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ABSTRACT:

Two-dimensional collisionless plasmas in which the distribution
functions depend only on the energy and canonical momentum of
the third space coordinate ( § = J:(E/Fg) ) can become un-
stable due to the tearing mode instability. In the first

part of our paper we extend the linear theory of the collision-
less tearing mode [2], [3] to two-dimensional configurations.
If the distribution function f ( £ g , K ) depends con-
tinuously on a parameter o there can be several solutions

for the flelds at the same oL and a bifurcation point o = oC
of the equilibrium owing to the nonlinearity of the equilibrium
equations.

The linear theory shows that the bifurcation point is also a
transition point of the stability ( w =o0),

Using an amplitude expansion we investigate the stability of
the equilibria in the neighbourhood of the bifurcation point.
We find that in this case a linearly stable system may be un-
stable with respect to finite perturbations.

In the second part we apply the theory to a plasma configuration
with an X-type neutral point of the magnetic field. The electric
field 1s neglected. We find instability 1if there is a minimum

of the pressure on the separatrix. It exists a critical minimum
pressure below which the system is linearly unstable, but it

1s already unstable for finite perturbations above this critical
pressure. Such explosive behaviour of an instability may be of
interest in some astrophysical phenomena (see [4]).




1) Introduction

This paper 1s an extension of investigations conducted by

H. Furth [1], D. Pfirsch [2], and G. Laval et al. [3] on
mirror-type microinstabilities. D. Pfirsch and G. Laval et al.
consldered configurations in which all equilibrium parameters
depend only on one space coordinate (e.g. ?1 ), while the
permissible perturbations are functions of two space coordinates
( 911 91 ). As part of a perturbation calculation, Pfirsch

was then able to conclude from the existence of a neighbouring
equilibrium (& = 0) that the Vlasov equation has unstable
solutions. The collisionless tearing mode of a plane Z-pinch

i1s an example of such an instability. Pfirsch's general approach
was used by Laval [3] to calculate the growth rate of this in-
stability, and this was then taken by B. Coppi et al. [4]

to explaln the presence of accelerated particles in the earth's
magnetic tail. What thls paper does is extend the theory from
one-dimensional configurations to two-dimensional configurations
and investigate the non linear behaviour of such systems 1in the

neighbourhood of a bifurcatlion point.

For thils purpose we consider a set of two-dimensional equilibria
which are described by a system of Cartesian coordinates and
depend contlinuously on a parameter &« . This means that the
distribution function is a function of energy, canonical mo-
mentum in the 3-direction, and the parameter oC . Examples

of such a parameter oL are provided by the boundary values

of the magnetic or electric field which may also vary slowly
relative to the time scales of the instabilities. In one
application of the general theory, the minimum pressure of the
plasma 1s chosen as variable parameter.

As Sturrock has shown [5], such a parameter dependence may also
involve an explosive onset of the instability. This can happen
1f several solutions exist for a given & owing to the non-

linearity of the equilibrium equations and then coincide at a




bifurcation point . It can be shown with the linear sta-
bility theory that such a bifurcation point 1is also the tran-
sition point of the stability.

A mechanical example of such behaviour is an anharmonic os-
cillator with the Hamiltonian:

Be Loptoe VQ) L W(9)= gt by e g

where B and JL are fixed and of 1is variable.
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This system is conservative, and the stabillity of the egquilibrium
positions:

q,,(x) = 0
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is governed by the behaviour of the potential energy at the
equilibrium positions. The equilibrium positions 16@Oare
plotted in Fig. 1a for ﬂ >0, ¥« (i
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Fig. 1a. Equilibrium positions. Fig. 1b. Typlcal Potential

nrofiles.

In this example, the branches L1 and L.j are linearly stable

and the branches L L,, and L5 are linearly unstable. If the

23
system is on Ll’ e. g£. at the point X = a@, , a sufficiently
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large perturbation can move the system to branch Lu or L5,
whence the perturbation continues to grow owing to the insta-
bility of these branches.

As a second step of the whole procedure, conditions for such
explosive behaviour in two-dimensional plasmas are derived. For
this purpose the neighbourhood of the bifurcation point is in-
vestigated by means of an amplitude expansion. In a third part
the theory 1s applied to a plasma in multipole geometry.

Linear theory.

As in [2], we consider here an equilibrium configuration in
which none of the parameters depend on the space coordinate q
Let the magnetic field B and the electric field EO lie
in the q1 _2-plance. Let q ,q2,q3 be Cartesian coordinates, and

J indicate the particle species.

The time independent constants of motion in this configurations
are ff Fﬁ (energy and canonical momentum in the qj—direction}
Let ¢ ;4 be the potentials of the electromagnetic equilibrium
field ( /.\ (01‘3'4@5(‘11"12))’ which are calculated in a self-
consistent manner with a distripution function. Because of our
complete freedom in choosing {'} , Wwe can con51der for example,

a one-parameter set of dstribueon functions f f (}{ oc)

If a neighbouring equilibrium @ 4 . to the equilibrium B, Aos
exists, it has to satisfy the following equations in accordance
with formula (7) in [2]:

; K )
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¢i'=/4,3==63 on the boundary of the region. According to
[6], 5, and <3}3 can be derived from a generating function:
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Let «, be a discrete value of o for which the system (1) has
a solution. There are then no solutions of (1) in the neighbour-
hood of & =«, . At the point &=« + §x the Vlasov equation
can therefore have only unsteady-state solutions with infini-
tesimal amplitudes, apart from the one solution /403 ) ¢) .
Steady-state solutions with finite amplitudes are, however,
possible.

We now write the Vlasov equations in the form

¥, _
£ (M f1-0 )

where H = Hamiltonian, [U%,fj= Poisson bracket. (The superscript

denoting the particle will be omitted from here onwards). In order

to solve this equation, we make the following ansatz:
& = F (H p)+ g

and obtain for f in linear approximation:
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1th H = o0 - —5—; e : - £
we use [H, 50] = ! :1'8 ¥ to define the linear anti-Hermitian

operator téff In the special geometry discussed this operator
is of the form:
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where E:: EB are the equilibrium filelds.
c'wf
The ansatz 59’ Qz ,/413"'6 ylelds a formal solution of

the linearized Vlasov equation:

T

The perturbing potentials ¢ 1;413 are then calculated from:

]
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It can be seen that for ¢> =0 the equations (1) are again ob-
tained for the neighbouring egullibrium. This linear system
(6) is of the kind:

> - )
L(wloa)§=0 / E“(Aﬂ)

We now have to calculate the frequency w 1in the neighbourhood
of & =o . The perturbation calculation (see also eq. (28)
in[2]) yilelds:

Seo = - (E ;"a‘fof_; dot (7)
bom o s g B

- >
where (£>, b ) is the scalar product defined by scalar multi-
plication of vectors 5: T and integration over q,lf, As can be
seen from the system (6) and from (2), the operator ﬁlﬂkél is

a Hermitian matrix: w=0
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The denominator in formula (7) is of the form:

N () 273 ﬂ (¢6 5 )(wr“ff'f’)(a”(fb" A )“'%?(9)

W —> 0
ta —» 0

The numerator in formula (7) 1is real, and we will now show
that the denominator can only be imaginary. Depending on the
sign of EBL the instability will be damped monotonically or
will grow monotonically. There is no overstability.

This fact has already been pointed out in [2:]and[:3]; and it
will now be proved in detail. The deéenominator in formula (7)
1s written in the abbreviated form:

(10)
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R((u)= (Co 1“?0) is the resolvent of the operator &

o

Since ¢?fo i1s an anti-Hermitian operator, the resolvent exists
for all 3 , except values on the real axis.

First we prove the property:

}6
N(w) = N(WT) (11)

“ofe

o is a function of the integrals of motion, hence
o

‘% % = 0 > R(C‘J)C‘\H 8 O /?(Lu)g
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The resolvent has the property R(w) = R(w ) (see L?]).

It thus follows that

v v .
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= M(wW™ 9. ed.
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Furthermore, N(« ) has the property:
3
N(-w) = = #(w) (12)

In order to prove this, we take the Vlasov equation as our
starting point:

>f
(m-f— \Jfo)SoznédH‘r{HL (13)

Explicit representation of the operator ylelds the trans-
formation property:

— for v v — =V =V
?0 — Rﬂ 1/ 2 T+ 2
In this transformation the functions ﬁ{ and Y remain
1 DM
invariant. ¢

Let Y’(P;’ki) be the solution of eq. (13). We then use this
to define the two functions Wy = 50(5, b )Jandp = }0(—17/—/{1) .
. satisfies the equation:

. o N (14)
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The formal representation of these two functions is:

. v, DE
= (Q&Cc —{-'?f‘o) —0 =
?ﬁ ks H H

= H (15)

In forming the scalar products in the V¥ -space we integrate
- + 00 hold t =

from e to » and so it holds tha (3/?‘; ) (3199__ )

or, after substituting eq. (15), that:

= (\9//‘\7(@);&; )= (s, f?(~¢~>)w° 9) (16)

This is Jjust the property described by formula (12).

With the expressions (11) and (12) it can readily be shown
now that the real part of N(& ) vanishes in the limiting case

b —>0 %

We have
,\<
2ReN(w) = /V(w) M) = N(w) M )
LW = X+f9

2Re N = Nlx+iy) =N(=x +iy) — .

X — o

N(ew ) can thus have only imaginary values in the limiting case
Ly 20,
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If the imaginary part of MN(&w ) also vanishes, the perturbation
has to be taken an order further, which yields a relation of
the type (fw )2ﬂ*<§$ . In this case there exists always an
unstable solution and in general one deals with overstability.

A special situation arises if the equilibrium parameters depend
2

pericdically on a coordinate 9 = Y§ (period L). The following

ansatz can then be written for solving the equations (1):

K
I (18)

[¢1, A437 ™~ [¢4(/((le)11413 (K.fxf 3)79 d

(k real, arbitrary).

The wave vector k here takes the place of the parameter o
discussed in the foregoing. The periodic functions 1113 Q§',4

are then determined from:

73
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The reasoning that follows is completely analogous to that above,
and in the vicinity of the transition point ko $ O this
yilelds as:h1[2 ]frequencies of the type des ~ (A;d?(




3) Equilibrium and Bifurcation point

The two-dimensional equilibrium is described by the equations:

—Ap =+ (P Aoy 2]
(20)

ARy 5 = %ré’os (gﬁo‘Aos,“)

The values of ¢L,‘Ao3 on the boundary of EEG System are

given. By combining (ﬁor Aa3 to a vector § , eq. (20) can
be written

5
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is a linear operator and

O +4

T4rp, (P Asy )
T Fey (B Agy)

M5 T =

a non-linear operator.

For physical reasons,j% agg ﬂbs are chosen as bounded and
continuous functions, PI[{lj being 1In this case a bounded and
continuous operator. It is assumed that a solution of this
Dirichlet problem exists. An existence theorem for the scalar
equation zif = 3(¥) ( # bounded) was demonstrated in

[8].




But, in general, the solution is not unique.

—_ >
P f -é’ are tvo solutiong of eq. (21) with the same boundary
conditions and 3L f is the difference, we obtain
the following equation

H,;?’ _ /V[o(, {22)

fy = Q@ at the boundary.

If the problem (22) has a non-trivial solution, the solution
s

of eq. (21) 1is not unique. Since f1 is also a solution of

eq. (21), it depends implicitly on «

The bifurcatiog_pqigt ooais defined as that point where the

two solutions }{é coincide:
II

i

Iy (« xy)ll —> 0  f o —>x (23)

As shown in the theory of non-linear operators [ 97, the bi-
furcation point is calculated from the linearized version of
eq. (22):

(24)
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This is the same equation as eq. (1), and so the bifurcation
point 1s also the transition point of the stability. By ex-
panding the right-hand side of ea. (22) in a Taylor series, we

can write this equation in the symbolic form:

s
—, nl y”
n =] r y =

The amplitude of the solution:l;> i1s not yet determined by the
linear equation (24), this being possible only if higher-order
terms are taken into account. We consider the solution ?9 in
the neighbourhood of the bifurcation point and look for a
solution of the form:

3—

- — 2>
b = EH FEF e A

2 {25)
X = &, + €« +£oé2+...
1

& << 1

. _
?: 1s the normalized solution of eq. (24) CA¥ I = 7 I

It should be noted that, in general, nothing can be said about
the existence of the bifurcation point (or existence of the
neighbouring equilibrium). The existence depends on the special

problem, i.e. on N[ o 'E)("f, X,g)]

e
Combining the quadratic terms we obtain the equation for'y
: 7

Y 2 (26)
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The condition of integrability yields

1 (% Vs v
(tﬂ ?}l— [a) (27)
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The scalar product is defined as

(w,v) = f(u*v + u:\{z )e{)(c{g

1 1

If the coefficient oC vanishes, we obtailn cgz from the
4’
third-order equation

92/‘/“9‘* ‘BA/ 3
____L%%() —> -
%, = _(OM - N[ 7&0) (28)
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The amplitude function E= & Q() as given in Fig. 2 is

analogous to the equilibrium solution q;(dj of the anharmonie
oscillator conslidered at the beginning. If the coefficient o,
vanishes, the point P coincides with the bifurcation noint.
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Fig. 2 Possible amplitude function for a
two dimensional plasma.

4) Non-linear instability

In this section, the linear theory 1s used to investigate
the stability of the branches L1 e Lu in the neigh-
bourhood of the bifurcation point Ky s

-
The branches Ly> L, correspond to the equilibrium f
the branches L3 5 L2 are determined by the function:

4 b

> -

— 27
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and
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If we pass from branch L1 to L2 , the growth rate changes
its sign (see formula (7) ). The same holds for the transition
from L3 to L“. In order to compare the stability of the

branches L2 s L3 » we start from formula (7). As can be seen

—’
from (6), the neighbouring equilibrium f is identical with‘y

oL
Furthermore, it holds that o= (
growth rates of the branches L1 5 L2 can be wri ten:
—= 4 )-9
q.r % )

In order to calculate the growth rates of tgg>branches %j?
Ly, we have to substitute f *-é'? for f in /Vﬁk £ ’
1

& 1

_ —
We obtain N N [ei./ 7[4 -f{}g#..] and

W f o e@r 1| A N &
Z:i(f)ff A 2

The numerator of eq. (29) is changed to

(. . T,g(q;: )7‘)‘*'—(>?}’f’ %)

Taking Oﬂf from formula (27) we obtain the result

= g w7
CSQJ — (3‘0,&(%}3{_ );Lo) go(' (30)
[lrh (: L —j)
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It is thus shown that the growth rates of the branches Lis
LM and L2 3 L3 are opposite 1in sipgn. Consequently, the
system can exhibit an explosive instability. If, for example,
the branch L1 is stable, the branch Lu is unstable. The
system may be at the point Po (see Fig. 2). If a perturbation
shifts the system to P, i1t does not return to Po but the
perturbation continues to grow. If the statistical fluctuations
of the system are too small to reach the point Pl’ the con-
figuration is stable. But if we increase o slowly, i.e. if we
change the system adlabatically, the stability limit grows
smaller and smaller, and beginning from a certain o < ol

the fluctuations are big enough to make the system.unstable.

It 1s a typical property of such non-linear instabilities
that they can be triggered. [57]

If the coefficient d: vanishes, higher-order terms have to
be taken into account in the asyrptotic series (25).

must be replaced by f + gy + £ 7‘ and NV
1
by z 2 e PF _3 __pz
Similarly, we obtain
5 “’ﬁv —3 5
Sw.:—-f—&(%’f‘av_3 0) gm_CP___ Q (31)
3 (ﬁ;ﬂ gL.ij,) / » 7
L —> 0 9, G
The sign of ¢« _ determines in which ﬂirection the parabola
2 8y i ki
£ = is open. In the specilal case = 0 s
o OC'Z. (BFZ.
is
2
_—
s ©B o 3
& = —4 (%”qi‘j % ) (32)
& 3 ('“> d N — ?
3% L )?' )
/ el (E}"‘ o
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and therefore
d v —>
=f.— JE
S = ¢ (o, anlay D) det. (33)
= L >
S (fyof‘i;; 7?>)

In this case, the growth rate does not change its sign 1f

the system passes from branch L to L

3 h*

But there 1is a change of sign between the branches L3 ’ Lu
and that branch which lies 1n the "interior" of the parabola

2
€=
2
Therefore a system at the point PO can also be unstable due
to finite perturbations.

Fig. 3
Amplitude function with o = 0




5) X-type neutral point

As an example we consider a magnetic fleld produced by two
parallel currents. An essential property of this magnetic

field 1s the occurrence of an X-type neutral point between
the currents. The magnetic field lines are described by the

vektor potential ,403(x/5) = const. /4°3‘= 0 may

be the separatrix.

Bbunelaf:j

Separatrix
A =0

Fig. 4
X-type field configuration

We consider a plasma with a pressure minimum on the separatrix.
= ZF

3 may be very small, the influence of the plasma
CUrrents on the magnetic field is very small.

o ).

i

For 31mD1101ty,we also neglect the electric fields ( ¢)3:0 /f;
[~




This situation may seem unrealistic because in space plasmas

an essential part of the magnetic field is produced by the
plasma currents, and so we have to consider a self-consistent
equilibrium. It will be found, however, that the instability

is localized to the neighbourhood of the separatrix. Thus

the structure of the equilibrium far away from the separatrix
has no significance for the instability, and so our approxi-
mation is justified. In laboratory plasmas (multipole machines),
the magnetic field is produced by external conductors ( /3<<7 Y
But here the plasma pressure has a maximum on the separatrix,.
and therefore, this configuration is stable with respect to
tearing modes.

The configuration described above is shown in Fig. 4. We take o
a distribution function of the form :f = {'CH) (7—— A'QXP[—‘S\FZ_]
which leads to a density profile (or pressure profile) of the
form

P = P ~PatXp (=) p >p

;

d_ 1s a measure of the dimensions of the current-carrying
sheath. W = +p is the generating function for the current,
l.e. according to (2)

2.

. _{__pbi&_exp[____gi_

v P QA

02

2p
fsuﬁn‘_ £3ﬂ1u1is defined by the minimum pressure p,, ., on
the separatrix aﬁ% the maximum magnetic field on the separatr'jxi
We Poo ) . — L = XPe
define /‘3& = 52 in a similar way, and ﬂ "ﬂoa ,ﬂ*‘ﬂ-fb; 22
a] o

1s a measure of the modification of the magnetic field by the
Plasma currents.
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The vacuum field produced by the two external currents is

= 9 =

= BcRo E lr-— K ZCS - -
A, = e (7 ) 2z ) cex2p + 1] (34)

The total vector potential is A = /103 7 0(73)

In the vicinity of the neutral point the pressure profile looks
like

o2
>~
P R Peo =P, €Xp[- 7 s 2¢ ] )
o
7: i1s the decay length of the pressure and is connected with d
by
¢ 2
d°= 28
(?R:" (36)

The equation for the neighbouring equilibrium is (see eqg. (24) )

i A'}L T ﬂl/(/[)n}(__ = 0 (37)

.V_ = Q0 on the boundary
$RS £ oa* A
V)= BB (24— p)expl- Gr]

It 1s assumed that the boundary of the system is at a finite
distance from the origin. Since /3 << 1 » we neglect the
corrections of the order /3 in A ana useAG3 (see ea. (34) ).
The problem (37 ) is an eipenvalue problem for B , and in

the following we will show that there exists a solution. In
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order to do so, we modify the problem (37) slightly.

—4¥ fﬂ\/ (4,) ¥ = L% o
- LR
e V=V, E i A=
= 0 on the boundary

We consider ﬂ as a given parameter and E(ﬁ) as the un-
known eigenvalues. The critical (3 is then determined by

E(R) = 3V, . As 1s shown in the mathematical literature

[10} the positive and Hermitian operator =—A4 +/3 l/ (Aj)has
a dlscrete spectrum of positive eigenvalues EK (ﬂ)

The lowest eigenvalue E; 96) 1s the absolute minimum of the
functional

2 x &
(tvr + BV 1H ) dxdy
rrypy=
[“%l/i] o vy (39)

For every test function '}LT we obtain

VY Vi dxd,
E (s < [Ovvelt + Vi, o) dedy o
: J 11 dxdy

Tg:_e right-hand side is an upper limit of ED (/3) . Since
V™ 1s positive, we also obtain a lower limit of £ {ﬂ) -
o

gl V'yl,,{'zd)( d&
Slwzdxdzj

l‘:c(ﬂ) > min

” 2 I
= Eo(o) (41)




In a finite region, the lowest eigenvalue of —A 1is positive
( ﬁf (¢) >0 ). Since f‘[%# /3] is a continuous function
Of(q, , the £ (ﬂ)dependo continuoule on ﬂ

From the two inequalities (41) and (4@ ) we obtain a lower and
upper limit for {%

The lower limit is given by £ (o) = ﬂ7 , and the
upper limit 1is determined by

/ijliyf! /32_7 = /%ZL/

In order to show that the upper 1limit /32 is finite, we write

the condition F’[?,ar (5] 2/51/0 in the form
/

; yrjzc[kd fl//?,ar/zc{)cc/fj
L N=§V T A K
’ flv 1 dxdy iy 1 dedy

= /3 V,
The function V is negative near the separatrix, and we can
always localize TfT to this region in order to make Jﬁkyy?}zaﬁriﬁ
negative. The negative region of V 1is broad near the neutral
point, and so we localize ?pr to the neighbourhood of the
neutral point. Thus it is always possible to find }%_ in order

to make 5/?;;.?_/ CZxc{g 1—/3’5 V”"F[ Cﬁxa./ff = Q0
with finite ﬂ . The curves ""[3,7_1 ﬁ]/ L’o (ﬁ) and ﬁVo

are shown in Fig. 5.
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Fig. 5
Lower and upper bounds of the eigenvalue E(B)
/1(.1' Y )

As an example, we consider the test function 'yT =

4
(>0 arbitrary). In the case 2 > ot 3 , we obtain
approximately e

[’?’Tfﬂ] 2/.] +ﬂl/( ?-[22) _1) (43)

If we minimize F7[fyr,,/2;] with respect to ) and put

,E’[-?r’ ﬂ] = ﬂy‘; , the result is
7 o
ra = ) (u1)

This is an upper 1imit for the critical /3 , Wwhich is also
the bifurcation point of the equilibriunm.
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In order to investigate the non-linear stability of the

systen for '/5 <‘/5C » we have to ealculate the coefficlent

oL (see 27). If ol # O , the configuration is non-linearly
unsqtable for ﬂ( /;Z ;

In our case, of 1is found to be
1

2 :
e 3
. ¢ dxe
w = = L | anz ¥ @ (45)

! o f/VVIZdX4j

% 1s the neighbouring equilibrium and a solution of eq. (37).
Introducing.403,¢o (vector and scalar potentials of the mag-
netic field) as new coordinates, we can write the numerator

of eq. (45) as follows:

z 3 )
— .ji 0 o ,y Cl¢é aﬁ4
2 £l )

8(14“’0%)15 the magnetic field strength and the Jacobian of the
transformation X’. lj <> Aas 7 ‘po
i
i, (Ao_3) is an antisymmetric function of A | but, in

; 03 )
general, % (’1405/ ¢, ) has no symmetries. % (Ao_?,(lg) is a
Solution of

Q

2 (_az ~2 |
—B(Ae3,¢a)( A2 +(5%¢)? * 13 V(A,)E =0

2
Since B (AC_{, @D) is not symmetric in Ac 5 7/' (4‘._3 ¢;) is
0t symmetric. This also holds for G(Aos) - @J ’}‘ygzld(b;g .



. v _ :
Therefore S 'XD (Aob Y G;(Aﬁ3)61A03 generally does

not vanish.

But a situation with these symmetries can easily be constructed.
Let us consider an X-type neutral point where the separatrix
consists of two straight lines. The vector potentialfqlg is

2 2

Ac} = Const X(y Gat )
>

In this case, ¥ (Ag; , ¢o), 8 ( 2 éa) are symmetric

functions in‘A and the coefficient aa vanishes. The two

solutions for the equilibrium field are-4 and /453 rEF

Since % 1s not zero on the separatrix ( A = 0 ), we
see that in the second equilibrium A,, + &% =A  the mini-
mum of the plasma pressure is not on the separatrix. The mini-
mum 1s always on the line /{ = ¢ , in the second case this

line differs from the line /403 = 0 . If we approximate A,

Z
by Aog'% 52'— X (in the neighbourhood of the neutral

point) and Y o Y = OX p[— AlX 7’-3 )] , the
equilibrium branches LS 5 Lu are described by the vector
potential A =& 32'—-,\(& + ,c_e_"\(x e | )This field is sketched

in Fig. 6

A

\ 31- e + € exp [")(.\'14-3:“1] =0

Fip. 6

Perturbation in the neighbourhocod of the neutral point.
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6) conclusions

It has been shown that in a plasma there can exist a bi-
furcation point of the equilibrium. The bifurcation point

| is also the transition point of the stabllity. As an example

é we considered a plasma in a maghetic quadrupole field. If

i there is a minimum of the plasma pressure on the separatrix,

| there exists a critical /a_ at which the equilibrium bifurcates.

Owing to the asymmetry of the magnetic field with respect to
the separatrix, the equilibrium is already unstable at h’( &c
for non-linear perturbations. Since we have only investigated
the neighbourhood of the bifurcation point, we cannot say where
the lower bound of thils unstable region is.

In multipole machines used in fusion research, the pressure
has a maximum on the separatrix, and a critical/a‘fbr the
collisionless tearing mode does not exist.

The instability mentioned above may possibly explain some
explosive phenomena in the magnetic tail of the earth and

it might perhaps also occur in its polar regions. In the
paper of Coppi et al. [Hj, the authors consider an infinite
sheath with inverse magnetic field as a model for the mag-
netic tail. Since the infinite sheath 1s always unstable, no
explanation for the stable periods and the sudden bursts of
the instability was given. In a realistic model one should
take into account the transition region between the earth's
magnetic field and the magnetic tail, this being at least

a two-dimensional problem.
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