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ABSTRACT

Unstable low frequency interchanges, i.e. electrostatic

modes with growth rates of the order of the guiding centre
drift frequencles and thus conserving the longitudinal
adlabatic invariant 3 , are shown to exist in a wide class

of self-consistent low (3 guiding centre equilibria. This

class 1s defined by some restrictions, the most important

of which are symmetry, vanishing of the electric field, and
stability on the faster time scale of the longitudinal guiding
center motion. Open-ended as well as toroidal configurations,
with or without a rotational transform, and arbltrarily
anisotropic distribution functions are admitted. Some
relationships to the MHD description are derived for the
sub-class of equilibria having isotropic distribution functions.
The well-known interchange stability criterion of the guiding
centre theory, for example, 1s shown to be identical with the
well-known V"-criterion of the MHD theory. Since low frequency
interchange stability (‘B conserved) turns out to be a more
restrictive requirement than interchange stability ('B violated),
the confusion arising from earlier work on this subjJect is
removed. The present theory 1s a generalization to a much wider
class of equilibria of Rosenbluth's theory of the trapping
instabllity in axisymmetric multipoles containing 1isotropic
Maxwellians. This generalization shows that the stability
condition, as far as it concerns the confining magnetic field,

is relaxed by allowing for anisotropy.




1. Introduction

Microscopic stability of real confinement systems 1is a
fairly tractable problem if one considers only certain
limiting cases of electrostatic motions (interchange
motions) in low p quasineutral collisionless plasmas, i.e.

if one takes as a model the equations
- 3
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and then assumes certain scaling laws involving mainly the
Larmor radius. There 1is one Vlasov equation for each particle
specles, and in the charge neutrality condition the summation
runs over these speclies. B 1s any confining static vacuum
field, and\P is the electrostatic potential, the electric field
E being given by

E=-Ve. (1.3)

Equations (1.1-3) may be regarded as an approximation of the
full system of the Vlasow-Maxwell equations.

There are also other models which should not be confused with

egs. (1.1-3). A onefluid model, for example, in which the

parallel component of the electric field as well as the neutrality
condition are ignored yields similar results. One could also use
the Poisson equation instead of the neutrality condition without
altering some of the essential features of the theory. We
emphasize, however, that the results of this paper are based

only on egs. (1.1-3), and also that they are not at all proven

to be identical with the low[B limit of any corresponding results
holding for finite ﬁ :
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Guiding centre equilibria are stationary solutions of
eqs. (1.1-3), the scale lengths of which are large compared
with the Larmor radius, i1.e, for which the quantity

AT
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9 (1.4)
;X
may be used as an expansion parameter, and in which the electric

field is a first-order quantity, i.e.

E~culd. (1.5)

The distribution functions of the most general guiding centre
equilibria have, as proven by Hastle et al L , to 1lowest order
the form

bos,0) = Glp 1), (1.6)

where the G's are almost arbitrary functions., K is the ratio of
particle energy and mass,
2

IK = f%'LJ T i%i:\€ / (1.7)

/u is the magnetic moment,

ot

/bt?-' S’ (1.8)

and % is the lowest-order longitudinal adiabatic invariant,

§0, 1, %) = ot 2 (Ko Bl A)= Zp ik ) (1.9)

wherequand‘x are flux functions satisfying
B=Va <Vx, (1.10)

and o 1is the arc length along the magnetlic field lines.
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There are several distinct approaches to the stability
problem, depending on the way in which the perturbing
quantities are formally ordered in terms of the parameter
¢, and thus considering different classes of motions.

In this paper we treat only low frequency interchanges,
i.e. motions conserving the B—invariant.g -invariance
requires that the perturbations satisfy the same ordering
laws as the equilibrium, and that the frequencies be of the

same order as the drift frequencies,

. -2 e’
(A ~ & — (1.11)

The theory using the scaling laws (1.4-5) and (1.11) may be

called "drift theory" because the first-order gulding centre

drifts play an essential role, zero-order electric drifts

being forbidden by the scaling (1.5). This scaling requires

that the electric drift velocity be small compared with the

thermal longitudinal guiding centre velocity. The fact that

it 1s necessary for the B-invariant Lo be conserved seems to

be quite unknown though it has frequently been used as a suffi-

clent condition. It follows from the requirement that the

zero-order guiding centre arbits be closed. This requirement

is, in general, not fulfilled if there are zero-order drifts

removing the guiding centres to finite distances during one

bounce period.

All that is known about low frequency interchange stability

of general guiding centre equilibria is a sufficient criterion.
It was recently derived by Rutherford and Frieman 2) and
consists of the two sets of conditions

< G (1.12)
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It should be mentioned that these conditions can always
be satisfied by an appropriate choice of the functions(g,
if the fields are given. A problem arises only from the
fact that the conditions (1.12) have to be combined with
the requirement of confinement, l1.e. with the requirement
that the distribution functions fo drop to zero at the
boundaries of a bounded region in space. The conditions
(1.13) require that the distribution functions, when
expressed in terms of the quantitiesl<i,/u-,4(,and X
are monotonic in K, and thus are monotonicity conditions
in velocity space.

Since the criterion (1.12-13) is only sufficient for stability
against a sub-class of all possible motions, it cannot provide
any conclusions with respect to absolute stability.

Conclusions with respect to instability, on the other hand, can
be drawn by considering only special motions, if the equilibrium
violates a necessary stability criterion. In this paper a
condition will be derived which is necessary for stability to
low frequency interchanges, and hence sufficient for instability.
Necessary conditions are, in general, much more difficult to
derive than sufficient conditions because this involves some
proof of existence. Accordingly, in order to get through with
the calculations we shall have to adopt some restrictions
concerning the equilibria to be considered. But nevertheless
there will remain a fairly general class of guiding centre
equilibria to which our theory will apply.

Hitherto, a necessary low frequency interchange stability
condition was only derived for the much more special cases of
isotropic Maxwellians with constant temperatures in axisymmetric
multipoles. This theory was recently done by Rosenbluth 3) (see
also B. Kadomtsev and 0. Pogutse 4), S.E. Rosinski]j et al 5),
Rutherford and Frieman 6), Rutherford et al 7), J.B. Taglor

and R.G. Hastie 8) ).
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Since any Maxwellians satisfy the monotonicity conditions
(1.13) of Rutherford and Frieman, the stability condition

of Rosenbluth may be compared with the set (1.12). For the
special distribution functions considered this set reduces

to one single inequality which is identical with Rosenbluth's
condition. The unstable mode which occurs if this condition is
violated was termed "trapping instability". In contrast to the
conditions of Rutherford and Frieman which apply to the general
case, and 1in which the confining magnetic field and the
distribution functions are equal partners, Rosenbluth's
condition is an essential restriction only with regard to the
magnetic field. The reason is, of course, the special choice
of distribution functions.

The theory to be developed in this paper is a generalization
of Rosenbluth's theory to a much wider class of equilibria,
which include, in particular, arbitrarily anisotropic
distribution functions. The stability condition to be derived
will accordingly be a generalization of the trapped particle
condition. It will coincide with the general low frequency
condition only for a special sub-class of equilibria, being
less restrictive in general. Only for isotropie distribution
functions will it essentially refer only to the magnetic field.
The generalization to anisotropic equilibria enables us to
treat also open-ended configurations, which because of the
inevitable loss cone cannot contain any isotropic distribution
functions,

One of our assumptions will be that the equilibria considered

are stable according to the guiding centre theory. This theory
was extensively described by H. Grad 9). We shall now say a few
words about it because there is much confusion in the literature
about its relation to the drift theory. The guiding centre theory
assumes conservation of the magnetic moment, but not of the

E-invariant. Hence the appropriate scaling is

UOA_C;QB‘ , E“ ~ EU*B i (1.14)
Yy
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In contrast to the drift scaling (1.5) and (1.11) this scaling
allows for a zero-order transverse electric field. Hence in
gulding centre theory all particles have a common zero-order
electric drift Ui=[E x §/B2 which equals the transverse
component of the lowest order macroscopic velocity &l. Because
of the identity E+U~x B =OC one may use the picture of
guiding centres orbiting only along magnetic field lines, which
in turn move with the velocity Q. Hence electrostatic motions
may be thought as being built up by interchanging the particles
on different infinitesimal flux tubes containing equal magnetic
fluxes. This 1s the reason why electrostatic motions were termed
"interchanges". In MHD theory a similar picture holds.

In order to avoid any misunderstanding we emphasize that it
does not apply to the drift theory. Hence low frequency inter-
changes have nothing whatsoever to do with interchanging flux
tubes.

There 1is a general criterion for stability to interchanges which
was derived by several authors using several more or less

correct methods. In its correct form this criterion is
! SV O | A
S SCL A ,D_Q’(i—o +25dy) < © (1.15)
S /U' } DKy R o X / /

which means that this quadratic expression has to be negative
for any values of the number561(aum 6% . It was first derived
by Andreoletti 10) from the energy principle of Kruskal and
12) and crad 1)), 1t 1s

necessary and sufficient for interchange stability according

Oberman ") (see also Kulsrud

to a one-fluid guiding centre theory. But since the inclusion
of the self-consistent electric field, as shown by Andreoletti1
(see also Kulsrud (Ref.12) and Gred (Ref.13) ), relaxes any
stability condition, the criterion (1.15) is at least sufficient
according to the self-consistent guiding centre theory. It has,
however, to be combined with the monotonicity condition (1.13),

4)

which is necessary for the Kruskal-Oberman principle to be valid.
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The condition (1.13) plays still another role. As shown by
grad (Ref 13), it is necessary for local stability according
to the finite Q guiding centre theory, and remains necessary
even at arbitrarily low p>.

We have two reasons for requiring that the equilibria to be
considered be stable according to the guiding centre theory.
The first is the mathematical one that some of our formal
conclusions break down if the local stability condition (1.13)
and the interchange condition (1.15) are not both satisfied.
The second 1s the physical one that it does not make any

sense to look for low frequency instabilities of equilibria
which are already unstable to faster growing, and thus
dominating, modes. The necessary low frequency condition will
indeed turn out to be more restrictive than the sufficient
interchange condition, thus proving the existence of
equilibria which are stable to interchanges and unstable to
low frequency interchanges, and moreover proving that low
frequency interchange stability implies interchange stability.

These results are in contradiction with the widely held opinion

that low frequency interchanges are special interchanges, which
gave rise to a misinterpretation of the interchange criterion.
This criterion was again derived by Andreoletti (Ref 10) and

by J.B. Taylor 15) using the‘B-invariant, but without assuming
the supplementary monotonicity condition (1.13) to be satisfied.
Hence these authors interpreted it as being a low frequency
criterion. Andreoletti concluded that interchange stability is
more restrictive than low frequency interchange stability
because using the'}—invariant he did not need the supplementary
condition which he had to assume otherwise.

Besides the result of this paper, which definitely proves
that these interpretations are false, there are some simple
arguments which indicate that interchange stability and low

frequency interchange stability are at least independent, and
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which explain why the above mentioned derivations of the
interchange criterion are not correct. The key lies in the
different scaling laws. The range of frequencies considered

in the drift theory shrinks to zero in the gulding centre
theory. Hence one expects the drift theory to reveal effects
that are concealed in the guiding centre theory. One can
formulate this fact in another way by noting that the effects
considered in the drift theory play their role in time
intervals of the order of the drift periods, while in the
guiding centre theory one considers only times up to the order
of the bounce periods. This difference can be formally under-
stood by observing that both theories arise from the basic
equations (1.1-3) by a consequent time scale expansion in which
all quantities are written as formal series of the form

f =g PV(TG,’CA,TZI---) » where T, = L e . The guiding
centre theory assumes'b/?rto:: » While in the drift theory
the additional assumption o/9T, =0 is made. Thus, in order to
get any time dependence, the drift theory has proceeded one
order further than the guiding centre theory. The former thus
deals with the second order of the Vlasov equations, the lower
orders belng trivial, while the latter deals with its first
order. The effects which enter the drift theory, but not the
gulding centre theory, are of course the first order guiding
centre drifts. There are other effects which enter the guiding
centre theory, but which are assumed to vanish in the drift
theory. This corresponds to the difference in the scaling laws
envolving the electric field. In the guiding centre theory the
zeroth order of the macroscopic velocity is an essential
quantity, while in the drift theory it is assumed to vanish,
One may sum up all these arguments by stating that any motion
or at least almost any motion, which appears 1in the guiding
centre theory violates the'a-invariant.

As to the derivations of the interchange stability criterion
which use the g -invariant, we first note that they more or less
€Xxplicitly use the picture of interchanging flux tubes. Hence
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the underlying equations, though never explicitly stated,
are in fact the equations of the guiding centre theory,
which are not consistent with 3 -invariance. This is the
reason why the resulting stability criterion must not be
interpreted as being relevant to low frequency motions.
The question why this obviously unjustified use of the
-invariant nevertheless led to the correct interchange
criterion was excellently answered by the concept of the
"pessimistic variation" of H. Grad (Ref 13). Here the
quantity 3 is used only as a coordinate in phase space,

but not as an integral of the particle motion.

Before going into the details we should mention a serious
objection to the use of the } -invariant 1n any stability

theory. As pointed out by Grad 16) (see also Ref 13), there

are always perturbations which create internal mirrors,

causling sudden changes of the B ~invariant of some particles
which drift to such critical regions. A related problem

arises from particles the } -invariant of which, when

considered as a function in phase space, does not change

smoothly from the equilibrium state to the perturbed state.

The class of perturbations .avolding such effects is too

awkward to be relevant to any reasonable stability considerations.
The present theory (as well as any other existing theories using
the B -invariant) does not take into account these effects. Hence
its relation to the basic equations (1.1-3) is not quite clear,
and it should only be regarded as a model which is nevertheless

hoped to yield reasonable results,

In the present paper full allowance is made, however, for the
presence of internal mirrors in the equilibrium state, i.e. for
the presence of several types of trapped particles, the

3 -invariants of which may have entirely different analytical
forms. This feature, which 1s not fully discussed in the papers

of Rutherford and Frieman and of Rosenbluth, necessitates some
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slight modifications. There are also some other points in
Rosenbluth's paper which will, by the way, be somewhat
refined or more fully Justified.

In Sec. 2 a full description is given of the class of
equilibria to be considered. Some relationships to the MHD
theory are derived. In Sec. 3 the integral equation 1is
derived which serves as a dispersion relation for the normal
modes of the linearized drift theory. In Sec. 4 for a
certain range of phase velocities this integral equation is
reduced to a variational principle from which the stability
condition is derived.
\
1
\

2. Equilibrium

We consider any static magnetic field which allows for the J
longitudinal adiabatic invariant i

-’8(K,/u,.f\y,?‘):éﬁ&a‘%\/z(l@-}/le%) (2.1)

to be defined for an appropriate range of the parameters k(
and/u_and of the flux functionsrvland X', which together with
the quantity G are used as a set of curvilinear coordinates.

The determinant
D=DR-V& (2.2)

is, of course, assumed to be bounded away from zero. We will
never use the fact that B is a vacuum field, though this is
implied by the low ﬁ limit which we actually consider. Hence our
results will in a certain sense also apply to finite ﬁ systems,
The integral in eq. (2.1) runs along the field lines, either

once back and forth between two points where the lntegrand is
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zero (trapped particles), or once around a closed field line,

if the integrand vanishes nowhere (untrapped particles). We

allow also for toroidal flelds forming magnetic surfaces

("sheared configurations”). In these the 3 -invariant of untrapped
particles degenerates, as discussed by Kulsrud 17) (see also

Hastie et al. (Ref 1) ), into a surface integral.

We consider only a sub-class of the general guiding centre
equilibria described by eq. (1.6). This class is defined by

some restrictions, the first of which is, as already indicated

in eq. (2.1), the vanishing of the electric field. More precisely,
this means E4NJEFLJ[3. This requirement implies a certain
constraint on the equilibrium distribution functions which we
shall derive below. It also implies that the analytical form of
the 3 -invariant does not depend on the particle species, and

it enables us to exhibit explicitly the K -dependence of'} and its
derivatives 1if we introduce instead of/A the quantity

7&—;/&/!(. (2.3)

This quantity is related to the pitch angles of the particles, and
its value decides whether a particle is trapped or not. The

'} -invariant is now }=:\a2:7§ » where
o . —_——
FOap,x) :E#'”‘S'%\/'Z(""‘/\m . (2.4)

From this the derivatives of are easily computed to be

’BA/QK = %_B/\/TZ » and DS/B'L(/ = _\'!IR-\FC—BFO—‘-){ , where

= 0 ap o bfel A
LB(Awwﬂxv'f§ib‘D ¢5E;:TTE?; (2.5)

and

S A ) == 2 =
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Here the notations have been chosen in order to remind
that ?g/??( equals the bounce period Ty , and that the
time averaged change U} of‘x due to the guiding centre
drifts is given by o
£ A5 _
Oy (A1 = v RO - e 1<
A ‘;{Q 2

34/01K A -

Our second assumption concerns the confining magnetic field.
We assume that it possesses some symmetry by which the flux
functions can be chosen such that the 3 -invariant does not
depend on x’, Helical symmetry, for example, which contains
axial symmetry as well as plane symmetry as limiting cases,
serves for this purpose. Familiar examples of configurations
to which our theory will apply are axisymmetric mirrors, axi-
symmetric multipoles or spherators, tokamaks, and the heli-
cally symmetric "ideal stellarators". Since symmetry implies
that 1y, as well as B,is an integral of the time averaged
guiding centre motion, we may write the most general
equilibrium distribution functions in the form

b, (x,0) = FU<, A p) (2.7)

The functions G occurring in eq. (1.6) are then given by
6(/-*,'3,l‘<.)= FU<1/"L/’<¢/L§/(/‘A/K;:§/V’—< )) , where the
function-ﬂy{AJE)is the inverse of the functionij(Dfoy),
eq. (2.4).

Note that only in topologically simple configurations, i.e.
in open-ended configurations having no internal mirrors,
is 3 a unique function of;K_and'QF, defined in the range

. _
1/Bmax___ A< - B
and minima of B on a field line. Hence one has, in general,

In general there are several local maxima

several "types" of trapped particles and, accordingly, several
different functions-j-q Thus, there are several functions
C}(f~,$,l‘f) for each particle species, though there is only
one function ( /<, X ;Ap). Which one of these different
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functions is chosen depends, of course, on the values of the
guantities A and Ve But it also depends on the neighbowhood

of which minimum of [2 one considers. In closed-line or in
sheared confligurations there are, in addition, two types of
untrapped particles (depending on the sense in which these
particles circulate) for which O::):i1/B max. Note that though
the function & of one particle species is, in general,
discontinuous at some surfaces in (/Aw %,t<f)— space and has
different numbers of branches in the different regions separated
by these surfaces, the corresponding distribution function ¥O

is well-behaved in phase space, provided that the function
F%YC,Awﬂy) is sufficiently smooth. Equation (2.7) implies
that the two branches of the function (5 representing the two types
of untrapped particles are equal, because K is guadratic in Uy -
Hence the equilibria considered are to lowest order static, the

macroscopic velocity being a first-order quantity.

Without requiring symmetry it would be difficult to construct a
class of guiding centre equilibria the distribution functions of
which are continucusly differentiable, unless one considers only
topologically simple configurations. In sheared configurations
one would encounter an additional difficulty concerning the

é -invariant of untrapped particles. Without symmetry this

} -invariant would be an extremely ill-behaved function of 10
and X s belng constant on irrational magnetic surfaces qu: const,
but depending on X on rational surfaces. This is, as pointed out
by Grad (Ref 16), precisely the same sort of difficulty as that
occurring in MHD equilibrium theory. Our symmetry requirement
has still the further advantage of rreventing particles from
drifting to critical regions and thus suddenly changing their

} -invariant. This is not possible because particles stay on
the flux surfaces QF= const, and because on these surfaces all
field lines are equivalent.




- 16 -

We thirdly assume that the monotonicity conditions

F
2. & D (2.8)
K
be satisfied, where the functions F:*are the equilibrium
distribution functions, when expressed in terms of the

variables l<ﬂfk' and Ay,
F*(‘K,/L«r«p) = F(K//A/,<I’LF)‘ (2.9)

These conditions are identical with the monotonicity
conditions (1.13) of Rutherford and Frieman, which are, as
mentioned in Sec. 1, also necessary for local stability
according to the guiding centre theory. They have, as proven
by Grad (Ref 9), the further property of being sufficient for
the self-consistent electric field to be uniquely determined
by the functions [~ , if the magnetic field 1s given.

We are now prepared to derive a simple constraint on the
functions l:(FQNK;A() which is necessary and sufficient for
our first assumption to be satisfied.

First let us assume that the electrostatic potential is zero.
The volume element in velocity space is then

\Il< —
B o 3 — AALK,
AP0 =277 13 TS

Hence the neutrality condition (1.2) reads

1/3
zejfum/x F =0

Js ==

This relation has to hold on any field line, and for any value
in‘: B= B of the
upper limit on the A - -integration. Hence in open*ended
configurations, in which the integrand is zero for,lf:1/B —"
because of the loss cone, we are left with

1/13

J‘ AL Z-ej}iK\/E F =6, (2.10)
Q

of the coordinate § , i.e. in the range B

V1/R -

1/ Bwax
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while in toroidal configurations we have the additional

constraint
1/wa &=

‘-QSDLK\/EF:O (2.11)
J\/1/[5 X 5

on the distribution functions of the untrapped particles.

Equation (2.10) implies, as first noted by Persson 18), that

e&dK\ﬂ? F=0. (2.12)

This relation has to hold for the trapped particles.

Equations (2.11-12) are thus necessary for the electric field

to be zero. Sufficiency follows from the uniqueness of the
electric field, which 1s ensured by the monotonleity condition
(2.8). The constraint (2.12) will later turn out to be essential
in order to obtaln a variational principle for stability. For
this reason we assume it to hold also for untrapped particles

in closed-line (but not necessarily in sheared) configurations.

We now give some relations to certain quantities occurring in
MHD-theory. First let us consider closed-line configurations
and evaluate the quantity

4/ Bopmin

qly) = S &’ki Th (2.13)

o
where the summation runs over the particle types which are
possible for the given values of A and Y. Using eq. (2.5) we

write
- 1/Buin 2 P
= | AA A= e
1 §0L j DV2(1-AB) 7/

where the © -integration runs over the ranges where )JS = u
Reversing the order of integration we find

. /1
¢ 6‘ oo m————
1° L% \/2(4_“30




Here the G -integration runs once around the closed field
lines. The A_-integration can now be performed to yield

e (2.14)

R/
where 5 i1s the arc length along the field lines. Hence q
is the very quantity occurring in MHD equilibrium theory,

~—

the pressure being constant on the surfaces q = const. Next
let us consider the quantity

/B i
q,:jp{)\Z”E}G‘x , (2.15)
o

By a similar procedure we find the identity

q': 4q (2.16)
Hence q' is the very quantity occurring in low ﬁ MHD stability
theory, the inequality

P’q’<’ 0 (2.17)

being a necessary and sufficient interchange stability criterion.
The identities (2.13-16) do not hold in opeﬁ—ended configurations,
because in these the quantities‘%% and E&.are not defined in the
range C)ff)Lfg T/Bmax. In sheared configurations they are valid
if one interprets the G -integrations in the appropriate way as
integrations over magnetic surfaces. The relation to be discussed
next deals with a moment of the distribution functions.

Hence it holds for any configuration, the distribution functions
being zero whenever the é -invariant is not defined. Considering

the moment
P

: : ' 3
BAAp) = Dmn JAKVIET (2.18)

o
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we find the identity
/B i
_ — _ ____Q
ﬂc‘-;\Pjig*é = [P (2.19)
Q

wherelb is the mean pressure,

P =2"MA_S¢G’O Ch (20 . (2.20)

If the distribution functions are isotropic in velocity space,
i.e. if the functions F do not depend on A, then the pressure
is also isotropic, and equals IS, eq. (2.19) reducing to the
identity (2.13-14). The relations (2.18-20) may be generalized
to other moments of the distribution functions.

Qur fourth assumption reads

|2 2 | 2 2E |
9y oK oY

This may be expressed in terms of the average drift veloclity

_ e QY
UX = =) ’33/9 < (2.22)

and a generalized diamagnetic velocity

(2.21)

il
Oc =— 5= f’F,@' (2.23)
< AP/ oK
as
[ | << [ Uel | (2.24)

The physical content of this assumption is that the scale lengths
across the flux surfaces of the distribution functions are small
compared with a certain average scale length of the magnetic
field. This also holds,of course, for the scale lengths of any
moments of the distribution functions. In the isotropic case the

latter fact can be formulated more precisely by using the
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relations derived above. First note that in this case the

inequality (2.21) may be rewritten as

o eyt BE
i< <t Cole<|= |-

c < o\
Multiplying this by m < » summing over particle species,
and integrating with respect to K, we obtain, after an
integration by parts of the l.h.s.

lG;(Pi“iéle) )

where the prime denotes differentiation with respect to «(.
Multiplying by ;E%,’ summing over particle types, and
integrating with respect to )\, we finally obtain

lq'pl<<Ip'ql (2.25)

This relation holds also for any other moments of the
distribution functions.

We finally assume that the sufficient interchange stability
criterion (1.15) is satisfied for those types of equilibria

to which it is relevant, i.e. we assume it to be satisfied

for closed-line configurations and for open-ended configurations
with insulating and plates ("interchange equilibria"), but not
necessarily for sheared configurations and for open-ended
configurations with perfectly condicting walls (tied magnetic
field lines). Using the notations introduced above and

employing the inequality (2.21), we rewrite this criterion as

/B
W
b’( )\ T UL sl O »

This form applies, however, only to topologically simple

configurations. In general, the appropriate form is

A1 Bunkis

g A )\P%E‘L 2 TpUy <0, (2.26)
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For isotropic distribution functions this reduces to the

MHD stability criterion (2.17), because P does not depend on
and becaus: of the identity (2.15-16). This equivalence of
guiding centre stability theory and MHD stability theory holds
only for the special class of equilibria introduced in this
section. It may be used to get a further conclusion from the
inequality (2.25). Regarding the pressure p as being a function
of<q and observing that the MHD stability condition then reads
AP/(,Lq-{_ 0, we may rewrite this inequality as ~——0(P/ol.q>> P/q .
By integration we conclude P Q<< P max § min, which is
obviously consistent with (though independ of) the 1ow{3 limit
and with confinement.

3., Linearized dynamics

In the range of frequencies in which é is invariant the
distribution functions have, as shown, for example by Hastie
et al. (Ref 1), to lowest order the form

Lo, o0 = gy, i X0 (3.1)

There 1is one function %.for every particle type of every particle
species, 1l.e. for particles being trapped between the same mirrors
or circulating in the same sense, and having the same mass and
charge. Since in the perturbed motion we have to allow for an
electric field, the % -invariant is now given by

ACK o X %) = s \/l(K‘/*B’“/if:“w‘f’j (3.2)

The lowest non-trivial order of the Vlasov equations reads now

G _ may o4 3K _ 3% 9IS
I e.( 3¢ dx X Py’ (3.3)

where the Hamiltonian kfgﬂk,é,qk,% ) is to be computed by
inverting eq. (3.2).
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Let us linearize egs. (3.1-3) about some equilibrium. We then
introduce a small parameterng by writing

g8y = Gl g Kl h oy x k) +§ galp v k),
\-P(./q/f'x,v%—f*>: g’ \'PA (@n?ﬂ;srt) /

and expand all quantities up to first order in . As the
functions } and P(depend on the perturbing electrostatic
potential ‘P4 » they have to be expanded too. Care has to be
taken with regard to the independent variables, which may be
either /u.,l(,"\.;/,‘%‘,?%) or X,\J, X . In the first case
the perturbation to the equilibrium } -invariant gejis

ALK i, &)-“M3K<*P> (3.4)

inversion of which yields
' <
4(/{«,‘3,4-{’(%,&): -/T/_-V\.<\PA>' (3.5)

Here <'--:> denotes the time average over the unperturbed
quasi-periodic longitudinal guiding centre orbits,

' _.'jiﬁc“A-‘ _Ei B
Cor=(38) Ao 5 = 3.6

In the second case the perturbation to K is simply
K1('x,g,t) =, E‘%\\P’* , which gives rise to a term to
be added to the r.h.s. of eq. (3.4). The result is

-

Yulx g k) = %—A{%(\pf—éﬂw ,

(3.7)
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Substitution now yields

\ﬂ %*M'&K(\F SO (3.8)

g _(RFFIK m—"*p@ . K 2%
A VIK D K “Q”W?%' (3.9)

Here the suffixes have been dropped, i.e. f, g, and \p are
perturbing quantities, and the functions } and[(frefer to the
equilibrium state. In the linearized Vlasov equations (3.9)

some terms have vanished by symmetry.

It should be mentioned that in the derivation of eq. (3.4) the
effects of the perturbing potential on the limits of the

& -Ilntegration have been neglected. There seems to be no easy
way to include these effects, and it also seems to be

impossible to prove them to be negligible. They actually destroy
the } -invariant of some particles being reflected by any
intericr mirrors arising from the perturbation.

Let us look for "normal modes" of the form

, " Llwt—kyx)
\p(@,yg,c&,t)z Fly,s)e A ) (3.10)

The solutions of the Vlasov equations are then
K, B F"
EF‘ iltot— 97.70

q=- SOK YV %?2 (FHe (3.11)

T 3y

Note that in toroidal configurations one has to require that
\? be a univalued function in space. This, together with the
ansatz (3.10), implies that neither any choice of the
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(4#,7(,6’)-coordinates nor any choice of the Fourier coefficient
QF is allowed. As to the coordinates, the contourqu/= const,

& = const have to be closed once around the torus,)( increasing
by 27C. Hence the quantity Zﬂtﬂ(is some magnetic flux. In
spherators and in tokamaks, for example, the quantities 2ﬁT’QJ
and @ may be chosen to be the flux and the potential of the
poloidal component of the magnetic field,?( beisg the angle
around the symmetry axis. As to the functions kF, the

appropriate constraint arises from the identity
\P(/LVIX"X*IG*S*/?’() = \P(W'—X'E_!t)/ (3.12)

where 6% is the periodicity interval of the coordinate © , and
7‘* is a generalized rotational transform. Equation (3.12) implies

~
$(@;E)=@(W;G)€*P[*&pz“§&5], (3.13)
where (? is an arbitrary function periodic in &,
_ A

In closed-line and in open-ended configuration.;{*is zero. In
N\
the latter ﬁo need not be periodic.

Equations (3.13-14) imply that for untrapped particles in
sheared configurations the time average (3.6) of\P is zero.
Hence the perturbing distributlion function %,(but not 91) of
these particles are also zero, consistent with the fact that
they are constant on the field lines which cover the magnetic
surfaces ergodically. For trapped particles the functions:%
may depend on;x because the functions ﬁ.need be defined only
in the regions where these particles orbit.
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We must, of course, ensure that the 8' invariant of untrapped
particles in sheared configurations is indeed conserved by the
perturbed motion. This requires that during one period of the
oscilllation these particles effectively sample a representative
part of their flux surfaces, thus providing a restriction
involving the number Pz, which, on the other hand, is also
restricted by the requirement that the scale length of the
perturbing potential be large compared with the Larmor radius.
An admitted range for the number kzwill, in general, only be
left if too large and too small values of the rotational
transform are excluded. The proof depends on the special
configuration considered and will not be given here.

Substitution of the solutions (3.11)'of the Vlasov equations
into eq. (3.8) yields

'Q :—Q—Eexp[ (wt-hx—%l ij
B kX s

A D B &
(\P“ (,O-—QzO%<\Pe >€ ).

(3.15)

for the perturbing distribution functions of the diverse particle
types in phase space. The velocities U&_and'd% are defined by
eqs. (2.22-23). The first-order charge neutrality condition is
now formed from eq. (3.15) by summing over particle types,
integrating over the whole veloclity space, multiplying with the
partlicle charge, and then summing over species. The result is

ot

H a2
Z(§-ep(ge ES T 2o, e

This is a non-symmetric linear integral equation for the
electrostatic potential. For a given number k_there will, in




.

general, only be certain complex eigenvalues (O for which
this equation possesses non-trivial solutions. Hence it
serves as a dispersion relation. The boundary conditions
depend on the special configuration considered. Any
singularities arising from the vanishing of the denominator
are handled in the usual way by approaching from below in the
complex ) -plane. One proves this by performing a Fourier-
Laplace transformation instead of simply considering the pure
modes (3.10).

4, Stability

We regard the equilibrium as stable to the motions considered
if, and only if, the integral equation (3.16) possesses no
elgenvalues (O with negative imaginary parts. In order to get a
self-adjoint problem we consider only the range of "phase
velocities"w/restricted by

[lj%] <3<.100//k1(<ﬁ<1{‘JQ;l . | (4.1)

We thus exclude resonances with the particle drifts and with
the diamagnetic velocities, which is made possible by the
assumption (2.24). The integral equation (3.16) is now expanded
according to

pobve __ Boe 4 Koo  O(-B%)

(/O'*-E;O%— o

The domlinant part may then be written
A e _
wIP\P=A\P*WL“Px (4.2)
where the operatorsF> K\,and L are given by
P3- T L L G- @ EH )
= K

(4.3)
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2 dK ot %“M e
= Dz /M\T(——&@O Bg/??'f<<\{> ! (b4.Y4)

X
L dIK oF™ Ay k&S
|G =~k2ef7 :‘*B FAAS A >Q )

We first show that the operator L is zero by the equilibrium
charge neutrality. Using the fact that the time average of the
potential does not depend onl( when the variable A is
introduced, we write

(5 Y. S = PP (4.6)

The operator L_is then

I

Lg--ke" ™[ S5 zej a VR 2L

By the version (2.12) of equilibrium neutrality, which was
provided by the vanishing of the electric field, the integrand

in eq. (4.7) is zero. One can show that the terthLﬁ§in eq. (4.2)
dominates over the other two terms if the equilibrium electric

\/ D\B (4.7)

field does not vanish, and if 1t is as large as allowed by the
drift scaling (1.5), and that in that case the eigenvalues do not
satisfy the assumption (4.1).

Henceforth, we deal with the eigenvalue problem
e P
L,QZP\F=/A\\(’ ; (4.8)

The operators P and Alare easily shown to be symmetric according
fto the inner product

(3.4 - |45 3. 3. (4.9)
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The (real) quadratic forms of these operators are

.
(& AP)= PzijAwif«“ F*'ZZ‘%KP 6ﬁ>|z (4.10)

(9, P~ [y e ARSI -9 TP,

The latter is positive semi-definite because of our assumption
that Fq‘is monotoniec in energy. Hence a variational principle
holds which states that the eigenvalues (0> of eq. (4.8) are
given by the statlonary values of the functional

b (kp,f\\#D)
Wiel="5 555 - (h12)

A rough estimate shows that ugihu'ﬂfﬁj}_tfﬁ in agreement with
the assumption (4.1). The lowest eigenvalue, the sign of which
decides the question of stability, is given by the absolute
minimum of (W . Hence we have stability if the numerator is
positive definite, and instability if it 1is indefinite. For the
marginal case no conclusion can be drawn within the present
approximation. It will be shown later that the variational
functional is bounded from below. This 1s necessary in order
that the above conclusion with respect to instability, which is
based on the existence of a minimum, really holds.

In order to arrive at a stability criterion we rewrite the
numerator as

($,A%) == K[y dX 2B SToIF1Y, )

wWwhere some of the relations of Sec. 1 have been used. From this it



follows that

%% Oy < © (4.14)
is necessary and sufficient for stability. This inequality has
of course to be satisfied only for particles that really
contribute to the quadratic form (4.13). It thus need not hold
for untrapped particles in sheared configurations, because for
these CP equals zero. The sufficiency of condition (4.14) is
obvious. As to its necessity, one has to show that a trial
function @ existes for which (@,A?’)(@, if the condition
(4.14) is violated by some particles. Suppose GXB';S/B«‘V>O
in the neighbowhood of some valuequ/:4+b/;L=J\_0 . Consider
a "function" (Po which 1s proportional to 6(5"??03 near Ay, »
and zero elsewhere. Here G, has to be chosen such thatflm(3(5bY=4.
For this function the numerator of the variational expression
is minus infinity, while the denominator is not defined at all.
The function CPQ is, of course, not admitted as a trial function.
But one may nevertheless believe that a trial function exists
for which the numerator is finite and negative, the denominator
being defined, and that the corresponding unstable mode 1is
localized at the turning points of the particles violating the
stability condition. Strictly speaking, in order to complete
the proof of instability, one has to show that the eigenfunction
belonging to the lowest eigenvalue is consistent with all
assumptions made above. One should also estimate the effects of
the internal mirrors developing at the points where the unstable

mode is localized. We leave these problems to further investigations.

There 1s another unsolved question concerning the relevance to
untrapped particles in closed-line configurations of the stability
condition. These particles certainly contribute to the quadratic
form (4.13). But since they have no turning points, it is not
clear whether there is an instability in the special situation
that some untrapped particles violate the stability condition,
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while all trapped particles satisfy it. One may even ask
whether this situation is at all possible in any interesting
configuration.

We prove now that the variational functional W/ cannot tend

to minus infinity. This could happen if the numerator had
negative values in the null space of the denominator. By the
Schwartz inequality this null space consists of all admitted
trial functions CP proportional to exp[ih %S;EJ , the
coefficient depending on «( only. In sheared confilgurations
these functions are excluded by the periodicity requirement
(3.14). In other configurations the exponential factor equals
one, and the null space 1s simply formed by all functions (%(Qp)
i.e. by all perturbing electric fields having no component
along the magnetic field lines. Hence in closed-line configura-
tions there 1s always a non-trivial null space. In open-ended
configurations this depends on the boundary conditions. If~p

1s to be constant at the boundaries (tied magnetic field lines),
then there 1s again no null space, while in Interchange
equlilibria purely transverse electric fields are admitted.
Collecting these results we state that the denominator is
positive definite in sheared configurations and in open-ended
configurations with tied field lines, and that 1t is positive
semi-definite for closed-line configurations and for open-ended
interchange equilibria, being zero only for purely transversc
perturbations CFOq/). These trial functions are obviously
identical with their time averages, which thus do not depend on A_
Hence in the null space of the denominator the numerator may be
written:

($AG) = — k[ e |91 [AN 2P 5 Ta Ty,

and the necessary and sufficient condition for the numerator to
be positive whenever the denominator vanishes is identical with
the 1lnterchange stability condition (2.26), which we have already
assumed to be satisfied precisely by those equilibria for which

the denominator has a null space.
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There might be cases in which the numerator is minus infinity
for some admitted trial functions because the quantity %ﬁSC%;BTS/BWf
is plus infinity for some values of’q»and A . This situation
occurs if the stability condition is violated by some barely
trapped particles, i.e. by particles having infinite bounce
period 733. In this case the denominator is, however, likely

to diverge, too, such that the ratio remains finite. We do not
try to discuss this situation further because here just those
particles play a dominant role which are not correctly described
within the drift theory, their E -invariant being violated by
any time dependent perturbation.

The stability condition (4.14) requires that particles have
favourable average drifts. More precisely, it requires that the
average drifts of all particles belonging to the same species,
orbiting on the same flux surfaces and having the same pitch,
have the same sign, this sign being given by the sign of the
gradient of the quantity'ﬁ , which is related to the mean
pressure by eq. (2.19). For the sub-class of equilibria having
isotropic distribution functions thls sign does not depend on
the pitch angle. Hence in this case the signs of the average
drifts are required to be the same for any pitch angle. This,
together with the requirement of confinement of course, 1is a
rather severe restriction on the magnetic fleld. This

restriction can obviously be relaxed by allowing for anisotropy.

For the class of equilibria considered in this paper the
sufficient low frequency interchange stability criterion (1.7) of
Rutherford and Frieman reads

o Uy < 0. (4.15)

This 1s, as it has to be, in general more restrictive than the
necessary criterion (4.14), the latter being essentially an
integral over the former. The two criteria coincide if%&i?ﬁ?'>()
for any values of k:,;\_,aNd‘qf'= This happens if the distg?%ution
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functions are sufficiently smooth. The functions
]:N P(«{z)exp[—mK/T] , for example, which were
considered by Rosenbluth (Ref 3), have this property.

Since the sufficient interchange stability criterion (2.26)
is an integral over the necessary low frequency interchange
stability criterion derived in this paper, the former 1s less
restrictive than the latter. Hence we have proven that low

frequency interchange stability implies interchange stability.
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