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Abstract

A beam of electrons penetrating a neutral gas creates a plasma with which it inter-
acts. It is shown theoretically that oscillations with frequencies Jjust below the
upper hybrid frequency (wﬁ = wp2 + wce) will be excited. In the theory the electro-
static approximation is used, but a study is made of the conditions under which this
approximation is valid. Oscillations near the upper hybrid frequency were detected
experimentally. An experimental criterion for stability of the beam-plasma was de-
duced. With increasing density the excited oscillations lead to a turbulent state.
This turbulent state of the system is characterized by high energy losses of the
beam particles. The electric fields, which cause the energy losses of the beam par-
ticles are concentrated in a small region d 2 15 em behind the entrance slit of the
beam in the plasma chamber. Increasing the interaction length does not appreciably

change the losses.




A) INTRODUCTION

A beam of electrons penetrates a neutral gas and creates a plasma with which it can interact.

The main phenomena observed in the beam-plasma system may be attributed to at least two states

of the system, these being referred to as non-turbulent and the turbulent state. The nonturbulent
state 1s characterized by low density, small luminosity and the original monochromatic energy
distribution of the beam particles. In this state oscillations may appear which do not appreciably
alter the distribution function. The turbulent state shows high density, high luminosity and sub-
stantial energy loss of the beam particles accompanied by a large broadening of the distribution
function.

The particular state existing depends on the parameters of the system. The two states can best

be distinguished by the neutral gas pressure. The nonturbulent state exists with low pressure,

the turbulent state with high pressure. The transition between the two states is very abrupt which
may be explained as follows: In the nonturbulent state oscillations are exclted. The amplitude of
these oscillations depends on the density of the plasma, and this density depends on the neutral gas
pressure (see Chapter C IV). Increasing the pressure thus increases the amplitude of the oscillations
as well. At a certain critical pressure the electrons of the plasma gain so much energy from the os-
cillations that additional ionization results. This increases the density, with the density the
amplitude and so on until non-linear phenomena stop this escalation.

The importance of fast particles in a plasma for the occurence of self-excited waves was first pointed
out by W.0. Schumann/ 1 /. J. R. Pierce / 2 / explained ion oscillations in terms of beam-plasma
interaction. The basic theoretical work on multistream plasmas was performed by 0. Bohm and E.P,.
Cross / 3 / and by A.I. Achiezer and Ya. B. Fainberg / 4 /. The experiments desecribed in this

paper were stimulated by the work of R. Kippenhahn and H.L. de Vries / 57 / and E. Canobbio and

R. Croci / 58, 60, 61 / and are intended as preliminary experiments for an ion beam-plasma ex-
periment.

The first part of this paper gives a theoretical description of the nonturbulent state. In the

second part the experiments are described.

B) THEORETICAL TREATMENT OF THE BEAM-PLASMA SYSTEM

In order to give.a theoretical treatmént of the beam-plasma-system,a model must be chosen. For
this the following assumptions are made:
1) The system consists of two separate components: the electron beam and the plasma.
2) The system is quasi-neutral.
3) The important interactions occur between the electrons of the beam and the electrons
of the plasma. The mobility of the ions is neglected m /m = 0.
4) The plasma is confined by an external homogeneous magnetic field B .
5) In the zeroth approximation the beam is directed parallel to B b
6) There is no external electric field.
7) Collisions are neglected.
8) The electrons of beam and plasma are cold.
9) The system is infinite along ﬁ;.
10) Beam and plasma are homogeneous.
11) Beam and plasma have the same diameter and fill a highly conductive metal cylinder.
The assumptions 8-11 will be discussed shortly in the following section.




a) Temperature of beam and plasma

b)

e)

A plasma may be regarded as cold (see also /5 /) ir | kvth | < | kv¢,|(k = wave number;
Vip = Mean thermal veloelty of plasma electrons; Vo= phase veloecity). In the frequency
range of interest it is found from Fig. 1 that Vo' = ‘_;_-_' ('17'0 = beam velocity). The plasma
temperature inside the beam is not measured. But if we suppose that the temperature of
the plasma in the immediate vicinity of the beam does not differ appreciably from the
temperature in the beam region, we find from Fig. 18

Yeh 1

el it
Vo 18

This means that the temperature of the pblasma electrons may be regarded as cold (see also

/6 /). ' /

The temperatures of the beam particles may be neglected / 7 / if d1§4ﬁ§ Y ‘JﬂQU

or, according to / 8 /, if‘ﬁxg <§.“éﬁm where dv' 1s the velocity scatter of the beam

particle§,‘u' their mean thermal velocity, w! the plasma frequency of the beam particles

(wgiﬂ%ﬁﬁg- where n' is the dengity of the beam electrons), W= the plasma frequency

of the plasma electrons (U;: Qﬂ%%f; » where np is the density of the plasma electrons),

w the frequency of interest. Both conditions are deduced for the case of a plasma without

magnetic field. The measurements of the beam particle velocity give an upper 1limit in

the nonturbulent state of dv' or u', which corresponds to about 5 eV. In the turbulent

state the energy scatter reaches values of 100 eV and'morev Characteristic values of w'/w

and w'/wp are found between 0,2 and 0,1 in the nonturbulent state and are lower than 0,1

in the turbulent state. With these values it follows that the beam may be considered cold

in the nonturbulent, but not in the turbulent state.

Length of the system

Very few workers consider the finite length of the system in their theories. The system 1s
normally regarded as infinite. This means that the length L is much longer than the wave-
length. L » A. An estimate of Ais obtained by characteristic values of w and v_. w is about
W, ( W, = eBo/mc = cyclotron frequency of the electrons), and v¢§gvé in the region of
interest. This gives

For the standard values of the experiment BO = 350 gauss, uB =4 kV and L = 40 em, we ob-
tain L/ 15310. The system seems to be long, but may be not long enough for a convective in-
stability to be amplified by a few orders of magnitude. Reflection of the waves at the end
plate or suppression of convective instabilities have to be expected.

Homogeneity of beam and plasma

We suppose that beam and plasma are homogeneous in density along the magnetic field. However,
the density across the magnetic field and the beam radius cannot be considered homogeneous,
as figure 9 shows for the beam density. The plasma density is probably inhomogeneous as well.
Weak inhomogeneities do not cause any major changes in the results, as may be found from

/ 11,12 /. As far as this work is concerned 1t would give rise to many complications if we
were to attempt to consider inhomogeneous densities. These will be neglected, but we have

to bear in mind that taking the inhomogeneities into account could change the results.




d) Radial limitation

In the case without turbulence the plasma density decreases very strongly outside the
beam (Fig. 19). From this it seemed to be realistic to assume, that the plasma is con-
centrated only in the region of the beam, this is in a cylinder with a diameter d & 5 mm.
Now it _should be assumed that the beam-plasma region is surrounded by a vacuum and more
outside by a metallic wavegulide. But because experiments have shown that the diameter of
the waveguide, as long as it is much larger than the diameter of the beam, had no strong
influence on the main results, we assumed a model for the sake of simplicity, where the
beam-plasma region directly contacts the waveguide.

Because the waves under consideration had a wavelength A>d, the finite diameter of the
system had to be taken into account.

The results of this calculation are later compared with calculations made by GORBATENKO.
His results apply to the case when beam and plasma have the same dlameter but are
surrounded by a vaaium /13, 14/.

The conditions under which the electrostatic approximation is valid are derived in BIV.

Under the conditions stated the beam-plasma system in the nonturbulent state is described by
the equations of motion, the equations of continuity and the Maxwell equations. *

The system contains the unknowns: V, n, ?', n', E,'ﬁ. The primed quantities refer to the beam.
Since only small deviations from the equilibrium state are to be considered, we linearize as

follows:

- -
In equilibrium it holds that: Vo = Eo = 0.

The system of equations obtains the form:

m-%% —.'6{5 t%[b‘,x&a] (1)

m(B3 15,92 -- ef -8R 43R}

die (2 E v i B) —%':‘—

= (3)

/.{.f = —e(no@ *Y\c'a: "’V‘JBJ)

(2)

_ (4)
(WlE, = - ’—é

QB

Al (5)
B . LQE , UrT
Gt Cor " ¢t (6)

*calculations with temperature in quasi-electrostatic approximation are desecribed in /15, 16/;
with temperature in general coordinates for Lvé X B1 ] <« E1 in -/17/; the same without
temperature with damping in /18/; without temperature quasi-electrostatically for various
configurations in ,19/; in detail for infinitely strong magnetic fields in /20/.




The magnetic field produced by the current 30 is neglected in eqgs. (1) and (2). For the
present system of equations it was assumed that the directions of beam and magnetic field
coincide in the zeroth approximation, and that this direction fixes the z-axis of a
coordinate system. Cylindrical coordinates are used as follows.

Solutions in the form of cylindrical waves are required for the system of equations (1) to
(6). The following assumptionhs therefore made for all values:

a, = a(r) e-l'(wt-lw—kZ) (7)

Egs. (5) and (6) can be combined: 2
L L Es --A%_E;_ -1 94,
C" @+

Together with (7) this gives:

cont ol Ba ~ 22 (E Z" J:) , (8)
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With the aid of (1), (2), (3), (5) Jl can be expressed as a function of E. in the form:

- =2 =
,&‘ = A (9)
Substituting (9) in (8) gives: - o
= Loy YriG\ o
N W E Ca Y A ) F.
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f A« ysi §
[
(10) becomes - ot ==
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? being the dielectric tensor. Eq. (11) is the solution forég . Once éi:is found, all the
other values of eqgs. (1) to (6) can be obtained.

With the aid of (7) the dielectric tensor can be obtained from egqs. (1), (2), (3) and (5).
Though roundabout, this method is nevertheless easy to follow. The dielectric tensor is

= 2 2
written here as the sum of two tensors € and ‘1 The tensor eo is obtained by neglecting
the term ilsy)(ﬁ:.l in (2). The tensor ?1 contains the correction terms for 4 [y, .Eﬂ]iﬂ
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The ftensor is an operator and complicates eq. (11). Egs. (12) and (13) do not show, however,
why the terms of (13) could be neglected in relation to the corresponding terms of (12), i.e.
why we could set |V; x gﬂ < |¢i X Eo' as in /19, 18/ for instance. In general, this is cer-
tainly not corgfct. ForAFhe Cerenkov effect, for example, the factor kvé/w, by which most
beam terms in s and ?1 differ, is of‘the order of 1. Since, however, general solutions
cannot be obtained with the calculated ¥ tensor, we shall only look for solutions in the
electrostatic approximation. The conditions under which the electrostatic approximation is
valid will then be discussed in section B IV.

Subsequently the equation
Sy +

aiveLE, =0 (1%4)
will be investigated with the ansatz:

-

E, = - grad ¢, (15)
If, in addition, we set 1 = 0, i.e. all values do not depend on ¢, (14) together with (15) and
(12) gives the familiar /21 / differential equation for the potential:

£
Lok g2
4,4, i (16)
£4, = /"Q‘_p
L wp _ wp (17)
Ey 7 éonn = - Z)E‘"—-Z_ﬁz

The solution for #1 is subject to the condition that the waveguide is uniformly filled by beam
and plasma and that the potential on the axis is finite:

@ 15 (Tr) ‘a-écm—&!)

Provided that the potential at the boundary vanishes for r = R, we obtain a condition fﬁr T
which represents the dispersion relation at the same time:

Tp\ = Pov
p,, are the zeros of the Bessel function Io’ For the fundamental mode we have:
B = 2.4
T is given by

£,

+ 2= == -
The equations dduEE% 0 and divébEL = 0 give the same result with E, = - grad #1.
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For the fundamental mode the dispersion relation is thus as follows:

24 . & .
R ahe e {1 (28)

where R is the beam radius.
This equation was solved for w and all frequencies normalized to W,-

Before turning to the dispersion relation, let us investigate the conditions under which
the electrostatic approximation is valid. For this purpose c&df.ﬂk has to vanish.

el B = - _—‘-Z_" (gm E.) =©

]

C«'fw{?a = LZ‘"' (Eo-nf E-{T‘B Hie (19)
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These simple expressions are valid provided that:
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Since E;T = 0 leads to the trivial solution E;E 0, we are left with

CM"’\{& tg 4

€ = 0
orr

€ = 0
ory
The third equation (19) can be written with (20) in the form:

z 3
Aan,‘} 2 o E{S £ - Uo' "9& Eq} =0

(21)
o (Gh wd)
Comparing (21) with (16) shows that (21) is satisfied on condition that:
it I
5’ e tp o0
291 o 5wl
si is given by (17). e
As can easily be checked, this equation is identically satisfied for oy 0.
L
Subject to the conditions grw = 0 and aﬁfz; &, 1t follows from the equation PR 0 that
11
Al o (ox Lo - S (22)
1 2w

- == [
That 1s,0u£iM is small whenc;vﬁsz in the viecinity of L i.e. the electrostatic approximation
is valid for the anomalous Doppler effect.
= 0 taken with (22) it follows that:

ore
1, ! 2 2 =
(R khfurug v Galp -Gy Yok + 2p

0,5 3" (23)

From the equation e

Under the experimental conditions the second term on the right-hand side is small and always
negative.

Since (22) and (23) have to be satisfied jointly, it follows that the electrostatic approximation
ylelds exact results in the vieinity of the anomalous Doppler effect and at frequencies just below
the upper hybrid frequency. If it is desired to make a check for a pair w and k from the dis-
persion relation obtained quasi-electrostatically to see whether these corr espond with the general




equation, this is done best by substituting w and k in £.++ and [ofq and verifying whether
|Eomre| <c 4 and [ Covy | 2¢4 (24)

2
For small frequencies & for which %l{& —2'—1_ it is sufficient for the solution to be valid
[

that

jf‘or [V lfo-ﬁfl ,é,/‘

ded (25)
—

S 1s some characteristic length for the change of B, . For the basic mode considered, S is

of the order of the diameter of the beam.

a) General remarks

Eq. (18) gave the dispersion relation for the quasi-electrostatic system subject to the
condition that the system is rotation symmetric, that plasma and beam have the same
diameter and, in addition, are bounded by a metal wall.

Eq. (18) was numerically solved ror various values. Fig. 1 shows one result. The plot is
made on the abscissa.ﬁVDcas a function of the ordinate kv!/w, The curves in the upper
quadrant can virtually be reproduced by six straight lines. These six lines represent the
waves that are possible in beam and plasma separately. The two lines designated as the
"plasma wave" and "eyclotron wave" belong to the plasma. They also occur without a beam
/22, 23, 24, 25/. The other four lines, designated as the fast and slow plasma waves

and the fast and slow cyclotron waves, are waves in the beam which occur without plasma.
Such dispersion diagrams have already been discussed often enough (e.g./22/) and will not be
dealt with in any greater detail here. The circles enclosing the letters A,B, C refer to
regions where the frequencies and phases of waves in the beam and plasma agree. Energy
exchange can take place in these regions. This is indicated by an imaginary part of the
frequency & . Ii‘lwu(g&?O the wave amplitude increases.

The interaction in the region A will not be investigated further here. In connection with
the experiments described later we are primarily interested here in the regions B and C.
For both regions thp conditions for the quasi-electrostatic approximation prove to be
tolerably satisfying. )

The region B refers to the interaction of the plasma wave in the beam with the cyclo-
tron wave in the plasma. The phase velocity of the waves 1s near the beam velocity. For
real k, w is complex in this region (k is also complex for real w. Subsequently, however,
only the imaginary part of w is dealt with).

Only complicated calculation /27, 28/ can determine whether the instability in B is con-
vective or absolute. The condition thﬁt the phase velocity of the wave 1s equal to the
beam velocity,

kv'!
w R 0

is no other than that for the Cerenkov effect.

The interaction in the region C occurs when m+wc e kvé is satisfied. This 1s the con-

dition for the anomalous Doppler effect, which leads to instability on interaction of the

slow cyclotron wave in the beam with the ecyclotron wave of the plasma. Since w is not much
greater than W, o, the phase velocity is about half the beam velocity. In the region C there

is only one growth rate with time, i.e. complex w for real k. According to /28/ this signifies
an absolute instability. This statement, however, is valid in the last resort only for
infinitely extended plasma. In a finite system the instability condition may easily depend
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on the length.

b) Growth rates

The size of the growth rate indicates which interaction really occurs. The maximum of the
imaginary part of w and the relevant real part for real k were determined numerically. Fig.
2 shows the two growth rates as a function of the product of the magnetic field and radius:
rB, for fixed L = mp/wc and constant beam current IB! The growth rates are normalized to
W, It can be seen that in the case of large rB the interaction of the plasma wave with

the cyclotron wave (Cerenkov effect) predominates. For small rB the anomalous Doppler effect
prevails /29/. As the plasma density increases (Fig. 3) so do the two imaginary parts,
the growth rate for the Doppler effect more than that for the Cerenkov effect. It can be
expected that the growth rate as a function of the magnetic field shifts with increasing
density in favour of the anomalous Doppler effect, i.e. the intersection of the curves

in Fig. 2 is expected with increasing density for a higher magnetic field.

"The growth rates also vary appreciably as a function of the beam radius and the radial mode
number. In Fig. 4 the growth rate is plotted as a function of“TPou. The plasma density and
beam density are thereby assumed to be constant. For a small radius and waves of high radial
wave number the anomalous Doppler effect clearly predominates. If the radius decreases or the
radial wave number increases, the region of the magnetic field (Fig. 2) for which the anomalous
Doppler effect predominates is further extended.

From Fig. 2 it can also be seen that for small magnetic fields it holds approximately for the
region C that

O,

Qe (AT3

I
0o, M
i.e. the growth rate practically does not depend on the magnetic field for constant wp/mc.

e¢) Interaction frequencies

For small rB the frequencies of both instabilities approach the upper hybrid frequency Wy
(Fig. 5) (mg -2 4 ”3 ). For small radii and small magnetic fields only slight deviations of

p
the frequency from W should be expected, mainly for the Doppler effect.

GORBATENKO /14/ calculates the excitation of waves in a beam plasma subject to the conditions that
the beam and plasma have the same small diameter and are surrounded by a vacuum. The calculation
1s not restricted to the quasi-electrostatic case. But it is postulated that

hR<A

Since k cannot become arbitrarily small ( k is approximately determined by the beam velocity and
frequency), the inequality signifies that the results are only valid for very small beam
diameters R. The other conditions are the same as those given on page 5

For the anomalous Doppler effect GORBATENKO obtains a maximum growthrate:

r i 9 L
LR Gy (my -0F) :
Bl - S u?- 0]

(26)

Wy is the interaction frequency and is given by:

2 1 2 L IR 2
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(The quantity Ap is not exactly defined by GORBATENKO. It seems, however, to have a
value between 2.4 and 5.5) If ,fzﬂ.’..t»{then 417'4;:.: } and (26) can be written:
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It can be seen that the growth rate is now only a function of the beam density and the
ratio of w_and w_. For a constant ratio wp/mc the growth rate depends neither on the

c
magnetic field nor on the plasma density.

The deviation of the frequency wfrom Wy is given by 8w= w_ and is small for small radius
and low density, but increases with the magnetic field when the ratio of the plasma
frequency to the cyclotron frequency is constant.
For the Cerenkov effect GORBATENKQ calculates the same frequency and a growth rate which-
on the assumption that wf < wﬁ-, is written:

/7

2
f\w(u_\i : 'ﬁ' [ :FLLR'!‘“;_ Q_P: ]
u—w -

i1 Yi 2
v g Ap * Wy

The growth rate increases with the radius and beam density. If mp < w, s the growth rate
increases in proportion with w for constant w /m o

Qualitatively, the results of GORBATEN‘KO agree ver-y closely with ours for 4R&1. For £RZ 1
they give no longer any information.

VII)Influence of damping processes
For the anomalous Doppler effect and the Cerenkov effect both calculations give for all
wp and wé positive imaginary parts of w. In other words, it should be possible to find
oscillations in the region & ® Wy for every plasma density. Experimentally, this is not
the case, however, because of damping processes. These are Landau damping and collision
damping. Self-excited oscillations can only occur when the growth rate wy is greater than

the damping rate whe

ITf it is assumed that the damping rate hardly depends on the plasma density and magnetic
field, it is possible to arrive at a more far-reaching conclusion for the anomalous Doppler
effect. The growth rate in this case is a monotonically increasing function of wpﬁmc:

» a2 Bl 50

1
Lp
(s
If we then have wy > Wy = const, it follows that:
oscillations can occur for the case
=it ey
@, 2y ) et

i.e, oscillations can occur if a certain ratio of the plasma frequency to the cyclotron
frequency is exceeded.
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¢) EXPERIMENTAL INVESTIGATION

An

apparatus previously constructed for a hot cathode PIG discharge was used for the electron

beam interaction experiment. Additions in the form of a stainless-steel container with

electron gun and measuring equipment were made to this existing device. Fig. 6 gives a sketch

of

a)

b)

c)

the apparatus.

Electron gun

The beam was accelerated in two stages from a nickelous oxide cathode in a protective

cage. The first electrode controlled the beam current by means of the accelerating voltage,
the second provided acceleration to the desired voltage. The other bwo'electrodes served

at first to keep away ions and electrons coming from the plasma. Since, however, potential
at these electrodes caused oscillations, they were later grounded or removed altogether.
The nickelous oxide cathode was later replaced by tantalum cathode because the oxide

layer was destroyed by ion sputtering. The electron gun was suspended with the accelerating
electrodes from the roof of the container. It was also possible to shift the gun during
operation and, in this way, to direct the beam through the diaphragm.

The vessel with the electron gun was evacuated by two pumps of type DO-121. Even when the

3

pressure in the plasma container was increased till sometimes 10” torr, the pressure in

the accelerating system did not rise appreciably above 10'5 torr.

Plasma chamber

The electron beam reaches the plasma chamber through a cooled diaphragm 12 mm long and

5 mm in diameter. The diaphragm acts as a pressure stage. The vessel of the plasma

chamber consists of two glass tubes separated from one another by a bronze ring.

The bronze ring contains a few windows, the gas inlet, a pump connection, the pressure
gauge and a few ducts for probes or other instrument leads. The mean diameter of the
vessel was 150 mm,the total length being 56 cm. The bottom cover could be shifted
horizontally like the top one. In addition, it had a retaining ring duct 50 mm in diameter
through which probes, targets or even the retarding field could be passed and moved
parallel to the axis. The base pressure in the container was 10"5 torr.

The entire plasma container was located in a magnetic field produced in a set of

individual coils. Only in the region of the two closely packed coils on the outside

was the magnetic field inhomogeneous. In the remaining part the deviations from homogeneity
were smaller than 1%. It was possible in continuous operation to attain maximum fields

of 1200 gauss. At a current of 1 A the field on the axis was 5 gauss. Up to 70 A (350
gauss) the current was supplied by 12 V accumulators. For higher currents a generator

was used. Since, however, the generator was subject to slow and fast fluctuations, most
experiments were conducted at 350 gauss.

Retarding field analyser

The retarding field configuration is one of the main pieces of measuring equipment
and should therefore be described as well. It forms a closed system linked to the
plasma chamber by only the diaphragm aperture o.5 mm in diameter. Through this dia-
phragm passes the fraction of the beam to be analysed (about 1%4) and enters the re-
tarding field apparatus. This 0.5 mm bore extends for 2.5 mm and then for a length of
10 mm the diameter is 1 mm.
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The analyser system comprised four electrodes. The first, in the beam direction, had
positive potential to repel the plasma ions. The second was at retarding potential,
the third was mostly grounded and the target positively biased.

The entire retarding field was still located in the magnetic field. The beam thus re-
mained on the axis of the system. Lens errors were slight. With this analyser it was
possible to measure the distribution of the parallel energy of the beam electrons
(parallel to the magnetic field). The retarding field container was evacuated with a
diffusion pump Do 121. At high rressure in the plasma chamber ( 2 x 1072 torr) the
vacuum above the pump was less than 10_5 torr.

a) General description of the phenomena

At the beginning of the experiment at low pressure the current and voltage of the

electron beam were set. The voltage of the beam (and hence the velocity of the beam

particles) was determined with a potentiometer directly from the potential of the

hot cathode of the electron gun. The generator current was always taken as beam

current. Standard values were usually set: for the accelerating voltage UB= b kv,

for the beam current IB = 50 mA, for the magnetic field B = 350 gauss, for the length

of the interaction path L = 40 cm, working gas: argon, The beam diameter is dependent

on these parameters. The probable mean value was always taken as d = 0.4 em.

At a residual gas pressure of 10_5 torr, the luminous column of the beam can only be made

out in the dark. This column indicates approximately the diameter of the electron beam.

If the pressure of the working gas (hydrogen or argon) is raised, the luminous density

of the column increased slightly due to the greater number of collisions, the diameter

remaining constant. This continues until a critical pressure is reached in the region

of a few 10° ' torr, whereupon the diameter and intensity of the luminous column suddenly

grow to much larger values: The system has gone from one state (called state I) to

another state (called state II). As described later on, the plasma density in the vicinity

of the beam and the energy distribution of the beam electrons also undergo a sudden change

when the critical pressure is exceeded. Indeed, we are of the opinion that the energy

distribution function of the beam electrons, though more complicated to determine, is the

surest criterion of whether the discharge has changed from the state I to a state II.
Collision processes cannot be the cause of the sudden, marked change because both

the excitation function and the ionization function depend steadily on the pressure. It

is more likely that the beam excites in the plasma one of the instabilities described

in section B, beam energy being converted in the process into wave energy and wave energy

into excitation and ionization of particles. Without going into the matter in greater

detail at this point, we shall therefore refer to the state I as the nonturbulent state,

to state II as the turbulent state and to the critical pressure Fopit as the pressure

denoting the start of turbulence.

The sudden transition from state I to II was first described by /30, 31/. It has also been
observed by other authors /22, 32, 33, 34/, though often only in the form of a perturbation
during density or frequency measurements /35/. The measurements of /30/ will be discussed
in the following chapter.

b) The limits between the two states, or the region of existence of the beam plasma turbulence
The critical pressure Fopit is not a constant but depends on the parameters of the system.

In Figs. 7a to 8b it is given as a function of the beam current, beam voltage and length
of the beam path in the plasma. With rising beam current (Fig. 7a) the eritical pressure
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drops, with increasing voltage (Fig. 7b) it rises. If the length of the interaction path
decreases (Fig. 8b) it increases. The eritical pressure does not vary monotoniecally with
the magnetic field (Fig. 8a). Fig. 8a also conveys an idea of the reproducibility of the
measurements.

In the measurements it was attempted to keep all the parameters used for the series constant.
This was difficult in the case of the beam radius and hence of the beam density as well. In
the investigations with the retarding field, measurements were also always made to check the
zero setting in the stable region. From these measurements it can be seen that the beam
current density increases almost in proportion to the current strength.

From the calculations (27) and from Fig. 3 it can bdseen that for the growth rate in the
anomalous Doppler effect we obtain for wp < w, ot
I 102

O; Lop *+ Wy
According to a simple diffusion theory /36/ (see Appendix A) it can be assumed that the density
of the plasma in the region of the beam increases in proportion to the beam density and to the
square of the neutral gas pressure (see Appendix A,eq. (31)). This gives:
M y Wy
LD x dp f‘.,ﬂ % Mp Pc#
where Popp = P - Py This p, can be imagined as the pressure required to neutralize the electron
beam. It depends on the type of gas and on impurities. As the instability will always occur under
otherwise equal conditions when wy reaches a critical value, it follows that:

130y 1l
Lo, = c\)g(fnl’ s cont = e - (PW+ V’o)
or
; PO | L
[’:m'f"lav 2 ;Tj“ ~ ‘.'lﬂg“'

if UB is constant. This behaviour is clearly demonstrated in Fig. Ta. The value obtained for

Py is between 6 and 8 x 10'5 torr, which is a very reasonable pressure for neutralizing the
beam.

Similar considerations also account for the dependence of the critical pressure on the
accelerating voltage. As the voltage increases, the beam density and the ionization constant
decrease. At higher voltages the critical pressure therefore has to be greater for constant &,.
The dependence on the magnetic field cannot readily be explained. When length changes, the beam
radius and the beam density certainly do not vary. The maximum plasma density, on the other
hand, increases with the length (see Appendix A, eg. (31)). It thus follows that:

1
to; m) L2ty (p-Po

or i 4 stgndand
(Pt~ ¥ ) 1'*7\“;}’

For lengths between 20 and 50 cm we obtain p_ = 4 x 1072 torr, and Ly = 8.5 em. These values
are only rough estimates because we have to assume that P, is dependent on L.

An estimate of the errors in Figs. 7 and 8 shows that the error of observation is small; this
is indicated at several points by vertical strokes. Each experimental point is the mean of
three measurements made directly after one another. The experimental error therefore offers no
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information on the reproducibility. In the case of a slightly contaminated gas or other beam
density profile the experimental points may easily be displaced by 10 % (see the measurements
in Fig. 8a).

The arrows in Fig. Ta signify that the occurrence of instabilities in this region was not
stationary, but periodic.with a very low frequency of some cycles per second. With rising
pressure the frequency increased, and at the pressure marked by the top end of the arrow

the repetition frequency of the turbulent state reached such a value, that the turbulent

state seemed to be stationary.

Instead of a critical pressure it is, of course, possible to introduce a critical current, a
critical velocity or a eritical length. Measurements on the region of existence of the
instability at fixed pressure and beam current have been published by the group centred

round KHARCHENKO and FAINBERG /20, 37/. These authors show, for example, that for a fixed
accelerating voltage there are one/30/ or several /3T/ narrow regions of the magnetic

field separated from one another in which the system is unstable. A few important parameters
were unfortunately not given and, what is more important, there was no mention of what criterion
for instability was used. In the range covered by our measurements such regions of instability
bounded on both sides do not occur or else only for very short lengths ( L =~ 10 em). With
normal parameters the system remained unstable for all pressures above the critical pressure.
With very short lengths (about 10 cm) the intensified luminosity disappeared on occasion

when the pressure increased, reappearing at higher pressures.

The critical pressure was always determined by pressure increase. Conversely, if pressure is
reduced and the critical pressure i1s taken as the pressure at which the turbulence is
eliminated, one obtains values which, for small magnetic fields with large lengths, are half
as high as those given in Figs. Ta to 8b. The instability thus shows pronounced hysteresis.

Behaviour of the electron beam

The maximum beam diameter armax is equal to the diameter of the opening in the entry

diaphragm d = 5 mm. Since the magnetic field in this region is still inhomogeneous, the

beam diamter will be smaller in the centre of the system than in the diaphragm. To all
appearances the diameter does not become less than 2 mm. If it is assumed that the beam density
is homogeneous over the diameter, the density n' obtained for standard values IB = 50 mA,

Ug = 4 wv is:

8

4.2 x 10° < n' < 2.6 x 102 [em™ ]

The probable mean value obtained for r = 2 mm is

n' = 6.6 x 108 Lem™2)

The numerical calculations were made with the standard value r = 0.2 cm.

The beam density profile was investigated with the retarding field analyser. The current
through its diaphragm aperture 0.5 mm in diameter was measured as a function of the radius
with a retarding field of 1.35 kV. This retarding field ensured that no plasma electrons
reached the collector.

The measurements demonstrate that the beam density is not at all homogeneous. Most of the
curves show a minimum of the beam density in the centre and a maximum towards the boundary

of the beam. The maxima at the boundary are by no .means always equal on both sides. An

example is provided in Fig. 9. The inequalities are not very pronounced here. The fluctuations
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in the density profile of the beam are probably much greater than those in the curves
because the experimental points represent in each case mean values over a circular area
0.5 mm in diameter. At the beam boundary the density drops almost exponentially.
If the boundary of the beam is defined as that value at which the density drops to 1 %
of the maximum density and the corresponding diameter is plotted as a function of the
pressure for various magnetic fields, the following qualitative statements can be obtained
from many measurements of this kind:

1) With increasing magnetic field the diameter decreases.

2) In the unstable state the diameter decreases with increasing pressure.

3) Just above the critical pressure the beam diameter attains a maximum .

With small magnetic fields the beam expansion attains a factor of 2.

(The diameter of the expanded beam is not identical with the diameter of. the highly luminous co-
lumn. The latter is still a good deal larger. For comparison see Fig. 20).

The beam density is not only a function of the radius, but also a function of the beam length.
Due to the extraction (the extraction electrode acts as a lens) the space charges in the beam
and the inhomogeneous magnetic field, the electrons of the beam have a radial component on
entering the plasma chamber. The electrons describe spiral paths which are of equal pitch,

but of periodiéally varying width. There are nodes and antinodes and the distance a between

the nodes is given by :

a =Y
Vec

where vec = Larmor frequency of the electrons, v; = beam velocity in the direction parallel
to the magnetic field. In the vicinity of the standard conditions, a is of the order of
centimetres. As far as could be ascertained visually, a corresponded to the pitch of the
electron orbits calculated from the magnetic field and accelerating voltage. What is more, it
was possible to ascertain that this distance was the same all along the beam. This means

that with a homogeneous magnetic field the velocity of the electrons along the beam remains
the same. This observation is not compatible with the formation of a virtual cathode, which,
according to NEZLIN /98, 99, 100/ is supposed to be the cause of the instability. The for-
mation of a virtual cathode should cause the node separations to decrease towards the centre
of the beam.

The term !'beam density" as used in this work refers to the density resulting when a cylinder-
of radius r is filled uniformly. It should be borne in mind that the local density may be con-
siderably larger.

As the theoretical study in Chapter A shows, the beam-plasma system is unstable for practically
all densities and magnetic fields. Oscillations should therefore be expected at low pressures
as well. There are two reasons that contradict these predictions. The first is that there 1s
always damping in a plasma. As long as the damping rate is higher than the growth rate no os-
cillations are excited. Because the growth rate increases with density, only above a density
ny ,defined by the damping rate, oscillations can be expected. The second reason i1s that for
low pressures the beam is not neutralized, and so we have electric fields. This collects the
ions and quickly forces the electrons to the walls. We thus have no electron plasma and no
electron oscillations. Only above a neutralizing pressure P, do we have a plasma. It is then
possible to have oscillations as well.

Both reasons together state that we can expect oscillations only in the pressure region well
above pj + p,- The value p, was found (from Fig. 8b) to be higher than 4 x 102 torr. We shall
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therefore certainly not find oscillations below 4 x 10-5 torr. Accordingly, electron
oscillations were detected only at pressures higher than 7 x 10'5 torr.

The excitation of electron oscillations may be ascribed to those values of frequency

and wavelength that lie in the regions marked A, B, C in Fig. 1. All three interactions may
occur simultaneously. The oscillation that finally prevails depends first of all on the
growth rate. Probably, however, the finite length of the system also has some influence -

in the case of absolute instabilities /38/ as well.

According to /28/ the oscillation in region A is convective, that in C absolute. The os-
clllation in region B cannot be discussed in terms of the curves of /28/. According to /39/,
however, the investigation of absolute and convective instabilities does not play a very im-
portant role in a system of finite length because the convective waves are reflected at the
end plates. Waves of both convective and absolute instabilities may occur with finite amplitude.
In the case of absolute instabilities this is due to non-linear effects. For example, the
amplitude of the oscillation is also determined by the number n, of particles involved in the
oscillation. In the linear theory, however, it is postulated that n. € n_. At small den-

1 o
sities ng the amplitude may thus be limited by non-linear effects at very low values n

1°
It was possible to pick up the oscillations in the beam with a probe placed in the vicinity

of the beam and investigate them with the "Panoramic SPA-U4n" spectral analyser. The probe
consisted of a RF cable with its core projecting about 1 em from the end of the cable. The

probe was only a few centimetres away from the target. The oscillations had a maximum

amplitude in the viecinity of the target.

The probe and cable could not be connected to the spectral analyser with complete suppression
of reflections. This gave rise to interferences. With the cable lengths and connections used

the frequency differences for maximum amplitude were between 30 and 120 Mc/s. These reflections
are also the cause of the step-by-step growth of the frequency, as described in /4p/.

Only in a narrow pressure range below the critical pressure could oscillations with a band
width of less than 50 Mec/s be detected. The frequency,maximum amplitude and band width of this
oscillation inereased with the pressure until the oscillation changed into a general, broad
noise spectrum at the critical pressure. The frequency of the oscillation also depended on the
magnetic field. This is shown in Fig. 10. The vertical strokes mark the region in which the
frequencies shifted with a fixed magnetic field, but whith varying pressure /41/. The lowest
frequencies measured for each magnetic field depend linearly on the magnetic field and are

above the cyclotron frequency in each case /42/. The measured frequencies are thus subject

to the conditions applying in regions B and C of the dispersion diagram. Hence it can be assumed
that the frequencies can be represented by the following relation:

L b N

where fc = cyclotron frequency of the electrons, rp = plasma frequency of the electrons.

The term k1 is a quantity depending on the parameters of the system. It is now assumed that
the radius of the wavegulde used as a basis for the calculation is equal to that of the beam
for the parameters of Fig. 10. It then follows-from the calculations in part B that kl is a
quantity in the viecinity of 1 and does not vary much in the parameter range selected. On the
other hand, it follows from the linear dependence of f on rc that

$-C 4

where C .is a constant with C > 1. From these two equations for the frequency it then follows

that
¢ ,]’ = b
—: 4 &% = QWD (28)

The result of this is that the oscillations begin when the ratio f /fc exceeds a critical
value depending on the parameters of the system. From Fig. 10 it follows that C = 1.058.
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Assuming for k, the maximum value ( k,= 1 ), one obtains from equation 28: o0.12 = fg/fg or
fp = 0.35 fc. This equation states that for the parameters of Fig. 10 the beam-plasma system
is definitely stable if the condition

{Pé_ 0,35 fc

is satisfied. Since the dependence of the frequency on the magnetic field is about equal
for other parameters, it can be stated in somewhat more general terms that the beam-plasma
system 1s stable within wide limits if the.condition

‘hol_ VC?:’A . f-c

is satisfied. It has to be assumed that the oscillations always occur when the growth rate
attains a certain value wi which can just compensate the damping; on the other hand, however,
the oscillation occurs for a fixed ratio of fp to fc. It follows from this that the growth
rate of the instabllity does not depend on fp and fc separately, but only on the ratio

rp/rc. This, however, is the very behaviour that was found for the growth rate in the
Doppler effect in region C.

The dependence of the smallest frequency on the magnetic field thus suggests that in the
parameter range investigated there 1s interaction of the cyclotron wave in the beam with the
cyclotron wave in the plasma and this leads to instability as the pressure continues to
increase.

All these remarks are valid in the vicinity of the standard values: IB = 50 mA; UB = 4 kV;

B = 350 gauss; L = 40 em; beam radius r = 2 mm. If these values are further deviated from,

the oscillations with the upper hybrid frequency are accompanied by others with larger ampli-
tude. For magnetic fields above 550 gauss or small accelerating voltages below 3 keV, for
example, sporadic oscillations with a frequency between about 100 and 350 Mc¢/s predominate.
These oscillations constitute behaviour of the kind described by /42, 43/. The time-dependent
behaviour of these oscillations was investigated on a fast oscilloscope. It could be seen

that the oscillations begin, grow approximately exponentially, attain a maximum and then
elther decay immediately after - probably exponentially - or else remain at the maximum

height for an indeterminate time. Various wave packets behaving in this way are not correlated
with one another.

The upper hybrid frequency still occurs above 550 gauss as well and the stability condition also
continues to be valid in this region. The stability criterion thus seems to have much more
general significance than the assertion that the unstable state 1s caused by an instability
in the region C.

The constant C determines the region of density n, for which the system is definitely stable.
C increases if the length is shortened or the current reduced. With otherwise equal parameters
(standard values) a beam current of only 10 mA or a length of 13 em gives C ~ 1.15. In the
current range from 20 to 90 mA and for lengths between 20 and 50 c¢m there are only minor
variations of C. Only when the currents are smaller and the lengths shorter, does C rise more
steeply.

As can be seen from Fig. 10, a constant C1 can be obtained from the maximum stable frequency
attailned and with this an instability criterion can be formulated: the system will definitely

be in the turbulent state II if
) e
> -4
deA ‘g
p B

Under the foregoing conditions k2 is in this case a quantitiy for which k2 f&l is true. C1
is also a constant which has the value 1.14 for standard parameters. Cl has the same dependence
on L and IB as C. A stable plasma with fp > fc seems to be obtained only for small beam

currents and very short lengths.
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a) Instability and spectrum of oscillations

This chapter deals with the phenomena of the turbulent system or state II. The most
important aspect of this state are the high-energy losses of the beam particles.
Before these are discussed in greater detail, however, the behaviour of the plasma
column and a characteristic oscillation spectrum are described briefly.

The appearance of the plasma in the turbulent state varies as the pressure. High pressures
(2x 1072 torr) cause a highly luminous plasma column whose diameter does not deviate
much from that of the beam.With decreasing pressure in the region of about 5 to

4 x 10-ll torr there is a discontinuous change in appearance. The diameter of the
luminous column becomes larger, its boundaries diffuse. With further decrease in
pressure the diameter increases even more, at about 2 to 3 x 10-4 torr the plasma
column becomes unsteady. In the vicinity of the eritical pressure and below, the

plasma column keeps still and the brighter luminosity fills a oylinder about 8 to 10 mm
in diameter at 350 gauss. The change to the nonturbulent state on decrease of the
pressure is Just as sudden as the change to the unstable state on increase of the
pressure.

Not much is known so far about the type of interaction and the oscillations in the
turbulent region. It can be assumed /44/ that the turbulent state represents a tur-
bulent plasma with oscillations that are coherent in some regions.

Fig. 11 shows an oscillation spectrum of the turbulent state for standard values

Just above the eritical pressure. The frequency ranges from O to 2 Ge/s. The oscillations
are spread over two frequency ranges: below 1 Ge/s and around 1.6 Ge/s. The cyclotron
frequency is 980 Mc/s. Having made a study of the case wp > wc analogous to that

in Chapter A, one would expect oscillations below w, and below the upper hybrid
frequency. If 1.6 Ge/s is assumed to be a frequency in the vicinity of the upper

hybrid frequency, it follows that the plasma density has a minimum value

Mewin = 2 x 100 [em™ ]

This value is an order of magnitude higher than that prior to the onset of instability.
Qutside the beam the density measured with probes also rises by about an order of
magnitude after the onset of instability (Fig. 18). This then is some evidence that
the high frequency peak 1s connected with the upper hybrid resonance.

The energy necessary for increasing the density can only be obtained from the beam
energy. With the onset of instability the energy of the beam electrons has to undergo

a change. On interaction of the beam with the plasma, part of the beam energy is used for
exciting waves, heating the secondary ( = plasma) electrons and thus finally for forming
denser plasma.

Measurements of energy losses of the beam on interaction with a plasma without magnetic
field are described in detail by URAMOTO /46/; other individual measurements without
magnetic field in another parameter range are contained in / 48, 49, 504 A few systematic
measurements with magnetic field are deseribed in / 31, 51, 52, 23, 53/. The present
section makes a detailed and systematiec investigation of the energy losses of the beam
on interaction. The following section then discusses a few experiments for determining
the energy absorption of the plasma.
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b) General remarks on the measuring method

c)

The energy losses of the electron beam were measured by means of a retarding field analyser.
This is used to determine the current of the particles capable of overcoming a retarding
voltage UG' A few typical retarding field curves for various pressures can be seen in Fig.

12 /52/. The ordinate is the ratio of the target current at the retarding voltage UG to the
current at the retarding voltage UG = 0, while the retarding voltage UG is taken as the
abscissa. At 1.5 x 10"5 torr there is as yet no interaction, the beam energy being practically
monochromatic. At 1.5 x 10" torr, on the other hand, the discharge is turbulent, the particle
energles being scattered from O to above the accelerating voltage (UB = 4 keV). At 2 x 10-3
torr as well there is still considerable interaction, and here, too, particles are still
accelerated beyond the initial energy. The slope of the curves is as in the case of thermal
motion with superposed drift (Fig. 17). On closer inspection it can be seen, however, that

no thermal motion is really involved because the decrease of the distribution function to
high-energy electrons takes place too fast.

The area below the curves represents the energy transmitted per second to the target. The
difference between the areas with and without turbulence gives the energy expended per sec

by the beam in exciting and amplifying waves. In most cases the area below the curves can

be approximated by a trapezium. This is replaced by a rectangle of equal area. In this way

a new average energy eUa of the particles is defined. The difference between eUB and eUa:

deU = AE = el

8.~ %%

gives the average energy lost by one particle on passing through the plasma. It is this
value AE which will be discussed in the following.

The vertical strokes on the curves (Figs. 13 to 16) give the arithmetic mean of the
measuring error. This error is composed of the reading error and the actual scattering of
the energy losses. The maximum energy losses as a function of the pressure were determined
for a fixed set of parameters by measuring the energy loss curve in the vicinity of the
supposed maximum at about 6 different pressures. The maximum loss was then found from these
six curves. This operation was repeated in succession and at various times, five times
mostly. In this way about five experimental values scattered about a mean value are obtained
for one set of parameters. The arithmetic mean of these five values and that of the measuring
error were plotted.

Results of the measurements

Figs. 13 to 16 show the measuring results. The mean energy loss of a particle after passing
through the plasma is plotted in each curve.
First the energy loss is shown in Fig. 13 as a function of the pressure. Not counting the
boundary values, it is possible in the large to ascertain two different levels for the energy
losses: a higher level of 1 keV or approx. 25 % of the initial energy in the region of
2 to 4 x 10 torr and a lower level of 0.65 keV or approx. 15 % of the initial energy in the
pressure range from 6 x 10""L to 10_3 torr. The gradient at 5 x 10~ ' torr coincides with the
visible change of the plasma column described at the beginning of this chapter. Above 10'3 torr
the plasma column is sharply defined. The energy losses decrease continuously with increasing
pressure.
The losses cannot be explained, of course, by excitation and ilonization of neutral gas because
the losses would then have to rise with the pressure. The losses due to binary collisions are
very small. For ionization at 10"2 torr they have the small value 0.015 keV.

In the vieinity of 2 x 10'4 torr there is some uncertainty in the measurement. This is
approximately the region in which the plasma column begins to sway unsteadily. The number of
fast and slow particles with respect to the intermediate particles seems to be too severely
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reduced compared with the slope of the curves at other pressures. With even lower pressure
and a steady plasma column the distribution function takes the form shown in Fig. 12. The
energy losses attain a maximum.

Below the pressure for the last experimental value the energy losses probably increase
still more. They then depend, however, to a great extent on the number of electrons re-
flected in the retarding field. The distribution function (and the appearance of the plasma
column as well) therefore varies with the retarding voltage. It is then no longer possible
to measure nor is there any point in it any more.

The dependence of -the maximum loss and the loss at a fixed pressure of 10_3 torr on the
accelerating voltage is given in Fig. 14. The absolute energy losses increase with the
accelerating voltage, i.e. with the initial energy. The relative losses, on the other hand,
have a higher value at low voltages. At accelerating voltages of 1.5 kV the losses attain
values of nearly 50 % of the initial energy. At 1072 torr the losses are smaller but have
about the same dependence on the voltage as the maximum losses.

The dependence of the energy losses on the length of the system is shown in Fig. 15. If the
system is shortened from a length of 40 cm to about 17 cm, the maximum energy losses do not

vary much. There is no appreciable reduction of the losses until the length 1s shortened more.
The neutral gas pressure for the maximum losses with lengths L > 17.5 cm is in the region below
6 x 10-4 torr, i.e. in the range which occupies the upper level in Fig. 13. With shorter lengths
the neutral gas pressure required for attaining the maximum loss increases sharply. The

energy losses lle in the region of the lower level and below.

The last series of measurements (Fig. 16) shows the dependence of the energy losses on the
distance from the beam centre. The energy losses reach a maximum at the boundary of the beam.
The measuring error was estimated in Fig. 16 at 10 %. It was not possible in this case to form
mean values because the zeros of the scale for the radius were different each time. A point of
maximum beam density was chosen as zero. This, however, should not necessarily be equated with
the centre of the beam (see Chapter C III). All measurements in Figs. 13 to 15 were made at a
point of maximum beam density.

It is surprising that the energy loss curve has a maximum at the boundary of the beam. The
beam density is about an order of magnitude smaller at the point of the maximum than in the
centre. If it is assumed that roughly the same model applies in state II as in state I, one
would expect higher fields for higher beam densities, particularly at the boundary of the
beam for the electric field strength in the direction of the magnetic field

It then follows that there should be also an energy loss AE = O at the edge of the beam. The
maximum of the energy loss at the boundary therefore shows that we are not justified in taking
a waveguide with the diameter of the beam as a model of the system in the unstable state. For
wave propagation one probably requires a waveguide with a much larger diameter - perhaps that
of a highly luminous column, which has a constant plasma density according to Fig. 20.

The energy distribution functions for the maximum at the edge of the beam have only a very
small proportion of fast electrons. The lack of fast electrons does not account for the
increase of the losses (these being greater than the reduction of the gains) but it is ex-
tremely conspicuous.

Possible explanations of the loss curves
The energy losses occurring on the interaction of an electron beam with a plasma are so

vitally important , their dependence on the parameters of the system so pronounced that they
clamour for a theoretical interpretation. No general, detailed theory exists as yet, un-




- 22 _

fortunately, nor is there any clear-cut idea of the non-linear phenomenon 6f interaction.
The works of SHAPIRO and FAINBERG /53,54/ are the most detailed available and those
most in line with the experiment described here. The authors make a non-linear, but one-
dimensional calculation without magnetic field (only plasma frequencies are involved in
an interaction) of the interaction of an electron beam with a plasma. The theories are
only valid if the condition
nE " némvée
is satisfied, To being the temperature of the plasma electrons in eV.
This condition means that the oscillation energy determined by the energy in the beam has
to be small compared with the thermal energy of the plasma electrons. Otherwise, the theory
would have to allow for the reaction of the oscillations on the plasma density and temperature.
This condition is Jjust satisfied for plasma densities n° e 1011 cm"j. plasma temperatures
of 10 eV, beam densities of 10 cm_3 and beam energies of 4 keV. In /5 / it is reported
that for noT0 ~ némVéE the calculation still gives the correct result, at least as regards
the order of magnitude. Since no other theories are avallable, the experimental results
here should be compared with those of the works quoted.

The authors assume that the excited oscillations cause the beam electrons to diffuse in the
velocity space, the direction of diffusion being such that the two-group distribution
function changes into a plateau extending from the velocity of the beam electrons to that

of the plasma electrons. On this assumption they calculate the spectrum of oscillations
pertaining to this final state. In addition, they calculate the electric energy and the
potential energy in the oscillations, the variation in temperature and density of the plasma
and the variation in temperature and mean velocity of the beam electrons. Here it is the
last two quantities that are primarily of interest.

The thermal energy of the beam electrons in the final state 1s given by
n'T! 1 n'mvéa
o2eveT 185 #2ea
That is, the thermal energy in the beam is about a twelfth of the initial beam energy.
For the variation of the mean energy of the beam electrons they find

I (s
'R 3 e e
dg » 2 hLilc
4 2
From these two equations it follows that 1/12 of the translation energy of the beam is
converted into thermal energy of the beam and 2/3 into radiant energy. That is, the total
energy loss of the beam could be a maximum of 66 %.
For the standard value of 4 keV of our experiment the above formulae give for the thermal
energy
T' & 0.33 keV

and for the mean drift velocity

er ~ 1 keV

The integral current distribution function is calculated as a function of the voltage for

a Maxwell distribution of the beam electrons with superposed drift for various ratios W

of drift energy eUD to thermal energy T (see Appendix B). This gives Fig. 17. Comparison

of the calculated and measured curves shows that the curve W = 3 is most like the measured
curve at 1.5 x 10'4 torr (compare Fig. 12). This ratio is in fact exactly equivalent to the

W calculated by SHAPIRO, but a more accurate comparison shows that the drift velocity cannot
be 1/4 of the original beam velocity, as required. The original voltage Up for W = 3 1s in
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fact about 0.37 (J?;+ J;:)Q. This value corresponds to 4 keV/T. This gives a temperature

of 0.69 keV and a drift energy of almost 2.1 keV. The energy loss comes to 1.21 keV or 30%

of the initial energy. The values for temperature and drift are twice as high as those
calculated, while the total energy loss is only half as high. Nevertheless, the calculation
correctly reproduces the experimental results with respect to the order of magnitude. In the
theory, collision damping and the temperature of the electrons, which lead to a reduction of
the maximum attainable fields and hence to smaller energy losses, are not taken into account;
furthermore, the model on which the theory is based does not exactly reproduce the experimen-
tal conditions. 'In general, however, it can be coneluded from the comparison that the inter-
action on which the experiment is based is almost of the same intensity as the interaction
postulated in the calculation. In /5% / FAINBERG and SHAPIRO calculate the structure of the
exclted wave fields. They find that the oscillation energy - and hence the region of the
energy loss - 1s concentrated in two layers close to the region where the beam enters the
plasma. These layers should extend for only a few wavelengths - a few cm in our case. It is
thus obvious that the energy losses practically do not depend on the length.

The energy loss calculated in /53,54/ is independent of the beam current and beam velocity.
This is confirmed by the measuring results insofar as no dependence of the maximum energy
loss on the beam current could be ascertained in the experiment. The results, however, are
not independent of the beam velocity.

From /53,54/ we learn nothing of the dependence on the radius because a one-dimensional model
is used in these investigations. The increase of the energy losses towards the boundary
points to a concentration of the fields at the boundary.

The minimum strength of the fields can be estimated from the maximum energy loss. With a

length of about 15 em there are still electrons which have lost all their energy of, for example,
4 keV. From this an electric field strength of 266 V/em in the direction of the beam can be
calculated. This field is minimum, if it is born in mind that the main fields are probably con-
centrated in a much smaller region and if it is assumed over and above that the maximum loss

is 4 keV. The "loss" can, however, be greater in actual fact. As the comparison of the calculated
distribution function with the experiment demonstrates,this is because not only can electrons

in the wave fields be slowed down, they can even be accelerated backwards as well.

Having considered the energy losses of the beam, let us now deal briefly with the energy
gains of the plasma. The term "plasma" is used here to refer to the plasma surrounding the
beam. The conditions 1in the plasma were measured with plane Langmuir probes whose surface
normal is directed parallel to the magnetic field. The probe was 3 mm in diameter. It was
possible to evaluate the probe curves from both the ion current and the electron current.

The qualitative agreement of the results was good; quantitatively they were at least of the same
order of magnitude. Hydrogen was used as working gas for the density and temperature measure-
ments.

First the plasma density and the temperature in the vicinity of the beam were measured as a
function of the pressure. The results are given in Fig. 18. Here the density, electron
saturation current and temperature are plotted. In the stable region the electron saturation
current and the density increase approximately in proportion to the square of the neutral

gas pressure. At even lower pressures the rise often tends to be linear. Just below the
critical pressure the plasma density again drops, reaches a minimum and at the eritical
pressure jumps to a value about 1+1/2 orders of magnitude greater /35/. As the pressure in-

*Under favourable conditions (Fig.14, at 1.5 kV) we also obtained energy losses of almost 50 %.
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creases further the density reaches a maximum and then drops at higher pressures. The
measuring error for the individual experimental points may be very high /35/.

After a large number of these curves have been evaluated for various arc currents,

voltages and magnetic fields, it can, however, be stated that the minimum in the density
below the critical pressure is not due to measuring errors. The density range in which

the density drop takes place is the very region in which the oscillations causing the
turbulence occur. The drop in density is accompanied by a rise in temperature. Even if one
has to assume that the experimental points of the temperature involve a substantial error
of many percenfthe thermal distribution may still be regarded as reproducible. This can also
be deduced from the evaluation of many other curves. The two temperatures T, and T

1 2
present two different groups of electrons: a slow, dense group with the temperature T1 and

re-

a fast group with the temperature T2. Even if the two temperatures are regarded only as the
upper and lower margin of error, it follows from the thermal distribution that the tempera-
ture of the electrons rises approximately when the oscillations begin; after attaining a
maximum of about 9 eV at a pressure just above the critical pressure, the temperature then
drops again to values of 1 eV at pressures of 10'3 torr.

The drop in density with increasing pressure in the stable region is due, firstly, to

the decrease in the energy losses of the beam and, secondly, to the contraction of the
plasma. The probe, which is at a fixed distance from the beam, hereby passes in turn
through various density ranges of the plasma.

The maximum measured density of 2 x 1010 > agrees with the density calculated from the
oscilllation spectrum of the turbulent state on the assumption that the maximum amplitude

em”

at 1.65 Ge/s corresponds roughly to the upper hybrid frequency. For this measurement the
probe was located in the highly luminous plasma column, whose density is almost constant.
This is shown in Fig. 20.

The dependence of the density, electron saturation current and temperature was measured
as a function of the distance of the probe surface from the boundary of the beam in the
nonturbulent and turbulent state. In the nonturbulent state (Fig. 19) the density de-
creases sharply from the boundary onwards. The temperature also drops towards the outside.
The maximum temperature measured at the beam boundary did not exceed about 3.2 eV.

With turbulence the situation is different (Fig. 20). The density is constant in the
vicinity of the beam to a distance of almost 1 em, and only then does it drop almost ex-
ponentially. The temperature now attains values of almost 8 eV at the beam boundary, but
then drops quickly outwards, decreasing to values of about 1 eV at some distance from the
beam.

The largest jump in density occurs about 1 em from the beam. This jump is more than two
orders of magnitude. For high magnetic fields (approx. 1100 gauss) this distance from the
boundary of the beam could be taken roughly as the boundary of the intense luminosity.

a) Influence of secondary electrons from the collector

The influence of secondary electrons on ion oscillations in the low pressure range is
described by AGDUR /55/. His conclusion is that reflected electrons are not necessary
for exciting ion oscillations. Our investigation is concerned with whether and to what
extent secondary electrons are necessary for exciting the plasma instability.

The term "plasma imtability" is again used here to refer to the occurence of intense
luminosity or increased energy loss, not to the occurrence of oscillations in particular,
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The entry diaphragm into the retarding field was enlarged to the size of the beam
diameter. The retarding voltage UG was then varied in the region of the accelerating
voltage UB' Ir UG was a little higher than UB all beam electrons were reflected in
the nonturbulent state. If UG was smaller than UB all electrons reached the collector.
Unfortunately, the number of measurements with this system was restricted. This was
because, for one thing, the collector was not constructed for absorbing high energies.
Another reason was that so many particles were reflected in the turbulent case and
then accelerated again that they impinged once more on the hot cathode and destroyed
it. For standard values the few measurements showed that with reflection only about
half the critical pressure was necessary to cause instability. The system also be-
came unstable and turbulent, however, without reflected electrons.

For small beam currents or short length the influence of the reflected electrons

1s more difficult to estimate. Measurements of the energy loss have shown here that
at critical levels the system is only unstable, i.e. shows high energy loss, if the
full retarding voltage is applied. If the retarding voltage in the analyser drops,

the intense luminosity often persists in a milder form, but there are no longer slow
particles in the energy distribution of the electrons investigated. The "instability"
then no longer exists, at least not in the column above the analyser diaphragm.

The turbulent state accompanied by energy loss of the investigated particles can also
be restored without retarding voltage by raising the pressure.

For a time the experiments were conducted in a slotted Cu tube with an internal diameter
of 26 mm. The essential phenomena remained the same, only the critical pressures in-
creased. A probe for measuring the oscillations along the column passed through one of
the two slots in the metal tube. A fixed probe projected approximately into the centre
of the vessel through the other slot. Applying the latter probe to a RF signal genera-
tor produced a plasma in the metal tube for w = w,- The original intention of this ex-
periment, which was to execite the oscillations produced in the beam-plasma system with
a pin probe, was unsuccessful. Even when the plasma oscillations were present there

was no resonance.

When, on the other hand, tpgﬂgggi}lationsvere present and the probe produced a plasma
for w = W, the amplitude and the fréquénby of the oscillations increased. This effect
was exactly the same as that obtained by raising the pressure. The frequencies thus do
not couple. Only after the plasma density increases do the beam-plasma oscillations
change. (The situation is different in an experiment of ETIEVANT: if the signal
generator is connected to a helix around the beam, there i1s resonance at the upper
hybrid frequency /56 /.)

The RF oscillation spectrum in the turbulent state was described in C Va. Broad-band
oscillations, as yet unidentified, were also found in the low-frequency range. Their
frequency was in the region of a few 100 ke/s. It was often possible to find six
harmonics of the fundamental frequency. The frequency of the oscillations drops as the
magnetic field rises to about 1100 gauss and then remains constant up to about 1500
gauss. The frequency also drops with the pressure. The frequency of the oscillations
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does not depend on the radius. There is also a drop in frequency with increasing beam
velocity and decreasing beam current (constant output).

Fast electrons and X-rays

As was first reported by ALEXEFF and NEIDEIGH /34/ and then also by BEREZIN et. al.

/51,, fast electrons are produced on interaction of an electron beam with a plasma. In
our experiment the energies of the particles ranged up to a maximum of 5 keV for standard
values. A total of about 15 to 20 % of the beam electrons had gained energy. The maxi-
mum gain of a particle, however, amounts at most to 25 % of its original energy. When

the experiment conformed to the described set-up there were no X-rays. Otherwise, this
would have indicated a very high particle energy.

When, however, the magnetic field was varied so that the homogeneous field was made
into a mirror field, X-rays were detected outside the glass container with high mag-
netic fields (1000 - 2000 gauss) and the smallest possible pressures in the unstable
range. This radiation did not come from the plasma volume or the walls, but almost
excélusively from the target. The intensity of the radiation was reduced by about half
by being passed through a 15 mm thick sheet of aluminium. From this the mean energy
is estimated at between 50 and 80 keV. At a distance of 10 em from the target and
through a 6 mm thick glass wall the intensity of the radiation attains values of up
to 60 mr/h. Since the apparatus was not suitable for high stationary magnetic fields,
this type of experiment was not pursued.

Acknowledgements

Dr. v. Gierke, who suggested this experiment, is hereby thanked for his constant support.
I am also grateful to Professor E. Fiinfer for the opportunity of submitting this work

as a thesis.

Appreciation is due as well to my colleague, Mr. A. Borer, for numerous discussions

and suggestions.

Finally, I should like to acknowledge the work of Miss H. Miller, who programmed the
calculations, to Mr. Weber for assistance in the experiments and Mr. Nicol for trans-
lation of this report into English language.




w97 =

Appendix A

Calculation of a simple diffusion model

Fig. 21 gives measurements of the floating potential as a function of the distance from

the beam. The curves show that the potential at the edge of the beam is negative in the
pressure range without turbulence. At a distance of about 1 em from the beam the poten-
tial becomes positive.

Without turbulence there is a marked surplus of electrons in the beam and a surplus of lons
outside. The plasma outside the beam is positive because the electrons parallel to the mag-
netic field diffuse faster than the ions. Thus outside the beam the diffusion of the
charged particles is determined by the velocity of the ions. Because of the space charge of
the beam electrons the charge in the beam is negative, at low pressures at least. At higher
pressures the electrons of the secondary plasma are quickly lost to the end plates and the
slow ions compensate the space charge. This continues until the space charge drops to, for
example, the value -U. This value is such that a few ions can already leave the beam ra-
dially because of their thermal energy and their large Larmor radii. At the same time less
secondary electrons flow away to the ends because of the reduced potential. The value -U
now becomes such as to bring about equilibrium between these two processes.

Along the outside of the beam the floating potential is constant - as was measured - and
only in a very small region near the ends is there a jump. The plasma outside the beam

is thus without electric fields in z-direction on the whole, The same can also be assumed
with a high degree of probability for the plasma in the region of the beam.

Under these conditions it is now possible to comment on the density of the plasma outside
the beam. Its value is such that there 1s equilibrium between productive and destructive
processes. The productive process probably consists mainly of the radial diffusion of ions
from the beam into the surrounding plasma. All that is important here, however, is that
the productive processes along the beam can be assumed to be constant. The diffusion parallel
to the magnetic field is regarded as the predominant loss process. In the given situation
it is determined by the velocity of the ions. For the region outside the beam we thus ob-
tain the equation

where N+ is the production rate and Di" the diffusion coefficient of the ions. If the den-
sity at the ends of the system is assumed to be zero, it follows that

Ny«
REE)fs ———if L. =2,
) th‘.n (' ) (29)
The density maximum ng is given for z = L/2 and is calculated as
N, L5
Ne =
% tondMin (30)

The density in the centre of the system is proportional to the square of the length.

In one experiment a probe was placed at a fixed distance Lo from one end of the plasma
column. The other end of the plasma column was movable. Eq. (29) then gives the follow-
ing dependence of the density on the difference of the lengths L - Lo = AL:

L, ‘
W(L) = S (Lot - K AL
o l‘
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The experiment, however, gives the following result

T (L) = e (AL LY

The length Lx takes into account the influence of the sheath at the end of the plasma.
This sheath acts like a plasma column with the length Lx. Instead of (30) the maximum
length then becomes
Ne (2 #220:\°

R Biti (30&)

Vie

The plasma in the region of the beam can be treated in the same way, if allowance is made
for the fact that the diffusion is here determined in accordance with the model by the
velocity of the electrons. Furthermore,the production process is due to the ionization
of the beam electrons. We then obtain for the density the same form as in (30a). We now
take into account the fact that the production rate is proportional to the beam current
and the pressure, but that the diffusion constant is inversely proportional to the
pressure. The maximum plasma density obtained in the beam is

me = C-Top (Lealy)’

Ly 1s the length, corresponding to the influence of the sheath.

(31)

The plasma density in the beam is proportional to the beam current, to the square of the
pressure and to the square of the length.

Appendix B

Calculation of the integral energy distribution of the beam electrons from the drift and
temperature.

A Maxwell distribution with superposed drift is written

2
b+ B o G0 o)

For the measurement with retarding field only the distribution in the z-direction is of interest
The current to the target is composed of the particles with a velocity between O and = :

[*A]
de - “”JU?WMU (32)

J has to be found as a function of the voltage:
" f'-h*" ])Ef._‘fo_
vos vy L}B - s

W, (32) is written after a short calculation
(]
-_ ff[, 2

; . (4] - . 7

1:;=‘-’“°(3T‘ e*?-‘[(‘fV-HVJ]

\ [ R -

J

We want to find the current of the particles which can exceed a certain potential El:

HU:): nc(hT ) MY’[(F F ]aV

CA ﬂ'(fd N
This equation was numerically calculated for various ratios W. Fig. 17 shows 2 ¢ (Jl__ ) 2
‘
as a function of El' t

eV eva

With ox = U; o5 K =
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FIGURE CAPTIONS

Fig. 1 Dispersion diagram; frequency and growth rate as a function of wave number,

Fig. 2 Growth rates as a function of the reciprocal produect of the radius r and
magnetic field strength B with constant beam current IB and constant plasma
density wp.

Fig. 3a Growth rates as a function of the plasma density.

Fig. 3b Frequencies as a function of the plasma density.

Fig. 4 Frequencies and growth rates as a function of the radius and the various
radial modes. p,, are the zeros of the Bessel function

Fig. 5 Frequencies as a function of the reciprocal product of the beam radius and

magnetic field with constant beam current and constant plasma density.

Fig. 6a Schematic diagram of the apparatus.
Fig. 6b Magnetic field strength along the apparatus.

Fig. 7a Critical pressure as a funetion of the beam current.
Fig. Tb Critical pressure as a function of the accelerating voltage.

Fig. Ba Critical pressure as a function of the magnetic field.
Fig. 8b Critical pressure as a function of the interaction length.

Fig. 9 Beam dénsity profile.

Fig. 10 Frequeney ranges at various pressures as a function of the magnetic field.
Fig. 11 Oscillation amplitude as a logarithmic function of the frequency.

Fig. 12 Retarding field curves. Reduced target current as a function of the retarding
voltage UG at various pressures.

Fig. 13 Energy loss AE as a function of the pressure.
Fig. 14 Energy loss AE as a function of the accelerating voltage.

Fig. 15 Energy loss AE as a funetion of the beam length L.

Fig. 16 Energy loss AE as a function of the distance ir from the beam centre.
Fig. 17 Calculated retarding field curves for various temperatures and drifts.
Fig. 18 Density probe current and temperature as a function of the pressure.
Fig. 19 Density probe current and temperature as a function of the radius.

in the nonturbulent state.

Fig. 21 Floating potential as a function of the distance from the beam.
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