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ABSTRACT

Summational invariants, conservation theorems, equilibrium
spectra, and the H-theorem associated with the kinetle equation
for wave-wave interaction in a plasma are presented in thelr
mutual relationship. If in some reference frame all waves have
positive energies then the system always goes to equilibrium.

It follows from conservation theorems that the final equilibrium
state depends on the initial conditions. Regular equilibria, with
NK > 0, may only occur as final states of time-varying solutions.
For the "three-wave case", in which only separate wave triplets
are coupled, the general solution of the initial value-problem

is given, and it is shown that at sufficlently early times any
time-dependent solution of the kinetic equation is either un-

physical (some NK < 0) or degenerate (some A& 2 0);
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INTRODUCTION

In the theory of weak plasma turbulence, the following kinetic

N T e T AT

equation for interacting waves in a homogeneous plasma holds

P T U PPN S e I G

if the waves are undamped and stable ( )& = 0 according to

linear theory):

6k N :'JPASKI \Ax.rkn (GQ Nw NK“ T 0, N&“AE N ?E‘h% N?)) (1)

with
K'= - (K+«') : S = sign () j (2)
the coupling coefficient \M&H;Ku being of the form:
z
\VLKW“ = sign( h/ LL W, J } oy 5(&3-+a@‘+c@¢), &0

The quantities NK and LJK are explalned below. There are

more general versions of the kinetic equation which are valid
for unstable or damped waves and/or for inhomogeneous plasmas.
We shall not be concerned with these. For references, compare
CAMAC et al. (1962), GALEEV and KARPMAN (1963), GALEEV et al. (1965),
AL'TSHUL' and KARPMAN (1965), DIKASOV et al. (1965), AAMODT and

SLOAN (1967), FOSENBLUTH et al. (1968).

One purpose of this paper is to study some basic theorems as-

sociated with eq. (1) in the case of positive-energy waves and

e e e
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present them in a coherent and simple way. There is in fact
E,EEEEE\EEEESEEEEE,between summational* invariants, conservation
theorems, equilibrium spectra, and the H-theorem associated
with eq. (1). From these theorems conclusions about nonlinear

stability and time-asymptotic properties can be drawn. The

other purpose is to present a thorough study of the "three-wave

case", where waves are coupled only by separate triplets. The
T

general solution of the initial-value problem is given for
this case, and a simple expression is derived for the linear

relaxation rate to equilibrium.

We start by giving some explanations about eq. (1). The absolute
value of NK represents the action density in K-space of the
b N T~ —
plasma waves. The quantity Nu itself is defined via the energy
—_ A
density W

K of the waves by
M~ dd]

_—
| =

= W, /lwgl. (4)

It should be noted that the definition of N& varies in the
literature. The definition of wave energy in a dispersive medium
P W I e I T I e W I
has been given many times in the literature and will not be dis-
cussed here. Perhaps this concept 1is most thoroughly presented

by ALLIS et al. (1963), AGRANOVICH and GINZBURG (1966). Inhomo-




geneous plasmas were considered by JUNCWIRTH (196R). Monlinear

P

instabllities may result when waves of positive and negative
R

energy interact: compare DIKASOV et al. (1965), KADOMTSEV et al.
(1965), AAMODT and SLOAM (1967), ROSENBLUTH et al. (1968). In
this article we shall assume that a reference frame exists in
which all interacting waves possess positive energies; we shall

— T T

then have

v
o
o=

>
Ny 20, Wy ;o W =0 (5)
for all physical states.

Actually the kinetic wave equation could be written in a form
that contains 1in essence only frame-independent cuantities: com-
pare AAMODT and SLOAN (1967); ROSENBLUTH et al. (1968). However,
the question of nonlinear stability is treated more conveniently
with the aid of a different form, as presented in eq. (1), con-
taining quantities Nﬂ and S that are not invariant individually,

whereas the products NKSK are. In order to prove stability a

frame should exist 1in which all waves have the same sign of ener-

gy .

()
For given K there generally exist several frequencies v, that
correspond to the different branches mi of the dispersion re-

lation. For any wave (_K ,v ) one has the reality conditions:

o T = Gy ' N—M = NK i (6)




]
The coupling coefficient »Vﬁkm" obeys the following symmetry
LN TN A e e T - A~ ——

= W = W = (7)
\/\’/L(K‘L(t' - \\Ji_(\f'"gl J:‘I‘IE- W 1 v
The elementary interaction in eq. (1) is 3-wave-interaction. One
essential step in deriving eq. (1) is neglecting all phase cor-
relations between different waves (;ggggghpégig_gpproximation).
Therefore eq. (1) turns out to be irreversible in time, as is easi-
ly seen by inspection. As a measure of irreversibility an H-function

may be defined (Section 3).

For consistency, it is required that, whenever Ni Z.O initially,
eq. (1) exclude negative values of Nk at later times. This re-
quirement 1s satisfied, as can be seen by substituting m% =0

in eq. (1), whence it follows that NK;>O . This means that un-
physical values, N5 < 0, may develop-into physical ones, but not

vice versa.

The range of the K-integration in egs. (1), (12) - (14), (21) - (24),
etc. is defined by the range of wave interaction, \Ngwwn¢ 0. The
K-integration will give rise to divergence difficulties at large
values of K if the interaction is not limited to a bounded region

in K-space. The divergence might occur - at least in principle -

in the kinetic equation itself as well in the equations defining

conserved quantities and the H-function. The H-function will diverge




also in another case, e.g. when NK = 0 in a K-region of non-
zero measure. Then again the problem to be studied should be

reformulated in order to avoid this divergence.

INVARIANTS AND EQUILIBRIA

Before the H-theorem is derived, summational invariants, con-
servation laws, and stationary spectra ("equilibria") will be

considered.

Summational invariants are well known in connection with BOLTZ-
P S

e T T N T T

MANN's equation; compare CHAPMAN and COWLING (1958). By analogy,
we may define a quantity /QK as a summational invariant by re-

gquiring that

Ag +Aw = A 5 A= - A (8)

whenever \A/waK" :F O . Obviously, if AK and Eu

are summational invariants, so is CK = @ AK -fi;B“ ( a,@- =

arbitrary constants). By definition the Cartesian components

of K and the frequency W, are summational invariants.

The summational invariants are connected with conservation laws.

Let us consider conserved quantities that are EEEEEEEE:

1 = goPK I, (N,) . (9)




Upon inserting eq. (1) and using the symmetry relations of
eq. (7) the following expression for the time derivative of I

is obtailned:

B = jw N, j(ﬁv e T+ (e K Ll

’ (10)

2
—

No use has been made so far of the requirement that I should

be conserved.

We now shall make I a conserved quantity by "detailed conser-

XEEEBEF, i.e. by separately equating to zero the contributions
to I coming from all the different interacting wave triplets.
This is done by putting the second bracket on the right-hand side

of eq. (10) equal to zero. It follows that

d = - A (11)
5
£OdN, X
with AK = an arbitrary summational ihvariant. Therefore, all

quantities I of the form

T =T, + (&« oAN, (12)
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are conserved. In particular, total momentum and total energy,

AT e~

E = j‘v\;l( 65 K N’L ) (13)

W= [dK Tl Ny (1)

are conserved. Of course, it 1s required that the integrals in

eas. (9) to (14) converge (compare Section 1).

In considering stationary spectra, we shall restrict ourselves
e Tt e . N
to "regular" equilibria, i.e. those with hh{> 0. It then follows
L i e e N N A P oy
from eq. (1) in a straight-forward manner that the most general

regular equilibrium arising from detailed balancing is given by
g W R W, W N P G

"

6_5 / Nﬁ - /‘]K_ C (15)

Here JAK is the most general summational invariant consistent

with NK > 0, 1.e. with the property:

sign(;zb) = &y . (16)

S D N e

"Detailed balancing", of course, means that the bracket on the
right-hand side of eq. (1) is assumed to vanish identically. Ve

shall prove from the H-theorem to be derived that all regular

P S ., N

equilibria come about by detalled balancing, i.e. are of the

N —— T e e N e TR TR e T N e e T T

form given in eq. (15). The RAYLEIGH-JEANS spectrum,

N, = T/lw!, (17)
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i1s only one special case of such a regular equilibrium. Tt
is assoclated with the special values

Po= TR/

e = ‘TJ/dsk

for total momentum and total energy. Of course, convergence
of these 1ntegrals can be achieved only by limiting the system

to waves with finite values of |K]|.

We shall show in Section U4 that the positive-energy wave system
- e T e T~

always goes to an equillibrium state. Given any initial state
—

e

the values of total momentum and energy follow from eqs. (13)
and (14). Since these quantities are conserved it is obvious
that initial states ﬁith different qgmentum and/or energy must
lead to different equilibria. On the other hand initial states
with arbitrary values of E aniLJ can be constructed except
under singular conditions. Hence there must also exist a con-

N

tinuum of different equilibria Some of these may be of the form
N~

e e e R N R e

N, = 6 T/(tw+cK). (17a)

While the RAYLEIGHE-JEANS spectrum is 1isotropic in K-space, the

I
Mmore general spectrum of eq. (172) is not. In fact W, =‘Ua1'£}K

May be interpreted as the wave frequency as seen from a moving
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The property ¥§2 0O will be produced by making the second
bracket in eq. (19) a positive multiple of the first one,
i. e. by putting

ClHL_(_ 6

K dNK = € N“E + ’4'5 (20)

15}

where /AKis any summational invariant, and ¢> 0. Then the

general expression for the H-function is given by

\* = L4c - I:{ Nk

E +cjdgl< Ou N, (21)

Here I is the conserved quantity constructed from Ax . One may

use the expression

o< (8K Ll (o)

or if we assume convergence of

Jl :fclgk EM-'wgl (23)

the alternative expression

M, = H,+d :(Cm‘ b Wy c2a)

could be used in the forthcoming discussion. The H-function of
eq. (22) was used earlier by DIKASOV et al. (1965), AAMODT and

SLOAN (1967).




The expression of eq. (22) differs formally from BOLTZMANN's

particle H-function involving {IJLL. Equation (22) can also
pbe derived from statistical considerations of microstates (com-
B e N T P S
pare LANDAU and LIFSHITS, 1959) if the actions of those waves
3
which are contained in a volume element & k are distributed
according to a BOLTZMANN distribution, the average action being

proportional to the macroscopic variable N However, a local

K

BOLTZMANN distribution in K-space does not seem to be implied
by the assumptions made in deriving the kinetic equation in
the first place. Therefore, closer investigation of this question

may be of interest. It will not be pursued in this paper.

CONSEQUENCES

From eqs. (19) and (20), it is seen that for regular spectra

e T T

( Nk > 0) H =0 holds only when the bracket of eq. (1) vanishes

ldentically. This proves that all regular equilibria obey eq. {15},

N T

l.e. arise from detailed balancing.

P e S NN

Next, we show that the wave system tends to an equilibrium

P e w N i s e S

QEEEEEPution for t > oo . We can prove this with the following
assumptions: It is postulated that the total wave energy MV of
eq. (14) and the expression J o ea. (23) both be finite. It

should be borne in mind that W is conserved in time. We now

have
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W, = (0 el = [k e - 0

< fdK W b= wea,

(25)

i H1 does not exceed an upper bound whenever W and J? are

finite. Since, in addition, H4 =2 0, 4% Pollows that

1im H (H o B 1im H,, (U = H (26)
'{‘,—900 A / - @

H, belng finite and, in general, dependent on the initial con-
ditions. This proves the proposition that equilibrium will be

attained. As mentioned in Section 2 the equilibrlum state will

i R P n e WP W WP . W

depend on the initial conditions.

i S, W e, e RS o S G e P W

Finally, it shall be shown that all regular equilibria are stable

with respect to "conservative variations", i.e. those obeying

— i, S

the conservation laws. In other words, regular equilibria may
i e S e N W

only occur as final states in time, but not as initial states of

e e R e T km——‘w

time-varying solutions. In order to prove this proposition, let

us consider the change of H, when a finite perturbation

1
AIQ = -N is applied to an arbitrary regular equilibrium

NOK > O . we have

-~
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BN, = [ (BN, - 0N < [ (am, /1y ). (1)

o] e .
On using Nu == SL //dk - eq. (15) - and the special con-

servation law

~

AT :jdg!( 6, ;15 ._/JNLi =0 (28)

it follows that

A <fu'fl< (4N, /N;) :fﬂ' 5 L M, =41 =0, @

0
Equation (29) states that H, has an absolute maximum for Nw :/V“

—_—

under the constraint I(NK) = I[I%f). This proves the above pro-

position.

GENERAL THEOREMS IN THE THREE-WAVE CASE

In the remaining portion of this paper, we shall treat a simple
eéxample which can be solved rigorously and may also serve as an
1llustration of the general theorems derived in the previous

sections.

In the case of a one-dimensional K-space, 1t may be possible

I e N N T e e e T

for the equation

CJH -+ (Ll‘kf = CGK.;I«" (30)
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to possess a solution K'(K) that 1s unique, except for the

P U

substitution K'=> —(K + K'), which gives the associated solution
K"(K). Then the coupling coefficient of eq. (1) connects only

two more waves, viz. K2 = K‘(KI) and K3 = K"(Kl)’ with a piven

wave Kl' We may therefore choose K1 as a continuous parameter

that distinguishes all the different triplets of interacting

waves. For every triplet one obviously has the relations:
\{A+\<L+K3:O; Co, + Ly t i, = O,

By carrying out the K-integration in ea. (1), with K one-dimensional,

one obtains the kinetic equation for the "three-wave case":
e R N —~ T N— N ———

61&1/“1 53N3 /"<3

s, N, /«,

Il

1]

:(D‘,‘Nle—FGNN +63N1N2)) (31)

- L L
with

deo, - devg

d Ky d K,

«, = 2 | V| = @ (32)

A

Cyclic permutations of the indices 1in eq. (32) give o, and 3 .
In this Section we shall 1list, as far as necessary, the genegg&
theorems in the special form they adopt in the three-wave-case.
E e SN

——

The exact solution of eq. (31) will then be given in fection 6.
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To simplify notation, we introduce the quantities F4; = N;/«g P
As may be shown by using ea. (31) the conserved quantities ana-
P S, N, W N e
logous to those of eq. (12), but assoclated with a single wave
- T —— e

N T T — T T

triplet, are given by
T

T = I - 2 5‘{ ,'_'\'; r\’,': ) (33)

where the A; are agaln summational invariants, with eq. (8)

replaced by

A +A +A, =0« A=A, (31)

In particular, the total energy of the three waves 1is a constant

AN~

and proportional to

W = Z lw:| M. (35)

1

Regular equiliQEEE_are still given by eq. (15) in the three-wave
B e I

case. The H-function for a wave triplet is given by

H-.EM'N; o Yo M-
‘-\ = H6 + C ?._ T = Ho +CZ. ‘x'l /' C>o0. (36)

The results of Section 4 equally apply in the three-wave case.
In addition, one may also demonstrate by the linear perturbation
— WW’

method that regular equilibria can occur only as final states of

P e e~ ~—

time-varying solutlons. Thus P& is expanded about a regular

equllibrium u. > O:
/ T
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NI,‘L :/.k; t g, : N{ = J"{ + g ) (37)
with ]Amil <§‘/4; . At some 1initial or final time the solution

should coincide with the equilibrium state ( am; =a; = O ),

Hence one obtains from eq. (31):

I

6:1 /Wld E 61 ’W\l
On using the equilibrium condition for /u; and the ansatz
m, oC EAP(;Jf} , one finds from the linearized form of eq. (31)

the following damping rate:
e M

y = (VZV,;//M,,/I "‘()/\}1/4//1,{2) # (1/41/2//{3), (39)

(Because of the linear dependence of the three hﬁ there is
only one solution for )’). For regular equilibria all /u;, Voo

and 3, are positive, which proves our above proposition.

Perturbation theory is applicable also to degenerate equilibria

R e i N N I N S
which are characterized by at least two of the N{ being equal
to zero. As an example, for the equilibrium /Ml :/H3'=.O one

obtains the following damping rate:

y= -66 («+x3)y, 2 0, (392)



-
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Thus degenerate equilibria may occur as initial or as final
states of time-varying solutions. The auestion whether the
corresponding solutions of eq. (31) are physical or not will be

answered in Section 6.

SOLUTION OF THE THREE-WAVE CASE

It 1is instructive to give the-ggﬂgzgiﬁgqiggigﬁ of eq. (31) in
two different forms, viz. a for given final equllibrium state,
and b for given initial state (at t = 0). Form a has the ad-

vantage of formal simplicity, but is less appropriate for dis-

cussing the initial value problem.

Vhen the final equiiibrium state, assumed to be regular (}+L:> 0 )
is known, one may use the representation of egs. (37) and (38).

Now the are!ggz_assumed to be small quantities, however.

The kinetic equation of the three-wave case, ea. (31) is then

transformed to

) L
"""\; -ymi 6 6, X Mm; (Lo)

I

with (4, |, k )= (1,2,3), (2,3,1), (3,1,2). The three equations
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(40) are linearly dependent by virtue of eq. (38). The abbre-

viation

oL :0</,0(2~+ O<20(3+0<30(4 (41)

is used, and y is given by eq. (39). It follows that M, = 0

not only for the final-state equilibrium, ™; = 0, but also for

i

the "conjugate equilibrium", m; = . , Where
B N e

C, = s J/x. (42)

T

By transforming eq. (40), one finds that the conjugate equilibrium
is "unstable" ()Q_z i 0) and, hence, unphysical

(}f/p: }é<< 0) or degenerate (only one/pi =+ D),

The solution of eq. (40) is
Pl e

A (:; for T > —

_ st (43)
M, :—C;_ [KOQ “/!J —=

O for [ = too

The constant K may be expressed by the ;Eigigirzéigg§ (at t = 0):

Ko = C/Wl-io - Ci )/"%14'0 ) i)

by virtue of eq. (38) K is independent of the index ¢ . For K > 0

the solution becomes siggulgg for }ff: tn k;. However, the sin-

s
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gularity occurs in the unphysical region of variable space and
thus presents no difficulty. This follows by observing that the
constants C; do not all have the same sign (one of them is

positive, two are negative). From this observation and from

eq. (43) it is seen that any time-dependent solution that is
M-Wm

h— T

regular at large times is unphysical or degenerate at suffi-
A N T T — o ——— T e

e S N R N ot S, NP

ciently early times.
B B N e

When the equilibrium state /#Q is assumed to be Egggggggﬁg/(for
instance M,= M3 = 0), then y 1s given by eq. (39a) or by a
similar expression. The conjugate equilibrium is then regular
and "stable" ( }23> 0) if and only if the degenerate equilibrium
is "unstable" ( f'< 0). Inspection shows that no time-varying
physical solution (with N, = 0) exists for which a "stable"
degenerate equilibrium is the final state. However, an "un-
stable" degenerate state can occur as the initial state of
3

time-varying physical solutions. If )Q =)Az =/Mv = 0, then the

only physical solution is M, = 0 (i = 1, 2, 3).

(6b) Initial State Given

When the initial state (at t = 0) assumed to be physical
( Whﬂlz_ 0), is given, it is useful to transform ea. (31) to

the following form:

¢ z
Fh; = a3 M, + I, Fk + C; (55)
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with the constants

ﬂ){ = 6‘3-6'& }:o(a- (d’i-fo(k):bﬂ'-a' +o(& (0(1+0(J)_D1£,j (L6)

c: = 63. S %5 g :D"'d‘“b

where hﬁ ,bik are determined by the initial conditions:

- Gw M. - M
}nd - 6:;61(} 30 Mt[)

(47)
D.E — 6:; 6’& [\4:&0 - [\/i'

i 10

Again (4,4, k) = (1,2,3), (2,3,1), (3,1,2).

It is possible to show that the discriminants of the quadratic
_polynomials occuring in eq. (45) are non-negative; so we have

two real roots for every value of + (+ = 1,2,3):

+ E a7 S —
- A — ifpv
M = (— G: F D,L- —({Q-C; /). (48)
/4 A v L{ 1 A
+ -_ .
The two are equal ( /{; = ) for a fixed value of .+ if
and only if -Di' = h{& 2 0, 18, Lor hﬁw = P“J = ,wgo = 0. Then,

4
as mentioned, the only physical solution is WE = 0. Henceforth,

we shall exclude thils special degenerate initlal state. The dis-
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criminants are then positive.

Inspection of eq. (48) shows that for any physical initial con-
ditions, }iz i1s non-negative. It follows that the state

Pﬁ =’)¢ ( ¢ =1,2,3) is physical. The solution of eq. (45) for
the initial condition M;(0)= M, 1s then

1

t t
M,;v = (/Ujj k'o QJ "'_L‘Z)/([(o eé/ — /l) , (49)

/

with y and K, independent of &

—_

?/-: I/g,‘ 5 W oy > 0 (50)

I'<<> = ()w{e ﬁ/“i)/(Mto “—/L{IJE (51)

The quantities ¥ and Koare identical with the expressions given
in egs. (39) and (44). It follows that for any physical initial

N~ R e N
condition the solution approaches or coincides4with-a physical
i i N S D e W M, WS, WSS e e e NS

+

equilibrium state; the equilibrium is: Pu = /1- : it depends on
. e i e
the initial conditions. It follows from our general theorems and
P T W T P S i S
from Section (6a) that the singularity of the solution eq. (49)
that exists for Ko>- O must occur at negative t = ts. Indeed, the
fact that always tS <" 0 may also be proved direct. This completes
the solution of the initial-value problem for the three-wave case.

The three-wave case has also been considered, though in less de-

tail than here, by DIXASOV et al. (1965).
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7. CONCLUSION

We have studied some basic properties of the kinetic wave equation

oo S R N - R

when applied to positive-energy waves in a homogeneous plasma.
B e i W

——T——

The most general form of additive conserved quantities that obey
TN

—— T T~

"detailed conservation" has been given. The H-theorem for the
kinetic equation 1s constructed from simple considerations. The
most important result following from the H-theorem and from

conservation of energy is that a system of positive- -energy waves

/‘\—---....-/—h-_/\-\ — N TN e T e

always goes to an equilibriuw distribution. On the other hand,
T T T T

R e e N— T NN T ~

the H-theorem and the general form of conservation theorems also
show that an equilibrium that is not degenerate or unphysical

occurs only as a final state, never as an initial state of a

P e S e e

time-varying solution.

There exists a continuum of equilibrium states; which equilibrium

AT T T e T —

state will be actually reached, depends on the initial state of

the system. Equilibrium spectra and conserved quantities are
e L T S,

. B R i e e R N W G

linked together by summational invariants. This connection is
/‘\._N\—,—\——' TN e T T M T~ ~— T N -

important 1n proving the "final state property" of regular
equilibria and in deriving equilibrium spectra more general than

the RAYLEIGH-JEANS spectrum.

Concerning the "three-wave case" (wave interaction only within
e N W e
separate wave triplets) we have derived a general expression for

the linear damping rate by which a solution relaxes to its final
P e U N
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equilibrium. The general solution of the initial-value problem

P i e e P, W, W N

is given for this special case, and the general theorem of re-

A ——e

laxation to eguilibrium for all initial conditions is confirmed.
It seems interesting that any time-dependent solution of the
three-wave case corresponds to unphysical or degenerate states

at some (early) times.
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