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Abstract

The dispersion relations for coupled electromag-
netic waves and longitudinal waves propagating along a
plasma column are derived and experimentally measured.
The "hot" plasma is described by the equations of the
two fluid model which include a gradient pressure term.
A quasi-static approximation, E = -grad ¢, is used in
place of the complete electromagnetic equations. The
w-B curves (B is the propagation constant along the co-
lumn) have been calculated for modes which have none and
one azimuthal variation. The measurements, performed on
the positive column of a mercury vapor discharge, show
the presence of many bands of propagation corresponding
to many nodes in the radial direction. The theoretical
and experimental results are in agreement.
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Introduction

The phenomena of wave propagation along a plasma co-
lumn is closely related to the dipde resonances of such a plas-
ma., These resonances which may be refered to the works of
Tonks1) and Romella) have often been named Tonks-Dattner re-
sonances because of the extensive experimental investigation

by Dattner>’

. The explanation of these resonances has been

the subject of many papers. The most complete quantitative ana-
lysis is given by Parker, Nickel, and Gouldu). In this work
and in p2§ers by Vandenplas and Gould5), Vandenplas and

vant papers. As these resonances are not the main subject of

Messiaen ’, and Crawford7) are quite complete lists of rele-
this paper the question of literature will not be further dis-
cussed here. The results published by Parker, Nickel, and
Gouldu) (PNG) will, however, be used to introduce a discussion
of the physical mechanism of the propagation phenomena.

An infinite isotropic homogeneous plasma can support
propagating transverse electromagnetic waves and propagating

longitudinal "plasma waves" if w, the signal frequency,zis
larger than mpy the plasma frequency. wg is equal to %SH_ 8),
n is the electron density, e and me the electron charg8 € and
mass respectively. In the definition of Wy the ion mass 1s
considered very large compared with the electron mass. In such
an infinite isotropic homogeneous plasma, these two propaga-

ting waves are independent of one another,

The electromagnetic wave propagation can be characteri-

zed by the introduction of an index of refractiong)

= (- )0+ E ) 8

The movement of the lons compared to the electrons is

neglected and a thermal electron gas of temperature Te 1S




assumed. The secondzterm in the latter parenthesises is of
the order of 107° E% for the plasmas described in this pa-
per. This term which does not include relativistic correc-
tions 1s none the less of the order of such corrections. K is
the Boltzmann constant and ¢ the velocity of light in vacuum.
Since wg is the order of magnitude of w2 for phenomena con-
sidered here, one may neglect the temperature correction term
and one has that the index of refraction is order of magni-
tude of one or less which denotes wavelengths corresponding
to or exceeding those in vacuum,

One may also characterize the longitudinal wave propa-
gation by an index of refraction,9)1o)11)

2
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’n"_(‘l m)(mecz) (2)
The wavelengths involved here are then about 1/300 that of
those for the transverse wave,

The "Tonks-Dattner" resonances are the resonances a plasma
column demonstrates when a dipole electric field is applied.
The vacuum wavelength of the applied signal is large compared
to the radius of the column and all variation in the axial
direction in neglected. The analysis of this spectrum given
by PNGM) allows for the existence of both wave types discussed
above, and for coupling between them. The wave types here are
not independent due to inhomogeneities in the assumed elec-
tron density profile and of course the plasma boundary. The
results of this analysis which was carried out using a compu-
ter show standing waves of the pertubed electron density in
the radial direction. The wavelength of the standing wave cor-
responds quite closely to that calculated from the homogene-
ous theory (2) using that value of wg (which 1is here a func-
tion of radius) which is present at the radial point in question,
It is then reasonable to think of these resonances as being
caused by waves which propagate in a radial direction being re-
flected by the glass plasma boundary and, if the plasma is




dense enough, by an overdense region in the middle of the
tube. The resonably sharp resonance characteristic of this
spectrum comes to be because, for constant w, only certain
plasma densities afford the proper propagation for fulfill-
ment of the boundary conditions.

One may now consider the case where these waves do not
travel exclusively in a radial direction but have a compo-
nent of propagation in the axial direction. An obvious ana-
logue is that of a waveguide in which the waves travel trans-
verse to the guide at cutoff, andtravel with a non zero (group)
velocity in the axial direction during propagation. The "T-D"
resonances represent then, in this picture, the cutoff condi-
tions of modes of propagation. CrawfordT) has also noted that
these resonances are special cases of propagation. Just as in
the case of waveguide propagation where there are many modes
which differ from another only in the number of nodes in the
radial direction there are many bands of propagation which
also differ from another in a similar way.

These resonances have led to a discussion of bands of
propagation which have one azimuthal variation (dipole mode ),
however, a mode with no azimuthal variation is geometrically
simpler. Indeed, the initial experimental investigations were
made on this latter mode. The dipole mode will be referred to
as n = 1 and the rotationally symmetric mode as n = 0.

Experiments

Discharge Apparatus :

The experiments reported in this paper were performed on
the positive column of a low pressure mercury vapor discharge,
Figure 1. The discharge tube is made of Schott 8243 glass.

The dimensions are:




Length overall: 84 cm
Distance between probes B and K: 48 cm
Diameter outside: 1.87 cm
Diameter inside: 1.57 cm

The entire discharge tube is housed in a large, 130 x 100 x 30 cm,

box which is maintained at a constant temperature of 5500
whereas the temperature of the water bath surrounding the mer-
cury, THg’ was varied between 15 and 50°C.

Following an initial bake out at 400 °Cc and many hours
of operation it was found that further pumping was unnecessary.
The ionization manometer afforded a continuous check on the
total pressure in the tube.

The cathode, of the type used in the Valvo PL 5684 thyra-
tron, was heated from a direct current source. The maximum emis-
sion of 2 amperes, as recommended by the manufactor, was not
exceeded. The cathode is quite robust and in other experiments
has shown good tolerance to repeated exposure to the atmosphere
(when cold).

A small coil producing a maximum axial field of 30 Gauss,
not shown in the figure, was placed around the anode. It was
found that at currents of the order of tens of milliamperes
and larger that this small concentrated field very materially
reduced the small instabilities in anode voltage and current.
The instabilities could often be associated with the presence
of discharge behind the anode. This "quieting" of the discharge
was of great help in the experimental work, At distances of
about 15 cm from the anode no direct influence of the field
could be detected.

Probes A,B, and K, made of tungston wire 0,5 mm diameter,
were inserted to the middle of the tube, however, only the last

2 mm were not insulated with glass.




Measurements

Electron Temperature Te:

Using probes A and K (no magnetic field) Langmuir12)

probe measurements were made to determine the electron tempe-
rature, Te' For sufficiently large discharge currents (100,
200 and 400 ma) the value of Te for any given neutral gas
pressure, varied generally by only a few percent. Its ave-
rage value 1is shown in Figure 2, The dependance of Te on the
discharge current is also shown in Figure 2 for one value of
neutral gas pressure (corresponding to 26 ¢ mercury water
bath temperature). Good agreement with a Boltzmann-Maxwell
distribution was observed.

Average Electron Density, ﬁé, or mi:
The shift in the resonance frequency of a microwave cavi-
ty was used to determine the electron density Hé, averaged

over the cross section of the plasma.

(3)

Measurements were made in transmission through a cylindrical

cavity, radius 10.7 cm, length 15 cm, excited in the TM

mode and evaluated according to Agdur and Enander13).

o110

Propagation Measurements; Dipole (n = 1) and Rotationally Sym-
metric (n = 0) Modes:

The couplers used to launch and detect waves propagating
in the n = 0 and 1 modes are shown in Figure 3. In normal ope-

ration a pair of identical couplers is used.

The couplers for the n = 0 mode have rotational symmetry
except for the connection, at one point, to the generator or
detector. The coupler shown in Figure 3a was the first one to

be used. It closely resembles the reentrant cavaties often




used for tunable klysirons. With the capacitive loading of

the gap it can be tuned from 700 to 2000 Meps in the "1/4
wavelength mode" and from 1500 to over 4000 Mcps in the "3/
wa?elength mode". The gap width in the device of Figure 3a is
0.5 mm and in the device of Figure 3*b 0.5 mm each side of the
thin ring. The latter is quite useful at lower frequencies.

All the couplers shown in Figure 3 fit closely on the discharge
tube and mahy be moved axially as well as azimuthly.

The generators used to cover the frequency range of mea-
surements, 50 to 4000 Mecps, have a maximum output of about 0.2
watt.

Two bhasic types of receivers were used in these measure-
ments, first a normal superheterodyne receiver with a sensiti-
. -1 -
vity of about 10 2 watt, and second a phase coherent recei-

11 watt. The phase coherent

ver with a sensitivity of about 10~
receiver, developed by the author, was reported in Stockholm
in March 19631h)

Cohn and Weinhouse15). Block diagrams of thesc receivers are

and is most similar to a receiver reported by
shown in Figure 4.

A typical measurement of the n = O mode made using a
superheterodyne receiver and constant transmitter frequency is
shown in Figure 5a. Note that the ordinate is logarithmic. The
transmission band which exists at we/mi smaller than 0.21 per-
sists as the discharge current, that is, the value of wf), is
increased. The discrete bands occuring at higher values of wg/wi
are those which have one or more nodes in the radial standing
wave. As observed, the amplitude of the received signal is about

10 times greater in a transmission band than at values of wg/wg
immediately above and below the band. In Figure 5b an w-p dia-
gram is shown which was measured under the same conditions as
5a. B is equal to 2n/ﬁz where )'z is the wavelength in the axial
direction and ko is radius of the plasma column (0.79 cm). In 5b
a phase coherent receiver was used and, at many different values
of mg, one of the couplers was moved and the change in phase of

the received signal was noted as a function of separation bet-




ween the couplers. Measurements were made propagating in the
direction of anode to cathode and vice versa, in order to show
the effects of the electron drift velocity. This dispersion
diagram shows a similarity to that for a wave guide which was
implied in the analogy mentioned iﬁ the introduction. The ter-
mination of the transmission in each band, at one end, p- O,
is due clearly to cutoff. The observed termination for large B
is thought to be caused by Landau damping and poor coupling

to the shart wave lengths. It will be noted that the word mode
is used to denote the azimuthal variation (e.g. n = O, n = 1
mode) and band to denote a region of transmission of a parti-
cular mode.

The zero order stationary radial electron density distri-
bution function decreases monotonly from the middle of the tube,
and the fact that ma is often smaller than the ;§ means that
wave propagation takes place only in a region of the tube near
the glass boundary. In this region the value of mz is smaller
than EE: The effect of reducing the discharge current is to re-

duce m2 and the value of wg at all points in the tube.

P

The result of reducing w2 is to raise the value of the
index of refraction or reduce Ehe phase velocity at all points,
(where propagation can take place), which has the effect of de-
creasing the wavelength of the wave traveling in the tube. The
reference to "the wave traveling in the tube" is made in analo-
gy to the model of traveling interfering waves often used to

16)

explain waveguide propagation . A decrease of wavelength for

the traveling waves results then in a decrease in )‘z.

It is obvious that the form of the zero order radial elec-
tron distribution function plays an important role in this wave
phenomena. Parker17) has calculated this distribution function
for a collisionless plasma and found that one parameter, ri[hg,
is sufficient to characterize its shape. iﬁg is the average of

the square Debye length defined by equation (4).
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A further step in the investigation is to look into the
dependence of these modes on the ri/)\i parameter. In order
to obtain a simpler picture, a plot of ri/ig-vs (ue/mi)co
(the value of w2/w§ corresponding to Brw =0LorC.ut O PP s
made. This plot is shown in Figure 6, the heavy line along
the ordinate denotes the cutoff of first n = O band. The
(mg/mé)co values have been deduced from transmission (between
two n = O couplers) measurements. It is not expected that di-
rect observation of the cutoff points is possible - see dis-

cussion in Theory, Case A.

One may perform similar experiments with the n = 1 mode
using appropriate couplers. Figure 7a shows the amplitude of
the transmitted signal using a superheterodyne receiver. It was
made under conditions similar to those of Figure 5a. Checks of
the "dipole characteristics" of the transmission such as orien-
ting the exciter and detector couplers perpendiculgz to one another
disclose that the signal received at values of me/wg less than
0.13 is not dipole in nature. Further experiments which will be
discussed later show this spurious signal to be effected by
coupling to the n = 0 mode. Figure 7b shows the w-pdiagram mea-
sured with a phase coherent receiver corresponding to 7a, here
the "n = O spurious transmission" has been excluded. The letter
"B" denotes observed backward waves - the change in phase of
the received signal as the distance between the couplers is in-
creased 1is opposite in sense to that which is obtained when a
line stretcher, in place of the couplers, is lengthened. Except
for the region of backward wave propagation and the absence of
a mode which extends to we/w§-+ Othen=1andn=0uw-8

diagrams are similar. A corresponding plot of ri/lg vV s (wa/wg)co
for the n = 1 mode is included in Figure 6. Unfortunately inter-
ference with the n = 0 mode precluded measurement of the higher
bands of propagation in Figure 7b. Reference to Figure 18, how-
ever, shows the similarity to the n = 0 mode indicated here.

The plot of cutoff points of the dipole bands of propagation




is, of course, nothing more than a plot of the Tonks—Dattner1)2)3)4)

resonances.

Measurement of the higher bands of propagation for both
the n = 0 and n = 1 modes is considerably more difficult than
for the lower bands. This is caused primarily by two factors,
first, excitation of and consequently interference with signals
of the unwanted azimuthal dependence (n = 0 or 1) and second,
the considerably weaker signals received when measuring the
higher modes . As 1is clearly shown in Figure 6 the spacing, in
we/m; s between the cutoff points for the n = 0 and n = 1 higher
order bands 1is quite small. It is then possible that when attemp-
ting to observe propagation of a particular band by choosing a
value of w2/wg larger than that for cutoff one might simultaneous-
ly excite the unwanted mode. The attenuation of the propagated
signal in decibels per cm, along the column is much lower in
the region of cutoff than in the region of large . Should
then the value of we/mi being used correspond approximately to
that of cutoff for the unwanted mode, the interference with the
desired signal can be very strong.

Care was taken in the construction of the couplers to re-
duce extraneous coupling as well as in selection of the glass
discharge tube. Small eccentricities in standard glass tubing
produce appreciahle asymmetry in the coupling to these modes.

On some occasions non-linear effects were observed with
r.f. powers comparable to the power dissipated per centimeter
in the positive column.

Other Observations:

Some interesting experiments which involve the n = 0 and
n = 1 mode as well as the cutoff dipole resonances will now be
described, A common method of observing the dipole resonances
is sketched in Figure 8. The microwave energy transmitted through
the waveguide is recorded as a function of discharge current -
or mi. The large distinct transmission minima are the dipole
resonance points as shown in Figure 9. Superimposed on this spec-




trum is a second absorption spectrum denoted with the letters

«,B, and ¥ . The magnetic field of the earth, BE s 1s perpen-
dicular to the axis of the discharge tube. If the waveguide is
oriented so that the electric field of the microwave signal, Ehf’
is parallel the magnetic field of the earth the minima g;pB, andy
disappear. If now one coupler for the rotationally symmetric mode

is also mounted on th¢ tube and connected to a superheterodyne
receiver tuned to the frequency of the signal in the waveguide,
the receiver yields signals as shown in the lower curves of
Figure 9. The values of wg/mi for which a,f, and y occur, agree
with those for the n = 0 modes of propagation. The minimum § is
thought to be the first quadrupole resonance, although no experi-
mental check of this has been made. A discussion of this mode

and its excitation is given by Messiaen and Vandenplas18)19)20)

and by PNGk).

A phenomenon similar to that just described is present
when transmission between two dipole couplers is observed in
the presence of the earth’s magnetic field. If the axis of the
dipole field of at least one of the dipole couplers is parallel
the earth’s magnetic field there is transmission only via the
n = 1 mode. If, however, both dipole couplers form angles other
than zero with BE’ there is transmission via the n = 0 as well
as the n = 1 mode . The n = 1 mode is not directly disturbed,
but if the n = 0 and n = 1 modes overlap (in wg/mi) there is
interference. From this experiment it is apparent that coupling
from dipole fieldstto rotational mode and vicz versa can take
place in the presence of this weak magnetic field. Transmission
measurements performed in a magnetically shielded box showed
no extraneous coupling. In these measurements there is always
some coupling to both modes because of imperfect symmetry in
the couplers.

The strong influence of the earth’s magnetic field is
quite astounding as its value, 1/2 Gauss, corresponding to an
electron gyrational frequency of 5 Mcps is very small compared
to the measuring frequency,here 1700 Mcps. The effect observed

in the waveguide experiment, is probably the same observed by




1)

2
Messiaen and Vandenplas™ ‘.,

The rotationally symmetric mode alsc influences cavity

measurements such as often used to determine electron density

13). The Q value of a cavity excited in

and collision frequency
the TMO1O

ponding to those for propagation of the n = 0 mode at the pro-

mode shows sharp minima at electron densities corres-

bing frequency. The Q value of a cavity being tested in trans-
mission can easily be determined by observing the 1/2 power
points of transmission. If, however, the generator output is
reasonably constant, a measure of the Q value is the amplitude

of the transmitted signal. Figure 10 shows the experimental
arrangement and the transmitted signal as a function of discharge
current for many discrete probing frequencies. The values of
w2/w§ corresponding to minima in the transmitted signal are those
for propagation of the different bands of the n = O mode at the
appropriate ri/lg’s. (The minimum at wz/wi = 0.3 is thought to
be associated with the lowest dipole resonance) This is not sur-
prising as the electric field in the cavity is not completely
axial due to holes in the end surfaces through which the tube
extends. The cavity acts then as an n = 0 coupler whose "gap"

is very large. Energy may then be coupled out of the microwave
cavity and transmitted along the column or dissipated by colli-
sional or Landau damping.

A final experiment which will be reported here demonstrates
a dependence between the so called "high frequency probe" (h.f.
probe) measurements and the transmission modes. A copper tube
with a coaxial connector, see Figure 3d, is placed on the dis-
charge tube and connected to a generator and a recorder as shown
in Figure 11a. Figure 11b shows the voltage of the probe as a
function of discharge current with the microwave generator turned
on and turned off. There are no nonlinear components in the ex-
ternal circuit. The peaks in the rectified microwave current
namely the sharp voltage minima are also plotted in Figure 6.
The striking correlation between the h,.f. probe resonance points
and the cutoff points of the n = 1 and n = 0 modes suggests that

longitudinal wave propagation 1is related to these h.f. probe re-




sonances. Since these waves are not confined to the region imme-
diately surrounding the probe, one would infer that it is neces-
sary to consider the entire plasma when evaluating probe measure-
ments.

Theory

A discussion of the theory of these modes of propagation
may be introduced by briefly reviewing a few of the relevant
papers dealing with isotropic plasmas. W.O. Schumaneg) and asso-
ciates,Hahngj), Ramoah), Trivelpiece and Gould25), and others
have discussed solutions to Maxwell’s equations for a bounded
cold (Te = 0) plasma. The plasma itself is cgaracterized in these

w
cases by an index of rggraction, n2 =1 - 73§— or a dielectric
We
w
solution of the electromagnetic equations exists for a bounded

constant & = ¢ (1 - ). It is shown in these papers that a
plasma for which there is propagation along the column with
wavelengths much shorter than the vacuum wavelength. In the paper
by Trivelpiece and Gould25) a quasi-static approximation, E =
~grad@ , is assumed, E is the electric field vector and @ a sca-
lar potential. The resulting equation, dive grad@ = 0, along

with appropriate plasma-glass boundary conditions is solved. One
solution for a band of propagation with rotationally symmetry

and one for a band with dipole symmetry are found. These solutions
are clearly identificable with the lowest n = O band (with cut-
off frequency me/wg = 0) and with the lowest n = 1 band which
exhibits the strong backward wave characteristic. Although these
solutions predict the main properties of these modes many as-

pects are not included.

In the paper by PNGM) the effects of a non-zero electron
temperature and an inhomogeneous plasma are taken into account
in the discussion of the cutoff dipole resonances. The basic
analytical approach used by PNGu) in a simplified form, will be
used throughout most of this treatment.




The basic equations, which will be used to describe the

hot plasma are those derived for the two fluid model by Schluter26).
These equations can also be derived as an approximation (velo-
city moments) to the Boltzmann equation. The following approxi-
mations are made:

The plasma is considered to be at rest (zero order).

Collisions are considered negligible.

Jons are considered to remain identically at rest (zero and

first order).

A uniform isotropic electron temperature Te is assumed (hence-

forth the subscript on T, will be omitted).

A pertubation pressure term of the form R j'kTq, is assumed.

g__'ne E —V‘(‘ﬂe Ve) equation of continuity (5)
t -~

mene(%nt\!g +6{ev) ,‘fe)-': _eneg _vPe momentum equation (6)
Vpe = YKTVNe gas lav (1)

The quantities N, Vo and P, are the electron density, velocity
and pressure respectively, K is the Boltzmann constant and ¥1i5
the ratio of the specific heat at constant pressure to that at

constant volume, E is the electric field vector, e is the magni-

tude of the electron charge.

Maxwell’s equations are approximated by considering the

electric field vector derivable from a scalar potential.
(8)
§=—V¢

Vi = e(ne-1; ) (9)




2 A=
hi = ng (r) is the ion density.

This quasi-static approximation is applicable where the dimen-
sions involved are small compared with the vacuum wavelengths

of the impressed signals; the dimensions involved are generally
of the order of a few centimeters whereas the vacuum wavelengths
are of the order of 100 centimeters. The quasistatic approxima-
tion becomes invalid at the highest measuring frequencies used
(4000 Mcps or?\o = 7.5 em). Most of the measurements, however,
were made at frequencies between 50 and 2000 Mcps.

A zero order (time independent) and first order (pertur-
bation) dependence of the variables is assumed:

No= Neo(r)+ N, (ryt) ]
i = Njo(r)

@ = @(r)+@,(rst)
Ye= 0 +Yey(rt)

Pe = Ped(") + Pei(nit)
E=Eq(r) +E,(ht)

7t (10)

-

iwt

Assuming a e time dependence the zero and first order equa-

tions are respectively:

O=0 (5a)
iwNngy = =V (Mo ¥ey) (5b)
O=-€Ng,Eos —VPeo (6a)
me"neoiw.ge‘:—c(hm§_1+gohe4)—Vpe,, (6b)
VPeo=U0KT Vg, %=1 (perfect gas law) (7a)
Veer =Y KTVng, N=3 (one dimensional adia-(7b)

batic compression; see
discussion below)

=-Vg, (8a)
==V, (8t




V= SleoNio) - _ . (9a)

(9b)

As the electron collision frequencies are generally seveal
orders of magnitude less than the impressed frequencies one may
consider the wave motion as adiabatic. Through the linearisation
of the adiabatic 1aw,-—(—.,) O, one obtains for the first order
pressure term,

Ps =3 KTT\,‘ = %_‘:};_I' ,Y,,'V'no

The value of Y is taken as 3 as the wave motion is considered

to be a one dimensional adiabatic compression. The second term
on the right handside complicates the calculation very conside-
rably and one would like to see if it may be neglected. Obvious-
ly it is zero in the case of an homogeneous plasma. When an in-
homogeneous profile is considered, V”no has only a radial com-
ponent and the troublesome term disappears for the cylindrically
symmetric mode as the wave propagation ( e.g. x1) becomes essen-
tlally parallel to the axis of the discharge. Only the cylindri-
cally symmetric mode with its radial and axial components of

the first order variables will be considered in the inhomogeneous
calculations. One may attempt to judge the importance of this term
by building the quotient, Q, of the first term on the right hand
side divided by the second.

Q=3KTn,iw _ 3KT(¥4-V71°+T)°V)¢,) 3(1 4 1,Viv,
2KTYy Vo™ 2KT y,"Vn, v.Vn, )

Here use has been made of continuity equation. If the |Q| can
be shown to be large compared to unity then neglect of this term
is justified. In part two of Appendix III a calculation of Q is
given for the profile to be discussed in Case C. It is seen that
Q is negligible under most but not all conditions. As an indi-
cation of the importance of this term one may reflect on the ex-
cellent agreement between theory and experiment obtained by PNGa)

where the first order pressure term is assumed equal to 3 KT n,.




In par-

1°
ticular, the manner in which the neglected term would influence

In further calculations P, will be set equal to 3kT n

- the boundary conditions calculated in appendix IT is not in-

vestigated.

It may be remarked, that by taking velocity moments of the
Boltzmann equation, and terminating with the setting to zero of
the heat flow tensor, yields the following expression for the
J component of the grad p, term (po =- e’ n0)=

939151’29(9

vj M. dv
In, F2 Yy, T a_xﬁ )

This expression is not equal to tlat obtained from the adiabatic
law. If, however, one considers the special case of a plane
longitudinal wave propagating in an inhomogeneous medium with
the E-field vector parallel to grad n, one obtains for the com-
ponent of grad P, in the propagation direction (index I),

(p. ), 3KT§:‘+2KT-§—( %—3‘;) :

tw 9Ox

In this special case the moment equation approximation and the

adiabatic law yield the same result,

If one takes the divergence of the first order momentum

equation, (6b), one obtains after combination with the other

equations
O__(vz- Z)VZ V¢,'VOJ§ 1 Vzw 2
=5 Vg - ek 4 PR VR (1)
_4_\7“)%22 17“’5sz
3(40;)7@“'5 'EP}__ ( ¢4)]
where

3
®
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Y e 2 _ 2] = Yeolr)e 1
kz.“:_?sf"'f and wP=U-)P(Y‘)— ““—EZTE- . (13)

At this point it is judicious to discuss equation (11)
and the plausibility of using the approximate equations (5),
(6) and (7). In the case of an homogeneous plasma the entire
bracketed term in (11) disappears and one may consider the
quantity k2 of equation (13) to be the square of the wave vec-
tor of a longitudinal wave. Equation (13), so interpreted, then
is the dispersion relation for a longitudinal wave in an infi-
nite homogeneous plasma and is equivalent to the index of re-
fraction given in (2). The thus simplified equation (11) then
represents the wave equation for longitudinal and "transverse"
waves,., The possibility of pure transverse wave 1is excluded
through the quasistatic approximation of Maxwell’s equations.
The value of the approximation of the Boltzmann equation, which
equations (5), (6) and (7) constitute, is difficult to estimate
in the case of an inhomogeneous plasma. The approximation does
not include Landau damping. One may, however, consider, as an
initial indication of the range of applicability, a comparison
of wg/mi calculated from (13), with (w2/m§)’, as obtained through
numerical solution of the Boltzmann equation in an homogeneous
medium. (Here k is assumed real and (wg/mg), is the real part of
complex frequency) In Table I a value k is assumed and the value
of w/mp from equation (13) is given and the value of (w/wp;;)as
obtained from numerical solution of the Boltzmann equation g
For large values of keS/Jﬂ'mp the imaginary part of w/wp, cal-

culated from the Boltzmann equation, becomes very large.

Table I ke
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From this table it is seen that for m/wp smaller than, say, 10
the error in k is less than 35%. The comparison does not, of

course, reflect on any of the terms in the brackets in (11) and
also neglects the imaginary part of w/wp.

It is now also propitious to discuss the methods of solu-
28)
rical integration of (11) for a particular previously calcula-
ted electron profile i.e. neo(r) or wé(r) is given. Quite good
agreement between the calculated and measured w-p curves is

tion of equation (11). In an earlier paper the direct nume-

noted in this paper, In the present paper three approximations

of the electron profile will be made and analytical solutions of (11)
will be given. The method of solution used in reference 28 will
also be discussed.,

Primary emphasis will be given the rotatioconally symmetric
mode because it is inherently simpler and because of the exlstance

of calculations for the dipole modeu)gs).

These approximations are:

A The plasma will be assumed homogeneous., This solution is in-
structive and has some applications for tenuous plasmas, that
is, where ri/ig £ 100. At large values of A; wave action takes

place over a significant portion of the tubeh).

B The plasma will be assumed composed of two regions, one, a
homogeneous core and, two, a homogeneous region between the
core and glass wall. This solution is algebraically more com-
plicated than A but has application over a wide range of elec-
tron profiles.

C The plasma will be characterized by a sheath whose thickness
is small compared to the tube radius. A particular functional
dependence for the sheath will be assumed and, after a change
from cylindrical coordinates to cartesian, a solution of the
wave equation will be found. (The change of coordinates used
here is similar to that often used when discussing the skin
effect in cylindrical conductors) The solution found here

has application only for large values of ri/ig-namely for re-

latively thin sheaths and is valuable as an asymptotic presen-




tation.

The methods of solution, A, B,and C, consist of approxi-
mating the electron density profile with functions which allow
analytical solution in terms of known functions. One may ex-
pect the theoretical results to best agree with observation
when the profiles are used which exist in the plasma. In paper
28 the result of such a calculation is shown. Equation (11) is

solved numerically for electron profiles calculated by Parker17).

The method of calculation is described in the paper by PNGA).
This calculation, which has only been carried out for the dipole

mode, shows good agreement with observation,

The zero order radial electron density profiles, that is
n_, for a collisionless plasma with cylindrical symmetry shown

eo
in Figure 12 have been reproduced from Parker’s17)

work. The den-
sity neo(r) is normalized to the density at the center of the
tube, neo(O), which in turn may be related to the average den-
sity E;;. The radius is normalized to the radius of the plasma

column, rw.

For high density plasmas, small values of the average

squared Debye length ;:§ there is a clear sheath formation near

d!
the glass wall. However, for thin plasmas there is no clearly

defined sheath. It was shownu) that most of the wave action, for
the lower bands, takes place in the region of the sheath, if one

is present, and otherwise over most of the tube.

Henceforth the index 1 will only be included where it is
necessary for clarity.
Case A:

For the case of a homogeneous plasma equation (11) simpli-
fies to

(V2 +k2) V2@ =0 (14)

Since k is now not a function of r, (14) reduces (For K#0 ) to
two second order differential equations for which we assume the
dependence P(r8z)=R(r) et Pzgln®
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Rotationally symmetric mode:

2

Balfir) %_a;ff") gRrr) =0 (follows fromVi9=0) (1ka)
¥ Re) 1 ARE) S _

312 +F S+ +(k“-p ) Ri=0 (follows from (14b)

(V4K )g=0 )

The general solution of (14a) is a linear combination of

J (ﬁr) and K (Br) and of (14b) a linear combination of Y (k r)
and J (k r) for k >0 and a combination of K (k r) and I (k r)
for ke<30 One often considers ke as the component of the pro-
pagation vector perpendicular to the tube axis and B as the com-
ponent parallel to the axis.

i
ki= K- p? ke= +( 1k*-p%|)*? (15)

The solution of (14a) gives the potential ¢ also out-
side the plasma as the equation v°@ = O holds everywhere, All
Ko and YO solutions inside the plasma and Io solutions outside
the plasma must be disregarded because of singularities at the
origin and at infinity respectively. The solution is then:

interior
Rim =CyJ,(ker) +C21,(Br) (16)
Rg:xterior_ 03 Ko(ﬁ r)

The case k 2 0 is treated now, for k < 0 proper substi-
tutions must be made The sign of k directly effects only the
solutions of the "longitudinal wave equation" For the case k
larger than zero, one has an oscillating solution, J (k ob 5} for

k negative one has an evanescent solution (I (k r), is exponential
in nature).
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Plasma-Glass Boundary Conditions:

The following boundary conditions are taken at r

) The boundary is considered reflecting for the particles, thus
the radial component of Yai is zero here,
It follows then from (6b) through (9b) that

1 _a)ﬁ d & interior 9V2¢ interior
._Eg —

or or (17)

) From v .- eE = O (surface charges are precluded by «) ) we have

. L' e .
E"aéf: eg? . g! =€, (vacuum) (18)
r=r,
e
€ _ (R

E{is the equivalent relative dielectric constant, for the
rotationally symmetric mode, of the glaés discharge tube and
air surrounding the plasma, see Appendix I. The dielectric
constant in the plasma, ei, is, of course, that of vacuum as
the electric charges are considered explicitly.

¥) From the equation E = -v¢ 1t follows curl E = O and we have

l
B'(rw) =¢S(r) &
Equation (19) follows also by requiring curl E to be finite.

One of the three arbitrary constants of (16) may be
chosen to be 1. The application of the bhoundary conditions a,f,
and ¥y then ylelds the dispersion equation

2 2
'-_D_p e I K (Brw) “ J,(kef‘w2 L(E rw) 4 (20)
w? 147G Pl Ko(ﬁ ry) (dkerw‘x(kem) i) 5‘"WL(P"W))

For the case kg < 0 the following substitutions are to
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be made in equation (20): Jiker,) =+ I (ker) and Jy(kehy) = -I,(kerw)

The solution to (20), which was obtained by a computer,
may be conveniently represented by two plots. One plot gives
the cutoff values, (w /wp)eo’ versus r /Ad, Flgure 13, and the
other the w-p diagram for several values of r /Rd, Figure 14,
15 and 16. There exists an unlimited number of solutions to (20)

for w2:> w§ due to the oscillatory property of the J function

but only one solution for w2‘< w;' This follows from the expo-

nential nature of the I (and K) functions.

The relationship between ri/xg and the other parameters,
mefmi and Brw, is clearly shown in equation (21), which is an-
other form of equation (13).

2
=1+3_7\g(kgrwz+ﬁ2rﬁ) (For- Case A mggmi) (21)
Iw

An investigation of the cutoff values, (w /mp)co’ that is,

g =0 or k - % of equation (20) may be made by use of the asymp-
totic expansions of the I and K functions. It is, however, simple
to solve for this case by starting with equations (14a) and (14b).
The radial part, R(r), of the solution of "the electromagnetic
part", is equal to a constant and logarithm of r. The logarithm
solution must be disregarded in the plasma as well as outside
because of singularities. The constant may be conveniently chosen
to be zero outside the plasma, that is Q¥’= 0. The solution of

the "longitudinal wave part" (v2 + kg) # = 0 is either Jo(ker)

or IO (ker) depending on the sign of Kk

The potential is then:

go= 0

An application of the boundary conditions «,f and Y leads

g=0

to the dispersion equation

Jj (karw)=0 for k,#O (22)
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Solution of (22) yields the values of k which corres-
pond to cutoff and, when combined with (21), glves (w /wp)CO
Two exceptional cases, w2 = w2 and m2 = 0, should be investiga-

p
ted

In case of w° = m2 (or K2 = 0) one must solve the equa-
tion v2v2¢ = 0. For thepconditions in question, n = 0 mode and
B = 0, one obtains the general solution of the differential
equation as:

B=0a,+0, In(r) +az r’+a, r? 1nf)

Because of the singularly at the origin, a, must be set equal

2
to zero. Chosing the potential outside the plasma again equal
to zero one obtains, after application of boundary conditions
a,p, and Y the trivial solution a, =a, = ah = 0, The other
2 c> wi

= c2 also leads to a tri-

S

vial solution. Here k is negative so that one must choose

case m2 0 correspondlng to k

Io(ker) as mathematical solution of the "longitudinal wave equa-
tion", (14b), in place of J (k r). The boundary condition of the
continuity of &-—2- then requires that the derivative of

I (k r) be zero ( ﬂ 0) which can only be satisfied by k_ = 0
which in turn states that wi = 0 or no plasma. A physical dis-
cussion of these cases follows.

The fact that there is no field outside the plasma at cut-
off follows from the symmetry involved. In the quasistatic appro-
kimation, "lines of electric field" must begin and end on char-
ges of opposite sign. Since there is no variation in either © or
7z, should there appear a charge somewhere on the surface of the
plasma it must appear everywhere on the surface. This means that
the"electric field lines"could not terminate. Another statement
of this is that the net charge in a volume of arbitrary length
formed by cutting the discharge tube at right angles to its axis
must be zero due to the conservation of charge.(Because of rota-
tional symmetry the end surfaces may be segments of the cross
section). Should this not be true, at one time at all points
along the tube (because of no variation in z at cutoff) there
would appear e.g. an E field directed outward and one half period
later one directed inward. This violates the conservation of
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charge. Note, however, that this condition need not hold when
there is propagation in the z direction. This cutoff condi-
tion, of no external field, can be shown to hold through direct
integration of the charge density. For these reasons it is clear
that no solution exists for w2 = 0. (Here for the case of m2< w2
the solution of the equation (v2 + kz) # =0 is an L)function

and the charge density is obtained through veﬁ = - Qéfa . Inte-
gration of the charge density in the radial direction is then,
except for constants, the integration of Io(kerh*dr which can-
not yield zero for rw>'0; Io(x) > 0.) The band of propagation,
for which g — 0 as wg/wi —» 0, however, does not exist as long
as B 1s not identically zero. This band, analized from the stand-
PSR 0F B "eold Plasma, is discussed by Trivelpiece and Gould?>

and others;

This analysis of the n = 0 mode for a homogeneous plasma
has disclosed the following facts:

There is only one solution to the dispersion equation for

2 2
< L]
w u)p
There are infinitely many solutions for w22> mi. At cut-
off there is no solution for w2 = wi.

The solution for k° at cutoff is Jy(k,r ) =0 (k, # 0).
There is no field outside the plasma at cutoff (a consequence
of the symmetry) and therefore no direct detection at cutoff
with the present methode of observation is possible.

Dipole Mode

Starting with equation (14) and assuming g (r,0,2)
= R(r)eieeifaz a similar analysis of the dipole mode can be
carried out. The general dispersion gquation for k2> 0 is then

Wo LB _dike™) 1 PRELEGW) .\ Jikerw)
(% 1)[5& Tdprw) 1][ kewaoﬂrerw)] i E:‘(e wIfpr) ) kot L)

_Jdker)  y1,B60) ] [__ B (B 4 :
kerudlkew) BryI(pril K @w)

(23)

+(1
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D
K is defined similarly to xR , (19), but for the dipole mode,

]
see also Appendix I. For the case k;<10, similar substitutions

must be made: Jo(kerw) — Io(kerw) and Jl(kerw) —+-Il(kerw).

The equation for the cutoff condition which is also reaso-

4)).

The dipole mode also possesses one propagation band for k2<.0-

nably complicated will not be given here (it is given by PNG

which, however, has a non-zero value of (mg/mg)co. All bands

have fields outside the plasma at cutoff because of the dipole
configuration. The lowest band of propagation has also been
analized25) from the standpoint of a cold plasma. The first n = O
and n = 1 bands are, however, the only bands which the cold plas-

ma analysis yields.

A plot of the cutoff points of the dipole mode is given in
Figure 17. The cutoff values for the dipole mode obtained through
h). Figures 18, 19,
and 20 give w-B curves for the dipole mode calculated from (23).

direct solution of equation (11) is given by PNG

Case B:

In the model to be discussed the electron density is
assumed to change as a function of radius. In the region between

radius zero and r region A, it shall have the value correspon-

1,
ding to wiA and in region B, radius between r, and L the value

NEB’ in accordance with the physical profiles, is always less
than ng. The discontinuity is introduced as a means of approxi-
mating the electron density profile. Only the n = O mode will be

considered here,.

Table II
Region A B ' Exterior
Radius o< r<r, n<r<ng VA3
vip=0 > R(c) =Cy Tofp ) Re) =C51(pr)+<, Ko(Br) Rir) = ¢ Ko(Br)
672-# k2)¢=o} +Cp Lo(k,r) +C5I(kbl")1‘ce\ﬁ(kbr)
2

Where Ki= i“i’é k= i

s c§

2 2
Assumed is k:‘—ﬁ <Q ki—g>0

1 5
With k,=+(Ik2=B*)2  kpy=—(ke—B"|)?
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2726, -
In cases where the signs of ki B~ ﬁe are other than those
»

assumed appropriate changes of functions must be made (this is
done in the computer program).

Boundary Conditions

The boundary conditions at the plasma-glass boundary, p=r_
are those previously given, namely o, and.y.

The boundary conditions at the point of the electron densi-
ty discontinuity have been calculated from the basicequations,
(5) to (9). (See Appendix II)

These boundary conditions for r = r, are:

§) The continuity of the potential,

QA:¢B 1 (3

€) The continuity of the radial components of the electric
field, (the dielectric constant 1s that of vacuum) ,

o8 ?ﬂ; : (25)
or Luor

The continuity of the tangential components of the electric
field is assured by (24) as all derivatives in the axial
direction can be replaced by 13.

%) The continuity of the radial components of current,
2
“P A% _8(‘72@):“_’_?_@ A% (V) . (26)

The equation (27) for the current, J, was obtatined through
combination of equations (5b) to (9b).

J=—€Nn. Y —EoSs. w§v¢ +(V2P )) (27)
AT co~et — cZ 1 4
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%) The second derivative of @ is discontinuous,

)-'s) . (28)

WA,/ SR . 7Y W
(wha)r (t"gs)k

The continuity of the radial components of the elec-

Equation (28) is equivalent to the relation

tric field and the current show that no surface charge is
present at the discontinuity. -

. 2
The choice of r,, Wpp and wgB was made in manner appro-

priate to the electron profiles calculated by Parker17) and
shown in Figure 12. Reference to those profiles shows that,
for large values of ri/i?l a sharp change in the distribution
function takes place at n(r)=0.35 n(0). The position of the
discontinuity, r,, was chosen so .that n(r1) = 0.35"n(0) . 'The
density in region B was chosen as one half that at the discon-
tinuity, namely ng = 0.175 n(0). Since all experimental work
is referenced to the average density n the7¥alue of the func-

sity ng or plasma frequency (squared) wgB can now be related

tion N = 3T57 is taken from Parker’s work . The plasma den-
to the average, over the entire tube cross section, of the
square of the plasma frequency.

2
Wpg __ 0.475

=3 N
o 4

The value of wiA/eg.was then adjusted so that the average
densities of the profile according to Parker and the approxi-
mation are equal, that is,

T oL+ (Ri-rl) wly =Ry -

For greater computional ease, analytical formulae were
developed from Parker’s data for N and r /r as a function
of. rw/'Ad which is the only parameter needed to determine the
profiles., rw/A is abbreviated with P.

2
)

N=0.341 log1o P - 0.0297 (log10 P =, OA514

sty
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= 0.753 0.10 o IO 491
r /I“ = - — 4+ -

+ 1.1080

+ J5.4
P

Seven homogeneous equations for the ¢ By wen B, PESULE

from the boundary conditions a,B,...,m .1In grder tgat'these
seven homogeneous'equations have a solution, the determinant of
the seven x seven matrix of these equations must be zero. The

elements are coefficients of the ¢

from the boundary conditions.

c c, terms resulting

1, 2-.- 7

The values of w2/m2 which solve this determinant are shown
2, 2.
in Figure 13, (w /mp)co Vs rﬁ/}(g and 14, 15, 16, w - B curves.

One sees a significant improvement in the agreement with
the measurement for the lower bands. From Figure 13 one notices,
however, at large values of ri/hlg a behavior similar to that in
Case A. Namely, that the bands lie close to one an other when
propagation can take place over the entire cross section of the
tube (k§-> 0).

. Calculations for parameter values of rﬁ/irg larger than
10" could not be carried out for Case B as arguments of I func-
tions of the order of 100 appeared and function values are too
large for the computer.

Case C:

Before beginning with a discussion of this model it will
be helpful to discuss some of the salient features of the ana-
lysis performed on these modes. In particular, as will be shown
below, the lowest band of propagation of the rotationally symme-
tric mode requires consideration of both longitudinal and elec-
ftromagnetic waves in order to predict correctly its dispersion
curve., Many aspects of the upper bands of this mode are, how-
ever, reasonably accurately predicted when one considers only
longitudinal waves. The part of the dispersion curve for the
lowest band in the region of small B is well described by con-

= 0), but the existence of

sidering only the e-m wave, (i.e. T )
25

e
a maximum value of mQ/JE beyond which there is no transmission

is contrary to experimental observations. An analysis including
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the plasma waves shows the propagation at large p to be simi-
lar to that for the higher bands, (Figures 14, 15, 16) i.e. no
termination for increasing w?/ggl Consideration of only the

plasma wave, however, completely fails to show this lowest band.

Turning attention to the higher bands, for an homogeneous
plasma, an analysis based only on the longitudinal or plasma
waves assumes to equation (v2 + kg) # = 0. This equation possesses
only one non singular solution and consequently only one bounda-
ry condition is appropriate. A most reasonable condition would
be that of reflecting glass walls, namely, the radial component
of velocity, or current, equal to zero at ro. For pure plasma
waves the current is proportional to the electric field and
therefore there would exist no external electric field. Although
this fact is contrary to experiment (no coupling would be possible)
it none the less represents a good approximation to the boundary
conditions as far as the dispersion relation is affected. Using
the notation introduced in Case A, one obtains, considering only
plasma waves, the general dispersion equation, valid for propa-

gation and cutoff,

Jq Cket) =0 (29)

It is immediately obvious that this equation is identically
equal  equation (22) in Case A for cutoff. The solution of equa-
tion (29) for B # O differs slightly from the solution of Case A
given in Figures 14, 15, and 16. The forgoing discussion yields
credulance to the hypothesis assumed in Case C, namely, that the
higher bands of propagation in an inhomogeneous plasma approxi-
mately can be described by considering only longitudinal waves.

This hypothesis has also been stated by Weissglasgg).

As is seen in Figures 13 and 17 the homogeneous approxi-
mation of the plasma is quite unsatisfactory for large ri/xg.
Gouldjo) stated, then with reference to the dipole case, that
attention to the inhomogeneous electron profile would probably
yield results in agreement with observation. In the paper by
PNGu) it is shown that, for large ri/kg , the wave action for
the lower dipole bands at cutoff is quite confined to the sheath
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region. The problem to be discussed now, is that of solving

the wave equation in the sheath region of the_plasma. Two geo-
metrical approximations will be made, first, as the thickness
of the sheath is small compared to the radius, the cylindrical
coordinates will be exchanged for cartesian i.e. r,0, z — x,
Yy, 2, see Figure 21, and second, the shape of the density func-
tion will be approximated by a function for which a solution

to the wave equation is known.

Equation (5b) through (9b), (12), and (13) are assumed
and the current, A s 1s taken to be rotation free (1 = - en_v 1).

VXxi=0 (30)

.

For purely longitudinal waves the current is rotation free and
therefore (30) represents the hypothesis stated above.

Combining the continuity equation (5b) and the divergence
of the equation for electric field one obtains

v.E=_§.7._":£_._ sr L = LL— .
~ E W = L‘DEQ

This, of course, follows directly from Maxwell’s equations with
zero magnetic field.

The momentum equation, (6b), may then be written entirely
in the variable g‘yielding

2 i t Vn .
()::k;l'+§7(vﬂi)'-':3 fﬁif ‘7}L & (31)

All functions are constant in the y direction as it corresponds
to the © coordinate - only the rotationally symmetric mode is
being considered here. For the cutoff case, ( == = 0), the vec-

oz

tor equation (31) reduces to a scalar equation.

A change of variable is now madej1).




J=Vhei (32)

This results in

_3 drea 1 %
'llf+,1k[k 36( n %_3

4
O -
) £ —T’-eo] (33)

X

For sufficiently slowly changing Noo functions, the last two
terms in the brackets may be neglected, resulting in (34%). (This
matter is discussed in Appendix III).

QJ

&
=§£ + K (34)

A solution to the wave equation ,(34), for several spe-
cial functions ke(x) is given by P. Epsteinje). One of these
functions, (35), represents a transition layer i.e. a smooth
transition from ke(x) = kg to ke(x) = -kz, see Figure 22,

X

_ 12y 2em
k) = ko (1 £ o) (35)

- 2 a
The quantity ko in (35) is the value of ke(x) which exists far

to the left of the transition region, namely in the region where
the plasma waves may propagate but w2<<'w2
tion (13) shows that kg = — . The wave 1s considered incident

. Reference to equa-
c2

from this region of very tenuous plasma on the transition where

it is reflected because k2 is negative for positive values of x,

that 1s, the core of the discharge.

Equations (34) and (35) can be solved through transforma-
tions which relate them to the hypergeometric differential equa-
tion, see reference 32. The solution (36) of these equations repre-

sents a standing wave (in i).

Y= jn =m T (1-1)7 G (36)
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G=(—15“ (ec-B+1) F'(l*fr)l_— +(_17_1_“r(m-p+1) (y-4)

F(1-B) F(1+o<~y) t F(y-8) M) > shor.an . 0
szm Flocy at=y+1 o=, é) for x » 0
e 4
= Fle, B0%) B=F Flayty fyst, 27, b) {36 ToRPE)
=1+ 5+ p=1+ So(-1+i) y=1+1 2%
§=_emx

F is the nypergeometric function and ' is the gamma function.

The boundary conditicn is that j = 0 at ros the plasma-glass
interface. That is, if a zero in the standing wave pattern, equa-
tion (36), coincides with the position off the wall, a resonance
point has been found, Fcr sufficiently negative values of x, for
example in the region of the wall, the solution, (36), rcduces

to the sum of two exponential functions with imaginary arguments
which may be associated with the incident and reflected waves.
Also in this region one can obtain an expression for the phase

of equation (36). In equation (37) V is the phase of the solu-
tion, (36), taken at the point x (x is negative).

v ) C-p) Clre —y) e-iz ko x

ra-y) r(y-e) (=

(37)

The correct boundary condition is fulfilled when V, evalu-
ated at the wall, has the value of n radlans which corresponds
to a reflection factor of - 1.

The calculation of the values of (m%/mi)co
termining the location of the x,y,z coordinate system, namely

begins by de-

what value of radius, r.s corresponds to x = 0 in the cartesian
system. This matter is arbitrary, however, the method des-

cribed is reasonable and will be followed. Since x = 0 is the
point on the assumed profile curve, seeFigure 22, where ka(x) =+0
it is chosen to coincide with the radius at which w2‘= wg,

namely e = 0, equation (13).

e



: e

The basic steps in the calculation are:

1) For a given value of ;E-a value of m2 is assumed.

This determines L that radius where w2 = wi. For all these
calculations_gg_electron density profile curve corresponding
to large ri/?\s is used.

2) The or;gin of the x,y,z coordinate system is located at B

) kg = iﬁa is computed.

L) The vaTue of m, equation (35), is determined by requiring the
k (x) =k /2 point on the assumed profile (35) to coincide
with the w; = w /2 point. That is, the real electron density
curve and the assumed density curve are made to correspond
identically at two points, where w2 = w° and where m2/2 =

5) The value of the reflection factor V, referred to the wall,p

or X = r, -r is calculated by (37).

If the correct reflection factor, - 1, is not achieved another
value of w2 is taken and steps 1 to 5 are repeated. The reflec-
tion factor of the function Ay is the same as that for j. The ac-
tual computation corresponding to steps 1 to 5, which is made
using dimensionless quantities, can be completed for several w
values quickly by hand requiring only a table of gamma functions.

The great value of this approach lies in the fact that the
(NE/JEBC values so calculated are quite independent of the
parameter r /hd provided it is large enough. This is true be-
cause the shape of the profile function in the sheath region is
the same for sufficiently large ri/ig-and a characteristic length,

,Csheath thickness") is proportional to ( A )1/2 which in turn
_g-/ZThe length, 1 associated with w e.g.
wavelength or inverse of propagation vector is proportional 1/w.

is proportional to (1/w

Significant for the propagation of the wave, that is, the solu-
tion of the eigenvalue problem, is the quantity 1 /l » Which is
proportional (A )1/5/1 or /(_E 1/2
1 /l (eigenvalues), corresponding to cutoff, yield the values
(we/w ) . AB-Y /1 is independent of ;:3, so is (w /w ) also.
The 5LRLOMERIOLRAE o chdath thnmnes kSproportional to (Q—? 1/2
for sufficiently large values of rw/7\d, or otherwise formulated,

that the electron density distri?ution function in the sheath re-
~2\1/2

A Particular values of

gion, plotted in units of (A approaches on asymptotic form,

e =
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is shown by the numerical calculations of Darker1{). Also a
particularly good discussion of this po..itulate (for the case
of plane geometry) is given by Selsz). This fact is born out
by experiment. The results of this computation are shown in

Figure 13.

The application of this calculation to the case of propa-
gation will be discussed now. As the x coordinate corresponds
to the radial measure in the discharge tube, the y to the azi-
muthal and z to axial, there 1is no variation in y of any func-
tion, and the derivatives in the z direction can be replaced
with the propagation factor in the z direction, p. That 1s

d :
a—;—bbp .

The current j is assumed to have two components Jx and Jz. One
obtains then for equation (31) in component form

o= (K- 5)J2+Lp QJx

34, (37a,b)

3 2 Y YR
0=§+ka~—‘;—8 ( +tpz)+th 5

From (37a) one obtains (38) which may be introduced into (37b)
resulting in equation (39) which is an ordinary differential
equation in the variable jx.

3j
Rl axx (38)

azx dJx B 4 akz { 4 Bno
o= +(K= Bz) oo i [ ————— -f;-] (39)

dx? o X

The singular term in (39) prevents one from utilizing a
transformation such as -equation (32). (A transformation such as
(32) may be carried out but the additional terms which are in-
troduced, see equation (33), are also singular.) The singular
term indicates that the assymption of proportionality between
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the electric field and the current is not permissable when the

current is not parallel to the gradient in the electron density.

Because of the singular term in (39) calculations have
been made only for B = 0, (equation (34) ). These results are
shown in Figure 13, the values of (we/JEBCO and in Figure 23,the
function 'ﬂf vs radius. For bands occuring at higher values of
we/QEZ (than shown in Figure 13), the region of wave action then
extends beyond the sheath region and, as the geometric approxi-
mations made here are no longer valid, the calculation was termi-
nated.

Summary

In this work a coherent experimental and theoretical pre-
sentation of some modes of propagation along a plasma column are
presented (high frequency, primarily electromagnetic, waves are
not represented). Two of the propagation bands previously studied,
namely the first in the n = O and n = 1 mode, are shown to be
part of a series of propagation bands. The Tonks-Dattner reso-
nances represent the cutoff conditions of the dipole mode, The
higher bands of the rotationally symmetric mode observed here
complete the presentation., To the author’s knowledge the first
report of experimental observations and theoretical calculations
of propagation via the higher order bands is given in reference
28, During the preparation of this manuscript a further experi-
mental report has been publishedju). The quadrapole resonances
discussed by PNGR) presumably also represent the cutoff points
of propagation bands. Studies of the higher bands of the rotatio-
nally symmetric mode, which seem to be primarily electrostatic
in nature, may provide experimental information on Landau dam-
ping etc. The correlation between the resonance points determi-
ned by h.f. probe measurements and the higher propagation bands
indicates that a region of plasma much larger than that which
immediately surrounds the probe is of importance.
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Appendix I

When solving for the dispersion equation one must consider
the field outside the plasma. This involves solution of the equa-
tion vaﬂ = 0 in the glass discharge tube and in the surrounding
air. These solutions to Laplace’s equation must then be fitted
together with proper boundary conditions at the glass-air inter-
face and in turn with solutions for the plasma region at the plas-
ma-glass interface.

In order that the dispersion equation may remain simpler in
form it is convenient to represent the discharge tube and surroun-
ding air as one homogeneous medium having an effective dielectric
follows directly from the boun-

constant e The calculation of ¢

E* E
dary conditions and will be shown for the rotationally symmetric

mode.,

Discharge tube: ro inside radius rg = outside radius

dielectric constant of the glass

€
cC

Solution of v2¢ = 0 assuming @ = R(r)eiBZ

In glass (index C) r,<r<n Rr).= b‘Io({Sr)+bz K, (pr‘)

In air (index D) fg<r Rer)= LJKo(pr)

The equivalent solution (index E) R,<T RWEF=E*K°(Pr)

(The Io function is singular for infinite argument).

The boundary conditions which follows from curl E finite
and div E = 0 are:

o, _ . o8
At . ..F= B ¢c=¢E' and g, Feta EEJ&r
o i 9 ¢

r‘_.t‘;3 : ¢c = ch and € a¢: = g, rn

Choosing one of the bn equal to unity the equations can be solved

for sE/eO




...Z;?_

Ko(BrNJ Iq(ﬁ rWJ
R_€Ee _ € 1_{"::£ 1) Kprw) 1B )

K =—
0 £a o (1 _ KB rw) Iz(srg))& + (Ko(_Brw) I‘ﬁ"é) _1) (I 1)
KBrs) 1(Brw) €, Ko(B 5) Lo )

A similar calculation may be made for the dipole mode re-
sulting in

(%__1;1_'_‘5&_%“"_))

D K’(Bﬁv} K(Brw)
K:-é:—::::c- g : (1:2)
(14(3"91_1.(9ﬂv))__e_c_ 1% L(Brw;)
K@ KBl & \k(pr) K,(Brw)
itl
with 1/(6s) _ B5To(B9)—T,(Bry)
KB -8 Ko(pry) —K(Br)
o = O g . R D
EoRL= e = 4,3 and = = 1.19 the following K and K values

0 W
have been calculated.

BT, kP "
0.01 1.67 1.64
0.02 1.67 1.65
0.1 1.67 1.66
035 1 .71 1.69
1.0 1.90 1.98
2.0 2,41 2.45
5.0 S 56 356
10.0 4.18 4.18
20.0 4,30 4.30
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Appendix IT

The boundary conditions which must be fulfilled at the
point of discontinuity in the electron density may be determined
either from equation (11) or from the initial equations, (5)
through (9). In order to obtain these conditions from (11) the
author found it necessary to replace the step function disconti-
nuity in density by a ramp function and then, by use of a pertu-
bation technique, to solve (11) in the ramp region. This calcu-
lations which is quite long and involved yields the required re-
lations. Doctor P.E. Vandenplas of the Ecole Royale Militaire,
Bruxelles and Professor R.W. Gould of the California Institute
of Technology pointed out that these boundary conditions may be
obtained very simply from the initial equations ((5) through (9) ).
This method, which will be given here, has the additional advantage
of allowing maximum physical insight in the calculation.

A formal simplification of the calculation is obtained if
cartesian coordinates are used instead of cylindrical:
r—x, 8 =y, z —= z. Therefored/dy = 0 and 2/3z = ip. Re-

peating the initial first order equations for convenience:

Q¢

=2 L el

Ax X

BEI, 3 4 e
— i i,
3% (FHJE (g

Mo ) + 3(MeVy) ¢
dx 9zhe ¢

—lwn,

wom g =—enfy, + KT 3hn, —3KkT B

]

The physical quantities may now be ordered according to increa-

sing "roughness" e.g. because of differentiation E‘x is "rougher"
than @ etc.
In increasing roughness:

3n,

¢ 4 4}"'—" 3%
1

NV e L




._59..

In case one of the variables is discontinuous across the step

in electron density the :Bhu/aﬁ function will exhibit the maxi-
mum "roughness". In the immediate vicinity of the step in n, one
may then neglect, in the momentum equation, the terms with E1x and

n v, compared with the‘BTn/ax term. This results in :

_ KT 3ng 3n,
O= ﬁos}"hi BKTSX

One may integrate this equation from immediately before the step,
x =0_, to a value of x immediately ofter the step, x = 04 (step
located at x = 0):

x=Q x=0,
1 9n, _j_ é_.n' dx
‘/%i:ax i n, dx
x=0. X=0

n, is a function only of x therefore dx==3hgﬂax dx . n, is a func-

tion of x and z (explicit time dependence of exp (iwt) assumed)

therefore _dn n
dn,_ax'dx-{- 5 dz .

The last term in the dn‘ expression contri-

butes nothing to the integration and one obtains then

n (M,(0y) = In M) = bn (M(Q))- In(mi(o)) or

bl TMB_I
(cu,f;)ﬁ (wgb)j

The n, function exhibits a finite discontinuity and when
one integrates the continuity equation and Poisson’s equation
similarly one obtains that the functionsﬂ, E1x and nov1(current)

are continuous.
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Appendix III

Part 1

Calculations will be made which show that the terms neglec-
ted in (34) are indeed negligible for the profile assumed and the
values of the parameters e.g. m and ko which exist at resonance.
Equations (34), (35), and (13) are repeated here for convenience.

¢ 2 I

O=¥"+¥ (k-5 ({+ ¢ X)

2 mx
kzcnzko(1—,2+—9e~;-n—,)

L

on,

[Ee———

=5

X

Comparing (35) and (13), with k_ = me/c:, one finds

Wp  peMx
w? T qte™
2_€*n
With the relationship wp= -2
EslNg

mx
n= fist E‘,;ne 2e e
e q+e

It follows immediately that

Tﬁ__ m
n, |te™"

Introducing (III.2a,b) into (34) and factoring ko results in

2 emx _ ﬂz 1+6€m‘ )]
)~ Z Geteem2

%)

O=1|r”+'1}szo[(1*17e7n}

- 0:'){fﬂ+'¢‘k€,[/q — L’?ZB] .

one obtains

_T):'f._ m21__emx
N (1+e™)?

ete,

(34)

(35)

(13)

¢ITT .4)

(I1I.2)

(III.2a,b)

(III.?ab)
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The contention is that the bracketed term in (III.3b) is not
significiently changed by the neglect of m2/ko2 B. This is shown
by calculating the terms A and B, and multiplying the latter with
the values of me/ko2 which exist at the first and second reso-
nances, i.e. the resonances for the two lowest values (w%/dﬁs

The parameter for the calculations is mx.

mx A B 1.90B 0.0256B
2 -0.75 0.018 0.034 0.00046
1 -0.46 0.035 0.066 0.00089
0.5 -0.24 0.043 0.080 0.0011
0 0.0 0.049 0.092 0.0012
-0.5 +0.24 0.050 0.095 0.0013
-1.0 +0.46 0.048 0.092 0.0012
-2.0 +0.75 0.040 0.075 0.0010

The value 1.90 corresponds to m2/k02 for the lowest resonance and
0.0256 to the next higher. Of course the neglected term, ma/kOEB,

is not small compared to A at all values of mx as A goes through

zero and B does not. However, for most values of mx the neglected
term is less than 20 % of A for the lowest resonance. At the point of
zero crossing of A consideration of the B term would only shift the
zero crossing by a small amount. In the case of the second resonance
the correction term is about 1 % as large as in previous case.

Part 2 :

The |Q| is evaluated for the analytical electron density pro-
file assumed in Case C. The case of Wy parallel to v, will be con-

sidered. Also v, will be taken to be

t ko) %

dv, . . Qkix
vi=Vvy€ with a—;—:v,,(ek-f-bx )

dx b o

The functions for k(x) and no(x) are given by equations (35) and
(III.2) respectively.
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One obtains then the following as an expression for Q=ﬁn%(f+€%%%?:
{4

: mx 2 N 3 'ko
Q:-%D-}L%((l—ez )’-—({T—;Q%—-—%)]; == (=EL=n 1Y)

r

= = 8 " mx —
w?>wi C wicwh

The values of ko/m corresponding to the first two bands considered
in Case C are 0.73 and 6.25. For this first band the |[Q| is about
2 in the propagating region whereas for the second band it is about
15. According to this estimate the v, evng term may be of importance
for the band with ko/m = 0.73. Since the very lowest band (not con-
sidered in Case C) is well described by the homogeneous plasma mo-
del it is expected that the neglect of the V,evng term in the pres-

sure expression will cause little error.
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Figure Captions

1. Discharge apparatus.

2. Electron temperature, Te’ as function of discharge current,
f(IA), at 26°¢C mercury temperature. Electron temperature vs
temperature of coldest point in discharge apparatus, f(THg).

Neutral gas pressure, data from "Handbook of Chemistry and

Physics".

3. Couplers used to excite and receive waves: (a) coaxial re-
entrant cavity, n = 0 mode; (b) single ring device, n=0 mode;
(¢) dipole device, n = 1 mode; (d) hf, probe connection.

4, Superheterodyne receiver, top. Phase sensitive receiver,
bottom. (The plasma is schematically represented between two
horns)

5. (a) Signal transmitted between two n = O couplers (Figure 3a)
as received by superheterodyne receiver (N.B. the logarith-
mic scale). Frequency constant, 1000 Mcps, discharge current
i.e. plasma density varied. The strong transmission band at 0.4
amperes discharge current is due to spurious coupling to the
dipole mode (compare Figure 7).

(b) w-p diagram for the n = 0 mode for propagation in anode
to cathode, A — X, direction and cathode to anode, K — A,
direction . Weak signals and interference reduce the accu-
racy of measurements of higher order bands and mecasurement in
the region of g~ 0.

6. Cut off values of n = 0 and n = 1 modes Versus ri/h.g and
resonance points for h.f. probe.

7. (a) Signal transmitted between two n = 1 couplers (Figure 3c)
as received by superheterodyne receiver. Frequency constant,
1000 Mcps, discharge current i.e. plasma density varied. The
transmission band present at values of mg/m2 smaller than
0.15 is due to spurious coupling to the lowgst n = 0 band
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(compare Figure Sa). The jagged pattern on the lowest di-

pole band, (mg/ég;JO.E), is due presumably to interference
between the strong backward wave and the weaker forward wave
region of propagation (see 7b).

(b) w-p diagram for lowest dipole band; A -+ K propagation
direction from anode to cathode, K —= A from cathode to anode.
Due to interference with the n = 0 mode no w-p measurements

could be made for the higher bands.
8. Experimental arrangement for observing dipole cutoff points.

9. Top two curves show power transmitted through wave guide
(see Figure 8). The recorder sensitivity differed by a fac-
tor of two. The lower two curves show the voltage of recei-
ver connected to a n = 0 ccupler mocunted on the discharge
tube - the base lines have been shifted for clarity (recor-

der sensitivity for the lower two curves is the same).

10. Power transmitted through the cavity as a function of discharge
current for many discrete frequencies. For clarity one curve,
measured at 1070 Mcps, has been singled out. The coupling to
the cavity is shown schematically.

11, (a) Block diagram for hf, probe measurements.
(b) Probe voltage versus discharge current for a constant

frequency of 1000 Mcps.

12. Electron density profiles for a mercury positive column.

17)

Courtesy of J. Parker 5

13. Experimental and theoretical curves of (me/wi)co Vs ri/A g
for the n = 0 mode., The theoretical curves are for the Cases A,
B, and C. As Case C is applicable only for large values of
rS/jrg'it is represented by horizontal lines signifying an
asymptotic value of (wE/JngO. The values of w%/gg for which
ka = kb = 0 are shown. Thgse parameters are of significance
for Case B. One observes that atvalues of mg/dg-larger than
those for ka = 0 a situation exists similar to that present

in Case A. That is, the spacing of the curves becomes very




14,

15

16.

17.

18.

19.

small (at large values of ri/;§3° At the values of mg/gg'
larger than those for ka = 0 the solutions of the wave
equation in the entire plasma are of an oscillating nature.
For Case A this condition exists at values of we/gg-larger
than 1.

Theoretlcal (Case A and B) and experimental w-p curves for
rw/a = 240 - corresponding to 10 ma discharge current and
Hg vapor pressure determined by 26OC waterbath. Measurement
of higher bands was precluded because of interference with
the n = 1 mode. The small circles show the values of wg/Jg
which correspond to k =k, = 0 - refer to Case B. The slope

b
of the line at the bottom represents the velocity (3K.'I'/m)1/2

Theoretical (Case A and B) and experimental w-p curves for
rw/h = 3500-corresponding to 100 ma and 26° C. See caption
Figure 14 for further explanation.

Theoretical (Case A) and experimental w-f curves for rw/hd

= 40000-corresponding to 1000 ma and 26°C. Calculations for
Case B could not be carried out as the arguments of the
I-functions would be of the order of 100, corresponding to
a value of the function too large for the computer.

Experimental and theoretical (Case A)(w /wp)co Vs ri/xg-curves
for n = 1 mode.

Theoretical (Case A) and experimental w-p curves for riﬁig-
= 240-corresponding to 10 ma, discharge current and Hg vapor
pressure determined by 26°C waterbath. B indicates observed
backward waves. Measurements of higher bands is difficult
because of low signal levels and interference with the n = 0
mode. Signal level is also low at large values of Br The
slope of the line at the bottom represents the velocity

(3 xr/m) /2,

Theoretical (Case A) and experimental w-f curves for riﬂzg
= 3500-corresponding to 1000 ma and 26OC (see caption Fi-
fure 18). Measurement of the third and higher bands was pre-




20-

21.

22.

55
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vented by poor signal levels.

Theoretical (Case A) and experimental w-p curves for riﬁ{?
= 40000-corresponding to 1000 ma and 26°C (see caption
Figure 18). Higher bands, occurring at frequencies above
1600 Mcps, could not be measured because of resonances in

the microwave dipole circuitry.

Relationship between cylindrical and cartesian coordinate
systems (Case C).

Curve of assumed analytical ka(x) function (Case C).

W vs x for the second "longitudinal" transmission band,

2, 7.
(w /wp)co

The value of rﬁ/;x_g is 0.43+10°. The position of the wall,
namely the value of x corresponding to r = L is = 1.56,

The curve to the left of this point is purely a mathematical

plot of «P and does not represent the physical phenomena.

= 0.7, considered in Case C. Relative units forny .
The position x = 0 corresponds to r - ro- here re = 0.885 ro.
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