms of BOHM diffusion [16J one has
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(3.20)
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It is seen that whenever j} >§_D . a small effective
BokHM PiiSs
anisotropy <X may suffice to give appreciable enhancement

over PFIRSCH-SCHLUTER diffusion.

Equation (3.16) will be compared with eq. (3.2) to give <{e<>,
It will be seen that <« <<4 . The conclusion will be that
this agrees with the assumption of near-Maxwellian veloccity
distribution underlying ECD theory; hence o may account

for ECD.

It is more difficult to obtain an estimate of

1 - (ig (7

r = iy = =nwv(L-AE)

AP Ijnal P - = =/ )
since an estimate of U 1is not easily available. It is seen,
however, that the component E;L, normal to the isobaric surface,
yields a contribution to ‘4P that is too small to explain

ECD. If one agrees to the estimate [compare eq. (2.5)]

]1% / 1 - -ﬁ1341l QJ & = /gfmi P/

*t] ~ weB ne B

for the tangential component of U then it is convenient

S B
to put
; z | 2
i wa B . . / C !u ) )
LLE-\E- AL) = X E [J*ﬂi /
with ]«’f<<31 . Here now a, not only is a measure of the
D
anisotropy of | , but also of the magnitude of E} . Then the
corresponding diffusion coefficient 1is
/r"‘ -] '
CI\I it PA A \L\
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(3.24)

(3.25)

(3.26)
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It is instructive to give numerical estimates for <3X)>

[ S N e, N M S N
AN
>

or <«<’> in the case of eq. (3.1) being valid. By equating

EQ,_L of eq. (3.16) with Dc-,s. of eq. (3.2) one obtains
&> = W(Bf”"&—,
I - Ao

Combination of eqgs. (3.1) and (3.22) gives

. 2 R
x> =

In order for the ECD theories to be valid, in addition to
eq. (3.1) the banana thickness must be small compared to the

plasma radius,

R S LB = =
e b Max )
or
75
L Yoy
<.—._-..
Ke ZW(R)R°
It follows with eq. (3.23) that qlWays
> 3/2
> < ('—??i%) / &= A
A

The same relations hold for <«'>.

We consider the following numerical examples which are of

practical interest in connection with TOKAMAK experiments:

K’ , 2 \ -/ 2 f
.1__’ — 3 / T ol § / )3 = ..I_ O Crin /
R = 40 gauss ;

(a¢) M = 4Oiscm;3 ) KT = 40° eV 7

(,f)) 448 :/10'1({ an_.s ' !I(T = /1U(+ QV .




(3.27)

Then one obtains in case (a):

- age v P43 -1
<o<>:0,69»<i()"g/' )lng—'(mﬁ/ﬂ/\a_] =Y

and in case (b):
(x> = 2004075, A R)tR] T =50,

so that eq. (3.1) 1is satisfied in both cases.

It is remarkable that very small effective QEEEEEEE_

g -
W<«> or <0<'> , of the order of “JfJ “or 10

are sufficient for making ECD consistent with the energy

balance equation.

It should be added that the induced toroidal E - field
present in TOKAMAK experiments causes an additional

drift counteracting outward diffusion. This drift is ﬁfﬁi
taken into account in the GALEEV-SAGDEEV formula. Therefore
we nezglected it altogether in the above discussion of ECD

theory. In TOKAMAK experiments tnis drift is important

whenever

T s
‘O/GS‘ LHT Pp_ ['|L7l_l i !: \i 4

= =7 =7t

N

6




4, CONCLUSION

For the diffusion loss of plasma particles we have derived

a generalized energy balance equation that applies to the

T S T T T

case of anisotropic pressure, including inertia, and of a

—————

general collision term. It representsa general frame of
interpretation for Egﬁ;ﬁfﬁE;pna?y q%fggsign‘prg9e§;/or loss
mechanism in a quasineutral piasma. In particular GALEEV-
SAGDEEV diffusion in an axisymmetric torus [3} is shown to
arise from small effective pressure anisotropy, of the order
of 4iy§'maiﬂﬁéfor TOKAMAK-1like parameters. Other causes,

as enhanced resistivity or enhanced chg drift, appear to

be ruled out. This follows from the plausible assumption

that the perpendicular resistivity QL possesses the same

order of magnitude, with or without trapped particles present.

No inconsistency between ECD and the energy balance equation
has been found. It is also shown, with the aid of the energy
balance equation, that PFIRSCH-SCHLUTER diffusion comes

_drift
about by ExBY in accordance with [12} 5
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