INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Studies 1n Operating Systems Design
Part I:
Semaphore Operations and Task Control.

Friedrich FHertwecl

IPP 6/63 Januar 1968

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Institut
fiir Plasmaphysik GmbH und der Europdischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiihrt.

IPP 6/63 F. Hertweck Studies in Operating
Systems Design
Part T1:
Semaphore Operations
and Task Control.

January 1968 (in English)

ABSTRACT:

Certain aspects of a supervisory system regarding efficient
handling of I/0 are discussed. After introduction of the
concept of "semaphore operations" a few specific ones are
defined and it is shown that they suffice to describe the
concurrent operation of a main processor and I/0 devices.
By means of these operations, a general scheme is set up to
orpanize the 1/0 data flow using buffers for intermediate

storagce.

10,

INTRODUCTION

BUFFER COUPLED PRODUCER/CONSUMER PAIRS

DIJKSTRA'S SYNCHRONIZING PRIMITIVES

A "REAL" COMPUTER

SEMAPHORE OPERATIONS

THE QUEUING OF TASKS

PRODUCER/CONSUMER PAIRS WITH SEMAPEORE
OPERATIONS

THE WAIT MECHANISM

ONCE MORE: THE PRODUCER/CONSUMER PAIR

CONCLUSIOHN

10

13

17

20

2€

28

1.

Introduction

In the present report we trv to develop some of the con-
cepts necessary for describine an operating syvstem. An
operating system has many aspecté, but certainly one of

the most important is the throuchput it can offer. The

mode of operation for second generation computers was to
use a satellite for primary input and final output. Most

of the third reneration computers are apparently devised

in such a way that they should be able to support their

own Innut/Output. However, this reauires a lot of sonhisti-
cation in that part of the Supervisor vrogsramme, which

aqueues and controls taslis for the I/0 devices.

Viewed with respect to dataflow, 2 lot of the I/0 activity
can be described in terms of producers and consumers which
f111 and empty buffers. These ideas are described in Sect. 2.
After a short review of the proposal for "synchronizing
primitives' as riven by Dijfkstra (sect. 3) we turn to

the "real computer" that we have to deal with. Ye confine
courselves to what we consider the basic nronerty of the
"semaphore opnerations" (sect. 5). Having introduced the
mechanism for the cueuine of tasks (sect. 6) and the wait
mechanism (sect. 8) we are able to describe in a concise

way producer/consumer pairs which work on a sermented |
buffer. In our nresentation we have to be somewhat varue '
in describing certain features. A more detailed descrintion
of these aspects of the supervisor will be presented in a

subsequent report by K.H. Goihl {27.

Buffer Coupled Producer/Consumer Pairs.

The producer/consumer pairs belong to the most important
processes going on within a computer system. Their main
purpose is to smooth out the differences in the data pro-
duction and data consumption rates of the various I/0

devices and the CPU. A typical example is shown in Fip. 1.

The normal computer system will have one CPU but several
"data channels” and I/0-devices. For example, there may be _
several inout readers or output writers. If the readers. |
for instance, are eaquivalent. then there 1s no need to i
treat them differently except that the data read are stored |
under separate labels on the disec. But all the readers

feed the same input data rerion on the disc. Since the

generalization to multiple input devices is fairly obvious

(it can basically be achieved by reenterable coding for

the nrocesses) we shall confine ourselves to simple pro-

cesses.

In Fip. 1, process P1 will read cards into its associated

input buffer. P2 will move the data to a disc storare.
When all the data belonrine to a job are read in, the job
name will be placed in the 1list of jobs waiting for exe-
cution. P3 will collect the data from the disc and place
it in seguential order into Buffer 1. Processes PM’
P_and P6 act in a similar way in the reverse order. Es-
sentially, the disc storare is a buffer and all the pro-
cesses, including the main processor, can be considered
as buffer-coupled nroducers/consumers. Apparently some

of the processes, e.r. P2, look like consumers at one end
and as producers at the other end.

The basic idea for any onerating svstem 1is to consider the 5

processes Pl’ . P6 and the CPU programme as independent
of each other. P1 should read cards whenever the card reader

contalns cards and a buffer 1s available to put the data

in. P2 should transport data from the input buffer to

the disc whenever the buffer is full and the disc (in-
cluding the channel) is available. P3 will select data
according to some rule (e.r. first-in. first-out or some
priority sheme) and read it from the disc storare into RBuffer

1.

The problem now 1is to devise the processes P in such a way
that they can work independently of each other but ne-
vertheless are synchronized as required in a safe and ef-

ficient way.

4

external
document

Input
buffer

buffer

/ MAIN
¢

\P ROCESSOR

f\

buffer

L Qutput
buffer

external

document

I'ig. 1. Producer/Consumer Pai
handlings I/0 streams

job processing.

rs for

during

Dijkstra's Synchronizine Primitives.

Dijkstra [1] has studied the ccoperation of "loosely con-
nected” seauential processes. According to his definition,
loosely connected processes are 'processes vhich can, anart
from the rare moments of explicit intercommunication, be
recarded as completely independent of each other™. This
applies in particular to their relative speeds. Processes
communicate through common variables which are set and
interrogated. The inspection or changing of such a common
variable is considered an indivisible operation. He intro-
duces the "semaphore variables" and two operations, the
V-operation and the FP-operation, which operate on a sema-

phore.
The definitions are:

The V-operation is an operation with one arpgument, which
must be the identification of a semaphore. (If s denotes
a semaphore, we can write V(s).) Its function is to in-
crease the value of its arrument semaphore by 1: this in-

crease is to be regarded as an indivisible operation.

The P-operation is an operation with one argument, which

must be the identification of a2 semaphore. (If s denotes

a semaphore, we can write P(s).) Its functlen 1a ta decrease
the value of 1ts argument semaphore by 1 as soon as the
resulting value is non-negative. The completlion of the
P-operation - i.e. the decision that this 1s the appropriate
moment to effectuate the decrecase and the subseauent decrease

itself - is to be regarded as an indivisible operation.

Ve may symbolically describe the semaphore operations by:

V(s) = 8= $+4}

P(s) 'P={§_{s>0£fﬂ5=: s-1 9_1_25229_?}

(il

The brackets i. } denote that the operations within are
indivisible.

If we conslder two processes A and B which are a pro-

ducer/consumer pair we may write

s = 0;

Producer: Consumer:

A: produce next portion: B: P(s);
add portion to buffer: take portion from bhuffer:
Yis): process portion taken:
7O to A: £0_to B:

Initially, s = o. The processes A and B are then started.
Process B will be stopped by P(s) which can be completed
only after process A has performed V(s). Process A will
produce the next portion and add it to the buffer. If A
produces a burst of data, then s will be » 1 and BR
will work until s = o. This solution is acceptable if the

two processes are performed in two independent processors.

Since the processor which is to perform process B will
walt most of its time within P(s), this is certainly a
very uneconomical way to proceed.

4. A Real Computer

Though there are computer systems which contain a larger
number of processors the ﬁormal structure of a system is

an agrregate of a single processing unit (a "CPU") and

a sufficiently large number of I/0O channels which can
operate independently of the CPU. However, the channels

are not capable of completely maintaining the I/0 ope-
rations since for starting and terminating these operations
they have to be sunported by programmes performed by the
CPU. The termination of the I/0O-operation within the channel
will normally be indicated to the processing unit by an
"interruption', i.e. the propgramme currently beinpg per-
formed is hold up and the (normally very short) programme
for logically terminating the I/0 operation is executed,

whereupon the interrupted CPU propgpramme 1s resumed.

If we turn to the producer/consumer pair we see that some
parts of A and B have to be performed in the processing
unit. This is especially true for the semaphore operations
V(s) and P(s).

Before we go on, we impose some restrictions as to the nature
of the processes involved. If A and B are twb processes
performed entirely by the processing unit there will be

no parallel operation since we have only one processing

unit and therefore the processes must be performed sequential-
ly. If, however, the processes involve I/0 operations,

as 1s the case with producer/consumer pairs that transfer
data from one secondary storage medium to another via the
central store, these processes can po on independently if
most of their time consists of I/0 operations. In what
follows we shall confine our discussion to those situatilons
where a certain number of independent I/O processes 1is
maintained by the CPU.

It is obvious that we have to look for a better solution
for the P-operation. Neilther should the solution lead to
unnecessary tests for s while s 1is still zero,

since this testing consumes CPU time, nor should there be,
when s goes from zero to one, a long delay before the

waiting process can continue.

- 10 -

5. Semaphore Operations

If we look at the definition of the P-operation (sect. 3)
we see that an important property of it 1s that the value
of its arpgument has to be decreased by 1 as soon as the
resulting value is non-negative. This certainly 1s a de-
sirable property since it ensures that the process, being
held up by P, can go on as soon as the variable is changed
to 1 by a V-operation. Hence we have to look for an equi-
valent of the P-operation which would still have this

property but avolds any unnecessary looping.

In order to be more flexible, we shall assume that there
can be more types of "semaphore operations" and not just
the two operations introduced by Dijkstra. At first sight
it might seem that we are complicating things unduly and
that an operating system bullt up by using only two ope-
rations is more elegant. However, since we are dealing
with the basic functions of any operating system our
main concern - apart from complete security, of course -
has to be efficiency.

We now make the definition:

There are semaphore operations implemented in the system

wvhich serve for the communication between various processes
through the assignment and/or test of certain common variab-
les. These semaphore operations are to be considered as
indivisible operations.

It might appear - since we are dealing with a system with
only one central processor - that there is no need for
demanding "indivisible" operations, because all semaphore
operations are performed by the central processor. VWe can
show from the following simple example that thils is not
true. Let us assume that a CPU programme has filled a
buffer segment and has called an output routine to write
that segment onto tape. During the tape operation the

& 44 -

next segment of the buffer is being filled and this is
completed just about the same time the tape operation has
been terminated. The CPU programme will increase the seg-

ment count s at that time by 1 and the interrupt routine

for the tape operation will decrease the segment count s
by 1. The two programmes are basically

interrupt

111 buffer
g routine

T e
LOAD s LOAD

SUB 1
4—————~——(:)

STORE s :: STORE s

S

I

return to
interrunted

program

We assume that durinpg the filling of the buffer s = 54

and that after the fillineg it has to be set to so + 1. If,
however, between these two points the interrupt of the tape
unit is taken., the final result should be 5, = 8, since the
interrupt routine will decrease s by 1 and therefore the
two operations cancel out. The following table gives the

possible results, depending on when the interrupt is taken:

case S

g i
1 So
2 ST e
o
+
3 s, 1
i s
o)

= A

If the sequence LOAD S / ADD 1 / STORE S were a semaphore
operation, i.e. indivisible, then the interruption could
take place only before the operation has started (case 1)
or after the operation has been completed (case 4). Only
then are we sure to get the correct result.

As we have shown, the need for the indivisibility of sema-
phore operations arises from the fact that the main pro-
cessor can be interrupted. Hence, whenever we have to per-
form a semaphore operation in a "main programme" (i.e. a
programme that basically uses CPU time and can be inter-
rupted), we have to ensure that during the execution of
the semaphore operation no interrupt can be taken. This
requires the computer to have implemented appropriate
instructions for enabling and disabling interrupts.

Semaphore operations, as used for the control of two

coupled processes, generally occur in pairs and act on

one or more common variables. Normally. one of the operations
will be located in a main programme whereas the corresponding
counterpart may be located in the interrupt routine. Since
this latter routine will generally be uninterruptible we

have only to take care of the semaphore operations lo-

cated in main programmes. (Ve made these last remarks

with the IBM System /360 in mind, but we feel that they

may apply to other computer systems as well.)

So far we have not vet offered a counterpart to Dijkstra's
V- and P-operations. This will be done in the next section.

The Queuing of Tasks.

Let us again consider the producer/consumer pair but this
time taking a more realistic example:

s = 0
Producer: A: Consumer: B:
read data from tape: Pls):
V(s): write data onto disc;:
go to A go to B:

We still use the V- and P-operations as we do not yet

have a better mechanism. According to our stipulations in
section 4 it is understood that these two processes "spend"
most of thelr time waiting for the completion of the I/0
operations.

It is obvious that these processes can go on concurrently
only insofar as they are not using the CPU. If the CPU time
for these processes is small compared with the data channel
time which it normally is, then they can go on concurrently.
e have tacitly assumed that the buffer space to read the
tape 1s infinite. Then nroducer A can repeatedly read data
from tape. The same is true for the consumer when writing
onto disc. If we want several processes to go on concurrent-
ly, we have to provide for a aueuing mechanism for all the
processes which can go on.

Vle shall employ the two semaphore operations stack oueue

and select aqueue to achieve this. They can be defined as

follows:

semaphore procedure stack queue (processor, task, data):

comment p is eaguivalent to 'processor';

begin

put (task, data) into first empty nosition of aueue (p):
acnt(p) = aent(p) + 1:
if qent(p) = 1 then start task in first position of

aueue (p):
end:

semaphore procedure select queue (processor):

comment p is equivalent to 'processor':
berin
remove task in first position of aueue(p):
acnt(p) = aent(p) - 1
if acnt(p) > O then start task in first postion of
aqueue(p) ;
end:

The procedure "stack aueue" places a task which is ready

to be performed into the aueue for the specified vrocessor.
When a task is put into the aueue, a check is made to see
whether the aueue was empty. If so, the corresponding pro-
cessor 1s idle. Hence 1t 1s started with this task. If

the queue contains already one or more entries, we may con-
clude that the processor is busy and only the stacking of
the task has to be done.

The procedure "select gueue" obviously has to be the last
operation of a task, since 1t removes this task from the
queue and selects a new one. (The task in the first position

of the queue 1s the task currently being processed.)

Since these two procedures are semaphore procedures (stack
queue 1is normally part of a main programme and select
queue is located in the interrupt routine if the processor

is a I/0 device) the proper sequencing of tasks and the

- 15 -

maintenance of operation of the processors is ensured. To
see this, we need only look at the case when the last task
of the queue is being performed. If a "stack queue" is
given before the ”select‘queue", the number of tasks is in-
creased from 1 to 2 and the subseauent "select aueue" will
remove the first task (now finished) and will start the
new one. The number of tasks then remains 1. If the "se-
lect queue" comes first, the aueue is emptied and the pro-
cessor becomes 1dle. A subsequent "stack queue" finds the
queue empty and therefore starts the processor with the
task just stacked. From the semaphore property of the two
operations it follows that only these two cases may arise

but never a mixture. How this works 1s shown in Fip. 2.

The queuing mechanism may, of course, be expanded by taking
into consideration priority rules for the selection of
tasks. Then the selected task, if it 1s not the first of
the aqueue, has to be exchanged with the first task of the
queue. (see [27]).

- 16 ~

CPU Start .
programme Bictue E":l Pevice
| - B
L/o

stack @ (Ifo%)
PR oI 1.

—Sclecl:(i

s-l-Cle Q (I %)

Fip. 2.

-t

time

7. Producer/Consumer Pairs with Semaphore Operations.

Ve now define the following semaphore procedures:

(1) semaphore procedure S1 (s, processor, task, data):

berin

if s = 1 then stack queue (processor, task, data);:

(2) semaphore procedure S2 (s, processor, taslk, data):

5 := s - 1:

if s Z 1 then stack queue (processor, task, data):

end

These two operations - beinpg semaphore operations - are
mutually exclusive.

Before we start to explain their functioning, we write
down the example of the producer/consumer pair once more.
Let us assume this time that the buffer is finite, divided
inte N segments arranged in a cyclic way. That is, if

the last buffer segment is filled in one step, the next
step will fill the first buffer segment. Associated with
the buffer are three variables, a, np, and nc. a 1is the
number of full buffer segments, np is the poilnter to the
segment which ist to be filled next and nc ist the pointer
to the segment which is to be taken away next. The two
processes are:

initial state: g := O; np := nc:

S

-
Q
n

Producer: P1:

L: if q = N then go to L;

read in buffer sepment (np):

np := (np + 1) mod (N):

q + 13

if g = 1 then stack queue (consumer, C1, buffer etc);}

go to L:

Consumer: C1:
write out buffer segment (nc):
(ne + 1) mod (N);

n

nc

S2: lc =g - 1;

if g 2 1 then stack queue (consumer, C1i, buffer etc);}
select queue (this processor = consumer);

For the sake of clarity we have written down the two sema-
phore operations S1 and S2 explicitly. They are enclosed 1n
brackets { } . As initial state, the buffer is emnty

(@ = o, np = nc) and the two processes are idle. When the
first buffer segment is filled, g is set = 1 and the con-
sumer is started. For the time being we have written the
producer as a cyclic programme with a wait loop if g = N.
This only means that the producer is working at full speed
as long as buffer space is available. We have used the
same technicue as for the stack aueue/select queue pair.
The consumer 1s started only wvhen aq goes from o to 1,
otherwise the consumer stacks itself and restarts itself
by the select queue operation. The pointers np and nc
are only used in the producer and consumer programmes,
respectively; therefore they need not be acted upon by

semaphore operations. The only semaphore variable 1s aq.

Taking q as the decision quantitiy whether to stack a
task relieves the task aqueue of all superfluous entries
and, at the same time, the scanning of the task queue in

- 19 -

case we use priorities is shorter. This is especially true
in the case of data bursts in the producer, where the
queue would have to accomodate N task entries instead

of one. We have used, of course, the fact that these data
are to be handled sequentially. The proper sequence of
tasks is maintained by the seaquence of buffers as des-

cribed by aq, np, and nc.

We have to improve the desipgn of our producer/consumer pair
in two respects. First, we have to abandon the dynamic

wait loop when all buffers are full. This can be achieved
by another semaphore variable indicating this overflow
condition and by removing the producer from the task aueue.
The consumer has to check on the overflow condition and

has to restart the nroducer after a buffer segment has be-
come available. Secondly, the statements "read in buffer
segment (np)" and "write out buffer segment (nc)" refer

to I/0 operations which are maintained by different pro-
cessors (in this sense each channel or subchannel is a
separate processor) whereas the "producer" or "consumer"

are in fact CPU programmes.

The next problem we have to consider is therefore the
request of services of one processor by another, and a
mechanism which will make the reaquesting processor
wailt until the requested task has been finished. This
will be done in the next section.

- PO -

The VWait Mechanism

The purpose of the wait mechanism is to transfer a pro-
cess to a temporary wait state until one or more secondary
processes are completely finished. To describe this mecha-
nism we use an algol-like notation 1like Dijkstra. The
sequence of statements

38

. SA; parbegin S Sn parend; SB; e @

13723

is to be performed in the following way: First, statement
SA is completed. The statements 81, 82, ais 9 Sn are con-
sidered to be independent of each other and should be
performed by n different processors in parallel. State-
ment SB is started when and only when all of the processes
within the parbegsin/parend brackets are completed.

This notation is used by Dijkstra to describe algorithms
which can be performed by parallel ideal processors. For
our purposes we have to modify the meaning of the seauence
of statements as given above. First of all, thils sequence
of statements always refers to a CPU programme. Within

the brackets we may perform in parallel a number of se-
condary processes, i.e. I/0 operations, and only one CPU
propramme. Moreover, the I/O operations have to be started
by a CPU programme. Parallel operation is possible because
the starting of an I/0 operation requires a much shorter
time than the I/0 operation itself. In order to obtain
parallel operation of I/0 and the CPU Sn’ the last "state-
ment" within the brackets must be the CPU programme.

The first n - 1 statements are the calls for I/O operations.

Though they are performed sequentially, the I/O operations
themselves are performed in an overlapped fashion.

It is clear from the bracket structure of parbegin/parend

that they can be nested as in the following example
(Fig. 3).

- 21 -

tput t'npu!‘
U ou P
cP channel channel .
N a .
SA A
[o e o parbepin
S4
OUTPUT:
Sy INPUT:
H , bepin
1! 3
) L ; S,
:l B By
WAIT ' Y parbepin
(R
z o OUTPUT;
» ' E
|I > " - S
4 '_' * 2
o e ol 8 parend;
S. 4
2 s
: 3
b : end:
w@r : —
. parend ;
Ss Sg3

Fip.. 3 .The wait mechanism.

So far the description of parallel operation has only
been a formal one. We have to look for a way of imple-

mentation. We define the following semaphore operations:

= D9 =

(1) semaphore procedure parbegin (k):

begin
k := 1

end;

(2) semaphore procedure par (k, processor, task, data);

begin
k := k + 1
stack queue (processor, task, data)

comment data contain information about the
main processor, the address of k, and the
label of the continuation point (CONTINUE:)

after 'parend';

end;

(3) semaphore procedure parend (k):

begin

k := k - 1;

if k > 0 then select queue (this processor)
end;

CONTINUE:

(4) semaphore procedure parexit

begin
k := k - 1;
if k = O then

stack queue (main processor, CONTINUE, data):

- 2% -

Let us now investipate whether these semaphore operations
are capable of performing the reauired control of processes.
Let us consider the simple case of one output operation

and a conditional wait. We may write (for tape output, say):

parbegin (k);
par (k, tape, write, data);
parend (k):

CONTINUE:

parbegin (k) sets the value of k to k = 1. The operation
"par" starts the tape write operation and sets k = 2. It
is important to remember that "par"” has knowledge of the
location of label "CONTINUE" and the nature of the main
programme which contains the par-operation. This knowledge
must be transferred to the secondary process - in this
example the tape write operation.

WYhen the operation parend (k) is performed two possibili-

ties may arise:

(1) The tape operation is still in progress. Then k is
reduced to 1 and the execution of the main programme

is suspended. By the operation "select queue" within par-
end the main processor will be supplied with another task
to work on.

(2) The tape oneration has been terminated. Then parexit,
which is perfcrmed at the end of the tape interrupt routine
has reduced k to 1. The parend-operation in the main

programme will then reduce k to zero. The "select queue"
is therefore skipped and the main programme will continue
operation.

It remains to be shown that the parexit operation will
restart the main programme in case parend has been per-
formed first thereby setting k = 1). Parexit will first
reduce k to zero and then decide that this process (i.e.

the tape write operation) was the last in the parbegin/par-
end bracket. It will therefore stack a main processor task
into the queue. The entry point is at label "CONTINUE",

and the information about the main programme, as received
through "par", is used to reset registers, define priority,
ete. The stack queue operation will restart the CPU with
this task if it was idle at this time. If the CPU 1is busy
with another task, this particular task is waiting in the
queue.

The mechanism described works in a similar way if there
are more secondary processes within the parbepgin/parend
brackets. Each "par" increases the value of k by 1 and
each "parexit" decreases its value by 1. That process
which resets k to zero 1s the last one which has been

busy and will induce the continuation of the main task.

Fig. U shows an example where several tasks share the CPU.

- 25 -

cPU DISKS CONSOLE
PRINT KEY
-P1
P T 1 Message ‘Mount Disk Pack’
2
I
]
I
1
I
\
\
AL > < , ;
41 T Key entry " Disk paclk moonted
£
o~ Start delayed task to read disk

@
|

<— at this #‘me P, and P, are in the
quene, but P, kas higher priority

Fig. 4 Several processes share the main
processor (CPU). Task switching is
performed when waits for I/0 are ne-

cessary.

9. Once more: the Producer/Consumer Pair.

In this section we shall present a final review of the
producer/consumer pair making full use of the previously
defined semaphore operations. We may write:

Producer:
{p = 0: 1f q = N then begin p = 1; select queue (CPU) end} -

parbegin (k);

par(k, tape, read tape to buffer, buffer segment (nn)):
parend (k);
np := (np + 1)mod(N);

{q := g + 1; if g = 1 then stack queue (CPU, Consumer, O)}

stack queue (CPU, Producer, 0);

select queue (CPU):

The brackets { } denote the extent of the semaphore
operations. We have assumed that the producer is started
once from "outside". After that 1t cycles by nlacing it-
self repeatedly into the queue. The parbegin/parend pair
ensures a wait for the data transfer. When the first buffer
sepgment has been filled, the consumer is started within

the second semaphore operation.

The consumer is described by

Consumer:
parbegin (k);

par (k, disc, write buffer to disc, buffer segment (nc)):
parend (k);

ne := (nc + 1) mod (MN);

{fa:=q-1;

if p = 1 then begin p := 0; stack queue (CPU, Producer, 0O) end:

if q » O then stack queue (CPU, Consumer, O) } :

select queue (CPU);

The consumer starts by transferring a buffer segment to

the disc. The completion of this operation is awaited by
parend. When the buffer segment is empty, g 1s reduced by
one If an overflow condition is present, then at this time
the producer is restarted. The consumer restarts itself

as long as q » O, i.e. it has still something to do. If
the consumer stops operation because the buffer is empty,
the producer will restart it as soon as 1t has refilled

one segment.

10. Conclusion

In order to describe some of the basic functions of an operating
system we have introduced the concept of the '"semaphore operation'.
In addition we have defined the special semaphore operations
parbegin, par, parend, parexit for the control of walt con-

ditions and the operations stack queue and select queue for the
control of task sequencing.

It appears that these concepts are sufficient to describe such
a system. For the time being, we have of course omitted a lot
of important details. For instance, we have not said a thing
about the structure of the routines for starting I/0 operations
for an I/0 device or for handling interrupt conditions. We have
only indicated in a rather vague fashion that at the end of an
interrupt routine - which normally terminates the I/O operation
logically - we have to place the parexit operation and after
that the select queue operation to find out about another pending
request for this device. Furthermore, we have not explained how
the transport of data between tasks will actually be performed.

That these concepts are indeed sufficient to describe most of

the I/0 activity of a computer will be described 1n a subsequent
report [2].

Re ferences

(1] E.W. Dijkstra "Cooperating Sequential Processes" Techno-
logical University Eindhoven (1965)

(2] K.-F. Goihl "IPP Report" in preparation.

