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ABSTRACT :

For a turbulent plasma Dupree has given equations somewhat
different from the quasilinear equations, using particle or-
bits perturbed by the fields for integration. Special assumptions
about the solution are made by Dupree for his explicit kinetic
equations.

In the case of a small diffusion coefficient these assumptions
are unnecessary and, in general, one of them even has to be
abandoned if energy conservation is to be valid. The dif-
ferences to the quasilinear equations are in terms that are
nonlinear in the field energy.

But in the case of a very large diffusion coefflecient, first
considered by Dupree, a good approximate expansion is no longer
obtained, if the time variation of the distribution function

1s taken into account.

As Orzag and Kraichman have explained, the terms containing
initial values can be added. In the case of small diffusion

1t 1s shown here that these terms yield familiar results with-
out the secularities of other methods.




Contents

Introduction
Dupree's initial equations

Integration without Dupree's additional assumptions
a) Small diffusion coefficient

Equation for the distribution function
Magnitude of the terms in the bump-in-tail case

Comparison with the usual treatment of the
linearized Vlasov equation

Equation for the waves
b) Unrestricted diffusion coefficient

Validity of the approximations for small and
large diffusion coefficients

Divergence of the expansion for a large diffusion
coefficient

Inclusion of terms containing initial values of the
fluctuations

and comparison with other methods

Summary

Appendix
I. Energy equation for the solution a

II. Energy equation for the asymptotic solution of
Dupree's initial equations; inclusion of initial
values of the fluctuations

ITI. Approximation of the non-linear change of the
wave energy density

References

O 3 O =

11
14

14

17

18

21

22

24

29

30




————

Introduction

The most easlily treated case of turbulence in a plasma is
probably that of a homogeneous plasma in a strong magnetic
field in which longitudinal electric fields are excited by

an electron beam of superthermal velocity in the tail of the
distribution function (bump in tail), which is parallel to the
magnetic fleld.

The quasilinear theory [1 describes the
variation of the distribution function and the wave spectrum
when the instability is not too strong and the spectrum is suf-
ficlently wide. The electron distribution function thereby (in
the one-dimensional case) asymptotically attains a level plateau
in the unstable region, while the wave spectrum forms a kind of
bell curve ﬁ, 6] . The magnetic field makes the problem to a
simple one-dimensional, whereas the three-dimensional problem
wlthout magnetic fleld has been considered only 1n a topological

way Bﬂ .
The correctilons to the quasilinear theory are:

1) Those made by non-linear terms in the wave erergy that follow
iteratively from the Vlasov equation {} - ﬂ 2

2) The electron distribution function varies according to the
quasilinear theory only adiabatically with time. When the times
are not too large the non-adiabatic correctilons @, D3 ﬂ are
particularly important for narrow spectra.

3) Dupree takes into account perturbation of the particle tra-
Jectories by the waves Bﬂ » which 1s not necessarily the case
in the Vlasov equation (cf. ﬂd]). With the assumptions of the
quasilinear theory his calculation yields corrections of the
order of 2), as will be shown.

4) Spontaneous emission Bi - iﬂ and Lenard-Balescu collisions [12L
@i] are mostly ignored.




 «

The most recent correction of these is 3), which describes the
trapping of the particles by the waves. Here Dupree considers
the phase change of the density fluctuations that 1s due to
repeated interaction with the waves.

The result is derived in [10] as well in a slightly dif-
ferent way, but again by expanding in the same operator, namely
an ensemble average Green's function.

The lowest order equations (linear portion of the operator)
are used in the following as initial equations.

Dupree evaluates them only after making simplifying assumptions,
but recognizes the need to adopt a more accurate treatment. In
his final equations the energy is conserved, but only because

he approximates roughly a complicated function (by a rectangular
function) to make his equations easier to follow. For the case

of a large diffusion coefficient, which is what Dupree considers,
accurate treatment is not possible in the following study either
(i.e. analytical treatment is not, but numerical treatment 1s);
but for a small diffusion coefficient this can be done.

Dupree confines himself to deriving kinetic equations when the
distribution function varies only adiabatically with time and
the distribution function and diffusion coefficient depend only
slightly on the velocity. The latter approximation, for instance,
is very poor for the bell-shaped wave spectrum that is obtained
in the quasilinear theory.

If these assumptions are abandoned, the trapping effect turns
out to be even greater in Dupree's case of a large d1 f-
f us i on coefficlent. - The terms due to the time dependence
of the distribution function become so large here, however, that
the expansion for the solution diverges.




For a s ma 1l 1 coefficient, as in the quasilinear theory, one
obtains in addition to the small Dupree correction in this case
others of similar magnitude. Only corrections that are linear

in the diffusion coefficient are taken into account.

Even if the diffusion coefficient 1s independent of velocity

and the distribution function is first assumed to be adiabatic,
there still remains another correction besldes Dupree's in the
equation for the distribution function. The energy equation can,
in general, only be satisfied with both of these corrections
(Appendix I). By transformation it can be shown, furthermore,
that the correction for a time dependent distribution function

is of the same order as Dupree's, and so the latter 1is pointless
without the former. So the corrections to the quasilinear result
turn out to be much more complicated functions in the case of

a not too large diffusion coefficient than Dupree's approximation
would suggest. They should be compared with the other nonlinear
corrections, which are not dealt with in detail in [ﬂ and not

at all here._.As shown in [ﬁ@ » the initial value problem can i
be treated by an appropriate extension of Dupree's equations.
There follow the known inhomogeneous terms of the corrections 4)
Bj]with Just the correct time dependence (in the diffusion
approximation for the distribution function), which otherwise
must be obtalned by summation of secular terms in higher order
corrections [1@ .

Dupree's initial equations

If the corrections 1) are not used, attention can be confined

in Dupree's method fﬂ to the linear portion of the propagatorU.
In this case 1t should be calculated more exactly than in ﬁ in

order to obtain all possible corrections of the types 2) and 3).

The following is based on Dupree's eguation from the beginning
of his sixth chapter (his eq. 6.5), which is also derived in [ﬁ@
(as eq. 3.1) in another way. This equation for the ensemble average
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distribution function < f(¥mt)> , abbreviated to <f{t)>
which in a homogeneous plasma no longer depends on space, 1is:

(a; 5— ) <'fﬂ)> 2 ¢ %; %%}{4&)) _

= e

T é t Wt e <UET>e %({(’c])

)
XA

Here WU (tls) 1s defined by 'fﬁ)= UWltte) - flt)  1ir -f&) is the
solution of the Vlasov equation at time t for the initial con-
dition {'(o] , M(fa,ta)= 1.

To

For the ensemble average <U > it follows that <{ﬁ)>=<tiﬁﬁd>'fﬁﬂ.
This 1s because the initial distribution function is chosen inde-
pendent of the phases of the waves from which the average was
taken ( < > ). On substituting s et it follws that

(&) <> -

; e ifew
Gy 2 (?:)"Iv{'c" s LAt <)e (Ult-<))e %({(f-z")}
D“O w1 et w
Let us write for tﬁis equation the diffusion ansatz:
: _ 9 )
(51 = & Do) g, <f&)>

In the following we investigate whether an approximative solution
of this diffusion form can be found.

If the operator < U(tY)> is applied to an arbitrary function
Flvvwt) » then the equation for F(wvwt):= <UHt)> Fhruts)
can be written in the form

6 (diwd -2 DL ) Flawt) =0
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If the equation (27) for the field is also applied it is pos-
sible to show the validity of the energy equation for the
asymptotic solution (Appendix II).

Integration without Dupree's additional assumptions

To solve (5) in the one-dimensional problem, Dupree [f] makes
the approximation:

thkx 9 ' (_{_} ‘ l'l()(
) LUty e ey = BV cuteee

It is shown in the following that, in general, this approximation
1s inconsistent if more than the quasilinear result i1s required.

On the further assumption that D in (5') - in thils approximation
(7) there follows from (5) a diffusion equation of the form (5') -
depends on v to a negligible extent, Dupree then gets (his equation

Ta2)3 t e

7 “if (kv-1ou)de- (kLthd.t
(8 DWt)=Dilut)  Dyt):= (&) [d £ IEM e+ :
and on the assumption that (9) D % A

(=) « 2

( Av = width of the unstable region,Wp = plasma frequency)
he obtains from it (his equation 7.8) for resonance particles:

2
(10) D,wvt) = Ds(vit) with Do) := rﬁf 'E 9;(4),1
WV v
For simplicity, only the time dependence of D 1s sometimes
written explicitly as argument, as is also done for{U> and <f> .
Instead of the approximation (7) we require an approximate solution
of the complete expression from (5):

kx

(11) <UHt<) > e ,J% FR-D>

To.'=-t"5'
ke 0 :
or (W [ttt To) > @ o Ay = L(vTrTTs)
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with velocity dependent D.
The solution L is written as a product:

(12) | = ATz} Bl ) - C 0tart)

q Here A (XU Totz') 1s the partial solution of the approximation

()2
ckx

Ak Txg ) < Uilnavre' 2D &

It can be given by
o0
(kx-ikeve's é R
& (see (31))

"

(13) A (%0, Tore!)

where every P, contains the diffusion coefficient D to be de-
termined or its velocity derivative V times.

Let us also define & (e Jo = 2 W fosenlie 5 <9 (?o?

Since C does not depend on x it has only to satisfy the diffusion
equation:

2 a0
(14) (& - & Ds ) Cwmee) <0

An explicit solution of this equation can be given by means of
the variable <f(Tett')>and in powers of D by iteration for short
tlmes. But from this solution only the integral in (5) or (27)
1s interesting. There one gets a good approximation in the case
of a small diffusion coefficient, while the difficulties in the
opposite case are explained in section b.

i a 2) r 9 92 2+7) 3 t
C(VITDf'C)z < avt‘ >+§'B_VD(’CO+Z)<‘B_—{-V’-fT Z) +§2WH(C)

0

{15) sl
5 - B_ _D_ (to+T) _f('c,ﬂt y
iy ()= 5 S ov 8 7 de
Cf
W“(t') pe f;)?_u D(th) ?,;:M(tﬁt) de “"‘23.4,~~-
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For the first step (n = 2) here the equation (5') is used

for conversion, from which it follows that
l

<}T°)> [ D < 3{ >0{’C = < gé['cﬂt‘ly + K,

From the ansatz (12) - which has to satisfy (6) (F being set

equal to L) - there then follows for B ( \/, To+T' ) the equation:

0B 2A ¢ B 27(%359 98 9C 1), oD 26

(16) 5‘%, = ED Qv v AC 8u§_ 3V v

except for the zeros of C.

If A and C are given by an expansion of the form (13) and (15)
respectively, we can put up for B the ansatz:

2

26
G47) B-¢e +-. and calculate the various terms from (16).
(D or a veloclty derivative of D should occur Y times in&,.)
It follows from (13) and (16) that

z! ’ai

(18) G. - - 2ik[Dz < (k> e
J

a) Small diffusion coefficient

If the diffusion coefficient is so small that we can confine
ourselves in the expansions (13), (15) and (17) to the linear

terms in D (see eq. (35) ), it is possible to state the solution
e of (11): '

! DD T a (ran_-))
(erVu:ﬁ-(kth?I—(Kf cde -1 kaDt dz
L((I"t,1-tr'- To )": e ? o 0 V(Z'oft’b .
(19) .
((%hﬂW> 9 { (i&+ﬂ)h}
oo bW

t

g D0=D (Vf%fz) . The zero of C%£J> in the denominator




of the exponent 1s not critical since this denominator is
discarded in the investigated approximation (terms that are
only linear in D).

Equation for the distribution function

If (12) is substituted into (5): ( ) fﬂ
-—+-U 17 =

! ' 9
i Bu( ) j = - e
% (<L(+)>- f g—? < %—é”‘t'“);dz
3
- u( d
With the ansatz (20) Eult)= Ed (+o)6 +°w T, - 1t follows that
¥
B0 9 i -i f (kv-oute)dz - fk(kbc Lm’)zdz -4 kaz 0t e
v, o~ L)'z B G
v
{.—
tts f ((A’V (2 }} !
-2 &)k £ Ible 59-[_ O pcie)oe

°

(21)
1f quadratic terms in D are again ignored in the second sum term.

Apart from quadratic terms in D and Yw > both terms of the sum

can be transformed by partial integration: (y«=0)
(21)~ i Elt) [ - 2D p) « B )
( l ] (ku u«)(kv 3) ( )(kv-l?e,wu)‘*+( (Kv-Rewow)? <% >

kD . ® DR N
(22)*'@’) (kv-RewanY ¥t (kv-Rews, P 0 <3 a,c

g (9D<_f(+) )J

(k- Rewy Y‘ aV

(p = principal value)




This 1s exactly the same as solving for D as perturbation
instead of integrating in closed form (which is necessary for

a greater D) and expanding afterwards. If (5') is used for
transforming the last expression and a few terms are combined,
we obtaln forms that are more favourable for comparison and for
proving the energy balance in detail (Appendix I):

22) = 2 (&g R0l (4 D)%,

((L(U w“ 'L(V I..Du] ! K- Rewdu v (L’U RCL-')u

_d D 7 A Ve , Of _
(23) ov (ku- Retoy )t<g%i> * (L(V-, R&LJL()S o < (kV‘h’{.Dtx L 9* (al/ >:}

(237)

9
ov

S gtent [yt &) by

(kwuk)(kwuu Uv-Rewsic ldv Dv K- Rewsy *2)-{:“ Wy~ ey

Another way of condensing again allows the time dependence
of the distribution function to be discussed better (Appendix I):

B ; e 4D PN

! (23) N (w} i‘E“G] t(kw&«](llum) (kuﬂ&wa\‘r) 9“

|

: oy 9 a0 A 9 1 9 QE_
|

(23") Kv- Rewe v Ky-Rewy OF 2 ku-Rewow 9\/ Wu- Reww 8\1

A R 9 0
! (k- Rewdu)® Ot (,av> ' (kv-feer )T OF (3‘/ g

| For the distribution function in the region of the resonance par-
| ticles the term ~ afto“ can be neglected.

|
| The contributions of the upper limit +-t, are neglected here.
| The initial values are not taken into account either.
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This means that collisions and spontaneous emission [}3, 12]

are ignored. The latter is only important for small (thermal)
wave energy density and in the region of marginal stability[ﬁ?}.
In the last chapter we shall extend the method to these effects.

Dupree P] neglects them by transferring to the limit t-to— 00 .

Because of the small coefficient D assumed (according to the
inequality (35) later) 1t is sufficient to use the approximation
(10) for the expression D in the unstable region. From (23)

and the ansatz (5') D would have to be determined more exactly,
however, 1f investigation 1s to be made of corrections that

are non-linear in D.

Magnitude of the terms in the bump-in-tail case

The first term in (22) - (23), the diffusion term of the
quasilinear theory, can be divided into the delta function
and a principal value. For the resonance particles the latter
term is of the order

(24) {g—i} (%!)1

smaller, but at the boundary of the region with positive derivation

of the distribution function (<g§> >0 for v>0 ) it may be
larger. Av 1s the width of this region.

The next term in (22), the Dupree correction term, is of the
order

L -3
(25) kD _ D (Av)

3 3 - 2
ke (d—v‘-’) Wpv-
the third power of (9). In the quasilinear theory an upper
1limit is obtained for this expression, this being &ﬂ:
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D) , (/_h, )‘3 S ) (/_u, )~’1
Lp vt v e v

(26) Fox Youalh]”

The two following terms and the last one in (22) (or the two

following the quasilinear one and the last one in (23) ) are

of similar magnitude to the Dupree term if I%;lcx j%; (as for (33) ).

But right in the centre of the unstable region their magnitude

i1s somewhat smaller and they are not symmetric with respect to

the centre of the unstable region, but the Dupree correction is,

at least 1n sign. They are due to the velocity dependence of D

and the effect of <U> on <%’—-£V> in (11).

2

The second last term in (22) is about (%g@) smaller according
P

to Eﬂ.

Let us forget thils term for a moment. If the velocity dependence

of D 1s now ignored as in [ﬂ , another term besides the one
following from the approximation (7) of [ﬂ is left over in (22).
The energy equation can, in general, only be satisfied with both

of these together (Appendix I); with the first term done the energy
is conserved only in the special approximation used in ﬁ]. +)

Comparison with the usual treatment of the Vlasov equation

It 1s true that the Dupree term (the second in (22) ) cannot be ob-
tained from the Vlasov equation on integrating over unperturbed
paths, nor can the third and fourth terms. The latter two terms,
can, however, be obtahed by partial integration if the time de-
pendence of the distribution function is taken into account more
exactly [9, 13]. (In Eﬂ they are eliminated because in the

approximation (7) ;‘% q({H? i1s substituted for %(«F(‘{“f}) i)
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s Y1 =
Footnote to_page 10 < E
2 2 A L( D i3
+)If merely the (damping) term ~ fl( Dzfde = - = C
o
is considered in equations (22) and (28) as a correction to
the quasillinear treatment - as is done in fﬂ - this term can,

KID\"3
irrespective of the size of D, be replaced by—(?-)i:to get the

same damping of the integral kernel, in the characteristic time.
Instead, in [f] the integral is replaced by a rectangular function.

In both procedures the shape of the function is changed scme-
what, the result belng that energy conservation 1s restored.
With the true shape, terms other than the one above must be
retained, for energy conservation, as 1s shown here (in
Appendix I) in the case of a small diffusion term D. Dupree Eﬂ
confines hils attentlion, however, to the case of a large dif-
fusion term.

Besides these terms in (22), however, another term is then ob-

tained; and these together give the last two terms in (23). They
are relatively unimportant if the variation of the distribution
function goes to zero, as in the neighbourhood of the asymptotic

state.

The last term of (23) can already be found 1n 15, é}, while the
appropriate corrections in the equation for the waves (see next
section) are given for the first time in @ . Thus, all that is
new here are the two terms following the quasilinear one in (23).

They can be combined with the Dupree term to give the closed

form in (23'), which 1s very similar to the usual non-linear cor-
rections (not treated here), but has different denominators.

Equation for the waves

To optain the dispersion relation and the equation for the
Square of the wave amplitude, (19) should be substituted
into the Poisson equation.
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Again neglecting the initial values and in the limit
t-t, = o® , we have according to eq. 5.2 in [7]

¢ Ty
Ly Eebis B2 foﬁf foe Elele <uttar> g 2 f>
1o

With (19) and (21) this gives the asymptotie dispersion
relation in the one-dimensional case:

G = A= T8 L fdo (der i
f. <
-l Jitpetde -4 Lede - zuszTdc %),
(28)

- ((kU1o«)dt ¢!
- e e ?%gab (%H—uz ?dt] =0

Disreparding quadratic terms in D this reads:

Eune = p_ e Sd\f[( I R P )<’<),L(H>+

I R U Vs LA PRI

4+:32kD M., L QW
Lh(ku Ww)? 4'30“’ (Ku-wu )? OF <8u> (ku L) BU(T %{; J

- - fmet Sdu' 4, k(9 D )+ ( DA :)(a%

Wu-wu KV -tow [BU (yulou) ku-Wu  OF Uu-bu

The solution to this pgives Yr = Imwe for the eaquation
of the spectral wave enersy density:

Vb [Eulk)|*

(30
: ot

= Qa‘u
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If the growth (or damping)rate y« 1is divided into a compo-
nent KKL 5 iLe. the solution of the quasilinear dispersion
relation ( E€wwg = O ), and a component 11Xu , it fol-
lows from the expansion of (29) for linear terms in
that
. (fae:u ) @_f(dv _®
i T— x B ik Ku- Rew.y

[w (5 (E‘D"mw—)\ e o, <8

What 1s different here from the usual treatment of the linearized
Vlasov equation in higher orders @ 13]15 Just the new
term l 9 _D in the brackets.
aU (ku- Rcwu‘]i‘
The quasilinear approximation is sufficient for R w. since
only linear terms in D are taken into account.

Energy 1s conserved by the eaquations (23 ) and (30) (Appen-
dix I), but also without the new terms [9]

' ¢
Apart from terms that are (k%“;) smaller, it 1s possible

to obtain the approximation for the non-linear variation
(Appendix III): Aye=

v 4 ' ko e
,,Gk 2l g s B G (el (s “(éf/) “k-;, ))

fie' |- g
w%f

In the usual treatment of the linearized Vlasov equation, as in Eﬂ
only a little more than double the first expression is ob-
tained (Appendix III).

For AZS“ the Dupree result 1s obtained if %? and %& .r—a—ﬂi?
are disregarded.

3
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b) Unrestricted diffusion coefficient

First the expansion of the solution (13) is calculated in
the realistic case of a velocity dependent diffusion coeffi-
clent. If the coefficlent is large the correction due to

the time dependence of the distribution function is in-
vestipgated.

Let the following ansatz be made for (i3)

ek {u Deide - tk{,rtdu Hivz')
(31) A(xvye)= e

o9
Let here H: = E%.F; contaln only terms that are at least
quadratic in D. Since A has to satisfy eaquation (6) it
holds for the quadratic corrections in D that:

2! ! .
ok + ({kzg‘gtzc{ti-j%}?ll{tdt) %—?+ %g(iktlt-

—
|
l

e 3'2
- D({l{2+(kz%?b‘cldt+ f‘%—ﬁil«zdz)% D[kzéDCdZ+DI“ kzdz =1
The formal oOlUtion (as a function of D is
P!(UZ )’ f’D @._‘_D e "d "d S_JD[kz ‘5!20‘3udt+

e [D(f'wtuzdz) de + [D(W%"ﬁz) dz +

o

tl

T
T
- o[ [l et [Z (0 ik, gw {2_‘3&# ) de
le] 0
To estimate the non-linear terms in D let the time depen-
dence of D now be neglected (which is what Dupree does
throughout in [7] ) relative to the powers of T on in-
tegrating over T
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| Ei? | = D I@i@ [ =~ D
Let, moreover, UV Av 5! QJuot du)t etc.
| and then to abbreviate let q: = D/(Av)‘
| (1f the quasilinear theory 1is applicable it holds accor-
I
| > t 26 & that
| ding to (26) or [] a 659/““4 """gm('h’) )
Y (h) wenn

With this notation the maenitudes of the sum terms in (32)
are respectively ( We: = kv );

( 3 A L 16
Logeet(4Y) , o atwe 2 ()

g G 17 G
(33) o= qued® Q) Hs gt (B)

-(-'-'——%i'wasccfs (J)‘slE,':_[;%t.(—b:-'_cf_lr(%’)g’_z_‘;_ajw:‘tnfv(%f)l

The underlined term causes the strongest dampine in (32):

: the mapnitude of these damping terms in Fi y=4‘23 .
f is given by:
Zy-1
AU (Do 2 ,2”4’4
(34) (4r @ V' 8 o
-4 2y+1
(In Dupree [7] only P, appears)
Case a
Av
If (35) g& o 4Y

the non-1linear terms in (34) with Y= 2,3,4... can be neglected.
The solution for A according to (13) is then damped by (Dupree's

trapping time [7]): («D%)J/s ) (kzD)'d/S
3V2 - =

Because of (35) this time 1is large relative to the autocorre-
lation time

(36)
from which there follows inequality (9) if (.= ).

(o 4)™" = (eav)”




B

= A6 =

This gives in first approximation (from (8)) the auasilinear
result (namely (10) ).

Case b

In the converse case:

{37) (j—%)e =9 > w"‘%‘!

we have to find which of the terms in (34) y = 2,3 4
becomes »~ 1 first. This will also depend on the magnitude
of the )

We therefore have to find:

o . A
(38) Wik 42(.39 ( A ) Ak [((V—'l).')zr(fym)] v

v A
y=23% Do 2

e.pr. for 9@ 4v 210 the maximum is at y Z 3
o'
for 7z 100 the maximum is at y Z. 5

For ¥ = 3 and 5 the marnitude of the trappine time obtained
from (3U4) is

m - Y% -Tm

(39) (Uoél}’) and (wo%‘_’)

Under the condition (37) the trapping time alone rives ac-
cording to ea. 7.7 of Dupree [Z] the diffusion coefficient.
Apart from the imacinary terms in (33), we should also know
whether the other corrections in (12) are Important.

If thls question is put aside for the moment, we pet for
the mapnitude of the diffusion coefficient D (expressed
by the quasilinear coefficient DO (19Y )

M 7,
in the case V =5 (see (39)): Ds = Do f2o (L\'Avg) e
in the case YV = 3 (see (39)): De = DM (kAtf)s/ﬁ
in the case V=1 (cf.(8)): D, =~ D% (kd@)"4

(&0)

1
-g resnectively.



If these coefficients are substituted into the condition

(37), it then applies for D = D, as well. In the esti-
mates it 1is best to use a mean k.

For a large diffusion coefficient there follows according
to (38) a coefficient with ) Z 3. This changes the power
of the field strength in the diffusion coefficient relative
to that in [ﬂ.

One examnle of application would be ion diffusion across
a magnetic field in drift wave turbulence ﬁ5] . As a
result of the decreased field streneth diffusion could

already occur for linear growth rates about a factor of
Vf& smaller relative to ﬁfﬂ
[N

This is all wishful thinkinpg, however, if we consider the
correction in (12) made by the other terms of the expansion
(15). These are due to the effect of the operator <U>

on the distribution function, 1.e. to the time dependence
of the distribution function. Assuming (37) we get on in-
tegrating in (5) terms of the order of the (integral)powers
of:

. D

trapping time
(4v)*

(vhereas in case a (35) the autocorrelation time fﬂ ( kdy)'

takes the place of the trapping time).

Depending on the magnitude of the diffusion coefficient,
we obtain for this expansion parameter according to (39),
(40) and (37):

R A A L
(4u)t (c>, Au)“/" D7 ~ Uean? b 443
g 4
p:§ D ﬁ~ Ds Yo 1
(uAu3J - uAu3) 7
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Thus, irrespective of the special magnitude of g or D, each

of the terms in (15) makes a larger contribution than the

previous one. The trapping time and hence the (always positive)

exponent of the expansion parameter would be even smaller if

the expansion (17) were to be considered as well. Thus, in

order to put up kinetic equations when the diffusion coefficient |
is large, a better approximation would have to be found for |
the distribution function than (5') and (15), where it is 1
expanded with %% ({J47> as first term. This is one of

the difficulties that occur for large D and that are not con-
sidered in  [7] (ef. [16]).

But the nonlinear portion cannot be disregarded either, in

general.

Inclusion of terms containing initial values of the fluctuations.

In Dupree's method of obtalning equations the initial values
for the fluctuating part of the distribution function (which
vanishes in the average) are discarded.

Orszag and Kraichnan @Lﬂ proposed to include them (for small D)
and called the resulting equations conservative pseudolinear
equations; they obey the energy conservation law (Appendix II).

We shall specify here the way in which these equations lead

in the kinetic equations to the known inhomogeneous terms of
12, 13) which describe Lenard-Balescu collisions and spon-

faneous emission. Special attention is given to the time

dependence in these terms, since it clarifies what is entalled

in Dupree's method. We recall first the result without al-

lowance for the diffusion term in the integration path:
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The fluctuations are then ‘ﬁ({’]=fm'(](&)> =

t . ‘
e l‘.k - w'-(d*‘ ‘-_ _L' ‘tp
(4o) % Z jd_{-' Ek(o)g/ X 12 <‘§£(ﬂ> + E 31«(")6 lex-CUuft-to)
W ‘ta v ¥

where
(41) Flt)=f () <ft)> 2 = zwg‘gw&““

We now use the parallelism of the Vlasov to the Klimontovitch-
Hierarchy. It 1s stated in [ﬂ?] that the former is equivalent
to the latter except for certaln terms describing particle
discreteness, but these do not contribute to our problem as
calculated in [12] .

Hence we obtain the inhomogeneous terms as in [ﬁ}] s 1f we
choose the same appropriate space average relation as in the
Klimontovitch - formalism [13] :

(42) ot o vt) > = Yo cfud) s diex) div-v)
(+two particle correlations)

The ensemble average in the sense of [13] reduces to the space
average in our homogeneous case. Thus we write < > for it, what
cannot lead to confusion here. In @3] this relation is applied
to the Fourier transform of {-<§> at time ¢ =1

(43) Lfi, (Ut ) fu (U )>3Qus ue> = (27“) dlletky) Jfv-ve) - <Flvato)y
The two-particle correlations are damped out in the equations.

The time t'=t. is afterwards shifted to t'-t by the argument
that the difference would be small. But in the higher-order
calculation [14] secular terms must be summarized to fill this
gap.
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In Dupree's method we have instead of the fluctuations (40)
others of which the asymptotic part is used in the prece ding
chapters and the corresponding initial value part is from (19)
and (41)

¢ 3 ckx - kv (F6) +.0
(44) ‘ﬁ,(f)/ L= é(-ﬁ+f%'h’;)€_§td{l)e/
a, 'fb

According to (42) we then have instead of (43) the following
terms in the kinetic equations apart from the destroyed two-
particle correlations:

‘“5><fh(v,fr){ut(vz,t1>~<fu.(wcy-fultvz&)/ > B b)) dlkrle) dvevy)

where the r.h. function (f(v,1)> obeys in the approximation of (U4):
2 9 5
o <FWt)> = & Diwt) Lfwts

The higher-order terms of the expansion in D (like (15) ) would
give the correct time t instead of t, . Thus one obtains the
true time dependence in the inhomogeneous term without secular
terms, but this is only the true time dependence as long as
the diffusion approximation is valid, i.e. the inhomogeneous
terms remain small (far from the steady state).

In the asymptotic part of the fluctuations, however, the appearance
of the diffusion coefficient D in Dupree's method has no cor-
respondence to other methods.

Hence in comparison with other work the main advantage of Dupree's
method for small D is that he gives the true time dependence

for spontaneous emission and Lenard-Balescu collisions in the
diffusion approximation for the distribution function. For long
times secular divergences, which grow otherwise, can thus be
avoided.
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Summary

Dupree's method thus avoilds complications which arise other-
wise at higher orders [ﬁﬂ]. For a more detailed comparison
we should also solve the non-linear portion of Dupree's
perturbation theory.

In the case of a small diffusion coefficient, the linear
portion 1is shown here to be equivalent to the quasilinear
treatment including the effects of the time dependence of
the distribution function [9] , if we ignore certain processes
which have a similar structure to the known non-linear cor-
rections to the linearized Vlasov equation.

One of these processes was estimated by Dupree to broaden,
in k-space, the kernel of the diffusion coefficient for the
particle distribution function if this coefficient should
become large, i.e. for strong turbulence. It is then not
clear whether the linear portion could be separated from the
non-linear one. But on this assumption it 1is shown here that
the time dependence of the distribution function does not
obey a diffusion equation: In this case the distribution
function can no longer be treated as varying slowly with
time in integration over time.
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Appendix I

Enerpgy equation for the solution a

The energy law postulates:
£ 9 3:‘;1_@_ Mk
(A1) f%w a_t.q((n) dv i & Sl%()} ol e

Substituting (23') into the left-hand side, we get:

e Sdu A1V e I ZIE“(”, (dv(u- Rm“) L= T4

(a2) ™

e &7 (Bl fav R o)

[24
The second expression disappears according to the dispersion
relation (29) since it is necessary that T fuoe = O

From the first term in the first expression, i.e. the quasi-
linear term in the square brackets (ea. (23)), there fol-
lows as in [1, 6, 9]

¢
—%F%QXu l Evt) |

is the total result.

which according to (A1) and (30)

It therefore remains to be shown that the following quantity
disappears from (A2):

) [ s (% i) 2

U(U Re 5« ((a_l.)- (ku-&‘cwu) v (“\J-&;Jq)t % *
_A_..__ _.a_ -.-.—.-_-.-._—'4 ?(,?{)J =
ku-Rewow Dt  ku-Reww v
(A3)

\=r gdv [((;% _L_)<%}ﬁ>+ D __|I_> <3a‘f> ~J

(Wu- Revou)t (ko-Reou)E VW7 Dt 1 (Wo- Recon)
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The last expression in (A3) i1s discarded because the de-
rivative of the dispersion relation with respect to time
vanishes (the quasilinear dispersion relation 1is sufficient
owing to the restriction to linear corrections in D). The
first two expressions in (A3) together give zero.

Even 1f D is assumed to be independent of the velocity and
{f > 1s perhaps assumed to be adiabatically time dependent,
we would have to retain, in addition to the correction ac-
cording to Dupree, the first term of the expansion of B

(17) in order to satisfy the enerey law,

This term results from the fact that (unlike the approximation

[7] ) we take into account here the first velocity derivative
pf TS in applying the operator (>

This immediately raises the aquestion whether the other de-
rivatives, particularly with respect to time, can then

still be neglected. Insofar as these are important for the
energy equation, this can be verified from the following:

If the form (23") 1is used instead of (23'), we get instead
of (A3) the integral:

Wl Gl Gy b, ) I

(ku-Rewu )® 007k (lw - Reeaw ® ke (kv-Re)

) o
<2f> -2 Dca—f:'

Here the contritution of the Dupree correction is cancelled
by an expression which vanishes with <§£> -+ (0 . The time
variation of the distribution may therefore not bte neglected.
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Appendix TIT

Enerey equation for the asymptotic solution of Dupree's

initial equations: inclusion of initial wvalues of the fluctuations

In the ansatz (21) for the field the energy equation can be
satisfied for the asymptotic solutions ( tT-to— )
of Dupree's initial equations, just as a Maxwell equation not

used hitherto can.

With the ansatz (2Q) for Eu(%), eq. (5) for a uniform
distribution function can also be written in the form:

t-to

- 2 (e de Bpati-c)
o - 2 (&) 4.0, 4)5 o o

; 9
where (gtr + (B - O (Tore) ) - %}D T ) » % (0,7+2.%) = 0

o.'—‘f' 9
(a5)  TeislE ‘ﬁgu(w,‘mz;n)/ - 2 <

TTo

In the quasilinear theory D would here be zero, which
otherwise alters nothing of the following proof of the

energy equation. With this definitlion the relevant dispersion
relation following from (27) is:

'{"‘('o
L .
E = /]_ {t_qig_ ﬂ gd?/fd'c C@,((W,{-,{'CJJO
KWK w1 Akz

o

(A6) (t-to »>2°)

We now have to substitute (A4) into the energy equation (A1):
f'fo

74
P Jmt%<1f(+,> dv = - & (di w@-‘f-’.u%;fﬁg,k/md-z)
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Since 'gu(“ ,% (1 , assuming

AL AN AR go{v (wull-der) ey (ott) =
it follows for the quantity (AT):
+t,

_ et dev £ 1¢.0)1° ’-”«“’j L ¢, (git]) =

wy

with (A6):

€. 4) |

a

(ﬁ)&) ( é 1w

The enerey equation (A1) is thus satisfied if (A8) 1s valid.
The latter holds if (A4) and (A€) are assumed, 1.e. for
Dupree's initial equations, just as does the form of the
energy equation following from the Maxwell equatilons:

€t . | ;
(29) 3 (a?? %—%F“] “Z gt -Zefo fo L L,

For it follows from the dispersion relation (A6) that:

¢ 2
) e e’ (1 (e fupatte). EHT_Lop o 1M
(A10)Zw f f % wttt) o éI ol e

wvhile we get for the right-hand side of (A9):

t-to
(a11)-F, ijﬁl-gd’v}dz Uew) ulititz) ) = + € g8

¢

Substituting (A10) and (A11) into (A9) we pet (A8).

For the integral kernel of (A8) we obtain with (A5):




{0
([ de (fo-ot)) g Gelatit=) 5
. tt, 5 . 5
. 3 » " :
L @}t &(%“ 3052

It

;__ﬁ gf,\ﬂ (§liatite)- b tit))

Only the last part is left over asymptotically ( t-to—> o0 ),
and it vanishes in the integral over the velocities because
of the initial condition in (A5).

As pointed out in B(ﬂ initial values of the fluctuations
could be added in the equations for the particle distribution
function and the wave energy density. We note, that the energy
equation here given can be extended to these "conservative
pseudolinear equations" @d}.
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Appendix III

Approximation of the non-linear chanre of the wave energy
density

o\ 2
Disrerarding terms of the order (k-(i)—*t) (viz
approximation |« | =Wp )

. In the

, we obtain for the non-linear

prowth rate from (30) et sea. if the coordinate system is

chosen such that for resonant particles: v > 0:

o A Sy 0, 0 D
ABu 2u0p w v ( ]y~ Loy <Bu> 0 (L{fﬂ’_d)z N
L'd
. _ .
. Wy .Dﬁw,<%>+ / 0 9_{:> N
o K (lv-Rea® 2 07 ) il _ g 32 p Wy
e
_ e gdu -4l D é F wp. ‘%102 <91L > 4+
wp W L,a?z('b%":-'?) (lwu-w,-)3 Ll
w; ‘4 !’aﬂUu a

/
K Cheo- Ry Psan B (007 3 (4- ey Y >) i

3

_ Wy Gmdt ( 1 2 [
=G wi [l gdu (Kl u-19p)" Du ( Gﬁf_ )

W, bme ( . ] R D baet
(s e 4 (ku- R )*  OF <_5”£>+ 3plkhlma O o (- '“’” %:

(The last term is transformed as in [9] , Appendix 11.)
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S P E T PV

s W
i Wy (1- 4_6;) bne® D0k, Jy—11 oy ~
2K 7] W TR P e ke B0 S

i -.‘Z /C)Qwﬁ’_b?k 3 “(, A _Q._ L
S T Ty & fdo Do (uGp>)

(12}

With the solution of the (quasi) linear disversion relation
for K <« (3% , with the enerry eauation (A1) for the
quasilinear terms and with the result obtained below (A14)

for the last term of (A12) it follows that:

3lklw ’*f‘

(112) Yl

A12 o - i'- E B4 5+ ———LZU: /(H] (—3—— rau/>
vs 2

K

of Sl E %/, 3

>+ ———L

(13 g E‘E H, < Sl (’k 1/ ﬂk'z<§;{* >

U= D ©,

"8 = = =f
! Uik? U‘w%

The last term is somewhat less than half of the result (A15)

obtained in the usual treatment of the Vlasov eauation.

for k' =k we ret ﬂ%g‘ of (A15) and also the term with the

second derivative of the distribution function.

For a Maxwell distribution this term would be much larrer

in magnitude than the other terms if a constant square of

the amplitude is assumed. In the bump—in—tail case, however,
the sauare of the amplitude is small where the most pronounced
curvatures of the distribution function occur, viz. at the
boundary of the unstable rerion.
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(If D were assumed to be independent of velocity both in

and outside the unstable region, with a jump occurring bet-
ween these, thils would only make the followinge calculation
more difficult.)

With (22) the second part of (A12) is approximately

3kl Ly '
lwz L:_.gA l

QMV‘ 0

)la(___&sz_g}. %%‘ib§£:>‘:

dv +

= 22 £[E ffl* [a@%/u:gmyufﬁ’

(v -Revonr)®

'nkﬂiv <Bo’—/u f;.’) + Gy’ g_‘&ﬁ d ‘I%

(Wv- Row)* U.:

-

T X R 2t TN A
3l e[ Gpeld | ©
ZHI?%'E'(”[_ZXF E aoa/>]
(A1l) "

Without the first term in the expression for ﬁyu((BO) et

seq.) we should pet (according to Appendix 11 of [9] )
instead of (A13):

(A15) B S AT
A‘H“Z' T8 glun o § [Ek(”l

The unstable waves ( Xw >0 ) would accordingly grow

even more rapidly, because Axu > 0
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