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ABSTRACT:

The distribution of electrical parameters in MHD
generators was determined by numerical analysis for
any channel geometry and any practical Hall parameter.
The analysis was limited to generators with a sepa-
rate electrical circuit for each pair of electrodes.
Constant gas dynamic parameters and constant genera-
tor cross-section were assumed. A correction factor A
was calculated, the use of which makes it possible to
correct one-dimensional theory equations for two-di-
mensional effects. Optimum electrode sizes were de-

termined.
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1. INTRODUCTION

The one-dimensional theory of MHD generators with segmented
electrodes [1] is based upon the assumption that the elec-
trical field and the current density are homogeneous in the
generator channel, This is equivalent to assuming the ideal
case of infinitely segmented electrodes.

In a real generator, the electrodes have finite dimensions,
and two-dimensional analysis must be applied. Electrode end-
effects appear, influencing the electrical parameters of the
generator even when [br-wf 2 0, With increasing (» , the
Hall potential increases. The Hall field near finite-length
electrodes is shorted (electrodes forming equipotential sur-
faces), causing current concentration on one edge of the elec-
trode. The result is an increase in the internal resistance
and thus a deterioration of the efficiency of the generator.
This effect is a function of channel geometry and magnitude
of the Hall parameter (3.

The purpose of the work reported here is: first, the determi-
nation of the deviation of all electrical parametefs from
their theoretical one-dimensional theory values, and second,
the quantitative investigation of the distribution of elec-
trical parameters, including ohmic losses. Numerical analysis
was employed. An IBM 7090 computer was used.

HURWITZ et al [2) , CROWN [3], and SCHULTZ-GRUNOW & DENZEL [4]
investigated the influence of finite-length electrodes on
electrical parameters. References |2) and \41 were efforts to
solve the problem analytically; but analytical solutions are
predicated upon the introduction of simplifying assumptions
which usually are not sufficiently general. Reference [ 3]
describes a method for numerical solution, limited to small
values of @>. In the present report, an improved numerical
analysis is developed .to include also solutions for large va-
lues of (b .




2. SUMMARY

The distributions of electrical parameters in an MHD gene-
rator were determined for any generator geometry and any
Hall parameter. The analysis was limited to generators with
a separate electrical circuit for each pair of electrodes.
Numerical analysis was used and calculations were made on
an IBM 7090.

From this distribution a correction factor A was calcula-
ted , the use of which makes it possible to correct one-
dimensional theory equations for two-dimensional effects.

This analysis was made assuming constant gas dynamical para-
meters and constant channel cross-section.

The influence of finite size electrodes on electrical para-
meters in MHD generators is generally large. Optimum elec-

trode sizes were determined.

Ohmic losses have a steep gradient across the channel, and,
therefore, the distribution of these losses must be taken
into account when considering electron heating.




3. ASSUMPTIONS

The following assumptions were made:

a.

Gas dynamic parameters are constant (?,T’w = constant).
W= (Wx,0,0).
G, is constant (thermal equilibrium between electrons

and atoms is also assumed).
Channel cross-section is constant,

Applied magnetic fiecld B is constant. é = (0,0, B,_).
Induced magnetic field is ignored (magnetic Reynold’s
number <<| ).

Channel endeffects are excluded.

Electrode effects other than Hall field shorting are
ignored.

Ion slip is ignored.

Figure 1 shows the coordinate system.

Fig. 1 Coordinate System
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4, THEORETICAL DEVELOPMENT

4,1 Basic Equations

Ohm’s law may be written as

-i == Q;-E—* — %l}xé)
where
E* = E + \_W u-E:] (2)

Equation (1) may be developed in two components

. S. " a =

1—:‘ - \-—:—F;t (E“ - BE.‘) (3)

: - o .

ty = — P,,((’.»E:+ ES) (4)

EY = %‘; (4 + Biy) (5)

EX = — (- ; 6)
s ™ T Ax * ) (

On the basis of Maxwell’s equations and the assump-
tions in Section 3 it can be shown that

vxE* = o (7)

v - i_ = o (8)
Use of Equations (5), (6), and (7) results in
M_ﬁﬁ;_@lﬁz_éﬁ-
d X d x Ay dy
=. 0 (9)
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Using (8),
9x 311
The current flux function is defined as
. 3
3”‘ = 3& (11
{ = _ 9Oy (48)
&y %

Substitution of Equations (11) and (12) into (10)
yields

3%
3!3‘

aﬁr
ox*

4-

= O (13)

The current flux function % as defined in (11)

and (12) satisfies the Laplace Equation (13). Equa-
tion (13) forms the basis of the numerical analysis.
The mathematical solution of the Laplace equation
for specific boundary conditions is shown in the
Appendix.

Boundary Conditions

4,2.1 On the electrode surface

Ex = O (14)
where
‘E-p| = \E-x*l (15)

Therefore, from (5), (11), and (12)

Bl ia/ags
% TR ] (16)
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4,2.2 On the insulator surface

e = 2

and with (12)

X a=

(17)

constant (18)

4.% Properties of the Y -Field

L'

4,3,1 The a’ distribution is repeated in each sec-
tion of the generator. Therefore, the analysis
can be limited to one section (see Fig. 2).
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3.3

e B

¥y (x,u) + ay = ylx+s4) (19

AYy Y. - Y\ (20)

where ¥ = ¥\ passes through point A and
Y = ¥. passes through point ® in Fig. 2.

Since the entire current must flow from one
electrode to the opposite electrode:

'.‘% A

J-‘/, 1« (- 3.4 dy =0 (21)
and

"l'%

With (11), (12), and (22):

x(‘%-%) =X("%"‘%)‘Yt (23

and

¥ (2,52) = y(3,-0) =%,

The Ydistr‘ibution is diagonally symmetric across
the origin of the coordinate system (see Fig. 2),
and the values of % are.

Y (x..' 3‘_) -y (0,0) = x(o,o)- x(—x‘:*YES)

or

X(h.ﬁ‘. +y (%40 =2yx0,0) =Y, + ) (26)




4,3.5
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From symmetry and periodicy of section
S S
(-39) +¥-3-9) =2 e

Y(+2.4) +yG+3,- =2y, (28)

Also, Y (= %,O) = Y (29)
(+2.0) = (30)
4 2> = Y
From boundary condipion on electrode, Section

4y,2.1,
g .jtz. - f5 (31)

i.e., the flux lines enter the electrodes al-
ways at the same angle with the normal to the

surface

© = tan P (32)

4.4 Potential Distribution

Since vxE" - O (see Eq. (7))

we can define a potential function CP*

E* = —-ve¢” (33)
* ¥
£ = - 3¢/ ay (34)
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With (6), (11), and (12), and notation as in Fig. 3

P*(xy) = P00y w5 Ly 0o,y - ¥(x,80)

%
B IE TR TOXN SR ED)
Y

(0,hi3) (s, hpp)

!
- %dq
" SR (1) B S S —

[}
1 (

|(x, y.)f-———-:!")

(0.-h/2) (s.-hp)

Fig. 3 Nomenclature for Potential Distribution

From (33) also

»

with (5)5%(11):~and (12)

P*x,y) = PT(xy) + Plylxy,) = x(x,4)

X

d
L5 e (x: 1)0( (37)
Sm st Yiugea
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Taking point (X, , Y ) at the center of the lower
electrode ( X, = 0,y, = - h/2) and (x‘)\‘ ) at the
center of the upper electrode (X, = 0, ‘j = h/2),
Equation (35) becomes

ay = ¢"(0,h/2) - ¢"(0,-h/2)

= P Lylo,h/2) = y(o,-h/2)]

+h/2 2
+ 3 ¥ (0,4) o (38)
5—'1/2. X ! “

A
A?"S/OB represents the potential drop across the in-
ternal resistance of the generator.

Taking point (x' ,(j') as before at the center of the
lower electrode and (x,g, ) at the center of the neigh-
boring electrode (X = S ; lj, = - n/a), Equation (37)
becomes

AP = @*(s,-hl2) - €*(0,-nl2)

A Ly(s,-nw/2) = x(o,-%/2))
s
._L 3_3-5 Y (x,-q/2) olx (39)

*
A(Fx /03 represents the potential difference between
two neighboring electrodes.

4.5 Other Properties of the @@ -Field

4 ,5,1 From Equation (1), the angle between vectors 3
and E" is equal to

© = tan' p (40)

Since 1 is tangential to lines of constant X 5

and since E™ is normal to lines of constant e¥,

the anrle between ‘6 = constant and CP*= constant
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is equal to

© = 20°-© =ctn'p (41)

4.5.2 From insulator bounddry conditions, Section 4.2.2
and Equation (4)

E,‘
NG < R (42)
er P

i.e., the vector Ef‘ always meets the insulator
surface at the same angle <tan™ k.

Lines of constant CF*nwet the insulator at an
angle

e = ctn'p (43)




5. RESULTS AND DISCUSSION

Taking xﬁ = 0 and XQ.= 1, the Laplace Equation (13) was
solved numerically by an iteration method on the IBM 7090.
See Appendix.

The analysis was made for three variable parameters: two
geometric: s/n and c¢’/s, and Hall parameter f%_ The following

ranges were used:

I\

a

0.0 < 0.87S

<
O £ A £ 10
» 4
Taking Ce = 0 on the lower electrode, the ‘P - field was
calculated from (35) and (37).

0.1 £

w|o sle

Current density and ohmic loss distributions were calculated
on the basis of (11) and (12).

All results are normalized to values for an ideal MHD gene-
rator (s/h = 0).

5.1 Generator Internal Resistance

5.1.1 General

In-homogeneous current distribution in the channel
due to finite size of the electrodes increases the
internal resistance of the generator. This, in

turn, causes a reduction in terminal voltage, cur-
rent, electrical power, and electrical efficiency,

and also an inecrease in ohmic losses.

A dimensionless parameter )\ is defined as
+%

(44)

where £ is measured along any Y =constant line,
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Fig. 4 Current Distribution in an ideal and in a real generator

J\ is a measure of the increase of the internal resistance
R of a real generator over the internal resistance R:i of

an ideal generator (Fig. 4) for the same generator volume ele-
ment H xS «T

Since
Ri = = o= (45)
and
it follows that
A o= (47)

Equation (47) defines GEEG'
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Parameter /\ is a function of &,h andrc. , and r.},

Special cases are:

if % - | |, then )\ Sad generator

o
+ (>

with continuous electrodes)

f -‘;Is— — 0O , then \ —s | (infinitely segmented
electrodes)
ir . & o—p (@] th.
= ; en \—+ O
5 c _|
1{‘]1——-\-00, then’\——'5|+(’5"

The introduction of A makes it possible to determine,
in a simple fashion, all electrical parameters of a

real generator. In Table I, the eguations for electrical
parameters of ideal and of real generators are compared,

Relative values of electrical parameters were calcula-
ted with the use of Table I. It was assumecd that Equ
6o. s B énd gasdynamic parameters arc the same in

the real and in the ideal generator. Equation (82) 1lists
these relative values.

(%) = S2 . (Ex) - (2]
Kiln 1!'3. E\sn' » y ‘Pi *
U 3 P \? Ve
= (o), = % =(§), = (8
P R R
iy ), e S D

where (), means that equality holds only for Rg ¥0.
In all other cases, for short - circuit (R q = 0),

the right side of (82) is equal to A . For open -
circuit (Rg=00), the right side of (82) is equal to 1.




\DEAL GENERATOR REAL GENERATOR

(s/h = ©) (2/h > O)
Ki = Ra/(Ra+ R @8) K = Ro/(Ra+Ri/N) 49)
= Ui/ U.: (50) = U/U, (51)
= |~ (T:./3) (52) =1 - (3/3) (53)
Eyi= KiwB 59 E,=KwbB (5%)
juo = (=KD Ew B s fy = (-KIAGwDB (s
pi =X U-K) g, w'B" 58y p = K(-KIAew*B" (59
U, = KkwBH @) U =XwbBH e

= RawBH/(Rg*R)  (62) = RawBH/(R\RiY (&)
3 =U-KHNEWBST () I =U-KIANSGWBST (66)
= wBH/(Ra*+ ) (ob) 2 wBH/(R +R:/A) 1)
P = KU-KIGWBHST (68 P =KU-KIA§wWBHST (8
= RalwBHY/ (R RN (70) =R, (WBH)/(R# R/ 1)
Q -U-KTGWBHST  (12) Q@ =W-KIGw'BHST (9
= RAwBH)/ (Rg* R)  (74) = R/ (WBHY R +RA)  (78)
R.= P + & qer R.= P +Q th
= (WBH)/(Ra+R)  (78) = (WBHY/(Re* &) a9

ni= R/Fmi =X @) h = P/R, =K (&N

TABLE | EQUATIONS FOR ELECTRICAL PARAMETERS
(TWO -DIMENSIONAL THEORY)




5.1.2

- OB
On the assumption of equal G , B , and gasdynamic

parameters, but different Ea, the maximum elec-
trical power occurs at K = K; = 0.5, thus

Phb.x f )‘ Pi Man (83)

Fig. 5 shows the electrical characteristics for
real and ideal generators, based on equations in
Table I. All primed parameters in Fig. 5 are nor-
malized and dimensionless:

u' = U (84)

(85)

i P ' Q
P Q = G',W"B"Hf'::?l’-

[ P
P = CoW*B*HST (20

Method for Determination of A

For the same total current with various geometries
and (», the potential difference across the inter-
nal resistance, A(p;/g; , is determined from
Equation (38).

The internal resistance of one section with one elec-

trode pair is

R-:, A_cf‘:_‘- (87)
o J

In an ideal generator, the internal resistance of a

volume element of the same dimensions (R x o »T) is

Fc?;_ = : _..‘3_... (88)
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Fig.5 Electrical Characteristics of Real and Ideal generators




5.1.3

s OBF =

Using (44), (87), and (88) results in

| £ 3
A-Ac@‘b = (89)

In the quantitative analysis, J was set equal to 1,
and T = 1 (two-dimensional analysis). Thus,

0 e

I
A A‘Ps* e (90)

Values of A were calculated on the basis of Equa-
tion (90).

Results: Values of );

Figures 6, 7, 8, and 9 show values of A versus
s/h for constant (b and c/s.

Empirical Formula for A

A may be expressed in empirical form

At (91)

AfP> +D

Equation (91) is applicable for (5 2 3,

However, (91) may also be used for e,-é:‘a when s/h

is small (s/h € 1), See also Fig. 10. Equation (91)
is more exact for larger (5 . Values of N\ for (-5: 20
were investigated and (91) was found to hold. The
analysis was limited to s/h <4,

For small s/h, A is practically independent of c/s,

“and is equal to s/h. When s/h < 1, values of A differ

from s/h by less than 1 %; when s/h £ 2, by less
than 2 %. For s/h = 4, the dependence of Aon c¢/s be-

comes noticeable:
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Range of Applicability of Empirical Formula for A

for ¢/s € 0.25 A differs from s/h by <2 4%,
for ¢/s 2 0.5 A differs from s’h by <5 %,

for ¢/s » 0.5 A differs from s/h by <10 %

Values of D are functions of s/h and ¢/s. This depen-
dency 1is complex, but readily found from Fig. 11.

In the limit, for an ideal generator (s’h —= 0),

A — 9o/h
O = |

and therefore, \ — |
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5.1.5 Optimum Electrode Size

Values of XN versus c/s are shown in Fig. 12. It
can be seen that }~ has maximum values for certain
c/s = (c/sgpt. In Section 5.1.1, A\ is shown to
have the following limiting values:

¢/ — O, A — O

C/S—'-I, )\—’ %‘Lpi.

The larger fb, the less A changes with ¢/s. In

Fig. 13, optimum c/s are shown vs (» and s/h.

(c/s)Opt increases with increasing s/h, and decreases
with increasing (3. The shaded areas in Fig. 13 show
the range of c¢/s in which A differs from >‘max by
less than 5 %. The large spread of this shaded area
reveals that the choice of electrode width is not

critical, expecially for large ﬁb.
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5.2 Distribution of Flectrical Parameters in MHD Channel

For illustration purposes, Figures 14 to 25 have been
included to show the distribution of electrical para-
meters in an MHD channel and the dependence of this
distribution on ‘5 and on electrode width.
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Current Distribution Along Electrode

In Figures 26 and 27 current distributions along the
lower electrode for various values of s/h, c¢/s, and (5
are shown. Each point on the curves shows the fraction
of the total current to the electrode through the elec-
trode section left of point x. Current distribution

is a strong function of ﬁ . For (b = 0, the current
distribution is unsymmetric because of electrode end-
effects, but is symmetric relative to electrode center.
With increasing f3 the current distribution becomes
increasingly unsymmetric with respect to the electrode
center. .

It is interesting to note the dependence of current
distribution on electrode size: for large s/h, increased
electrode size leads to more uniform current distribu-
tion, but for small s/h (< 0.5), increased electrode

size leads to less uniform current distribution (Fig. 26).

Leakage current may appear in generators with small

values of s’/h and with large electrodes, as shown in
Figure 26 a. This means that in the left section of

the electrode the current flow is opposite that in the
right section, This makes the-current distribution ‘even
more unsymmetric and thus reduces generator performance,
For s/h = 0.15, ¢/s = 0.83, and A = 5, the current in
50% of the electrode is leakage current.

b ot
Potential (@) Distribution Along Insulator

The potential qp*along the insulator is shown in Fig. 28
for various values of s/h, c/é, and (5 . In all cases,
1004 of thec potential difference between neighboring
electrodes is within 5-25¢% of the insulation width at

the left side of the insulator. The very large poten-
tial gradient near the electrode edge presents a severe
design problem.

Also, the strong influence of s/h and c¢/s on the magni-
tude of the Hall voltage (potential difference between
neighboring electrodes) may be seen from Figures 28a

and b, respectively.
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*
Potential (@ ) Distribution between Centers of Opposite
Electrodes

Figures 29 to 31 show the ‘P* distribution between cen-
ters of opposite electrodes. This distribution is non-
uniform, especially for small c¢/s and small s/h (for

s/h = 4, ¢/s » 0.1 distribution is uniform). Also, the
influence of {5 on the distribution is strong (uniformity
is increased with decrease in ﬂb). For s/h = 0.15,

¢/s = 0.17, and (® = 0, 10% of the potential difference
between opposite electrodes is within 5% of the channel
height at each electrode, while for (‘.b = 10, 30% of the
potential difference is within this distance.

Current Density Distribution Along Channel Wall

Figures 32 and 33 show current density along the elec-
trode and insulator. The case of s/h = 2 is shown with

large (Fig. 3%2) and small (Fig. 33) electrodes. inand

£§ are shown separately.

The current density concentration near the edges of the
electrode, even at Fb = 0, should be noted (see also

Section 5.3). For larger f’.’, the current density at the
left edge of the electrode is decreased, but increased

at the right edge.

Ohmic Loss Distribution

Figure 34 shows the distribution of total q, across the
channel for s/h = 2 and for two different electrode widths.
Total q, represents the ohmic losses in a volume slab of
dimension 8 ‘65'A1 at a height 5, . The inhomogeneity

of q, across the channel increases with fband with a
decrease in electrode size.

In Figure 35 is shown the q}—distribution along the chan-

1 11 alo th 11 is defined as add . @8 _ 88
nel wall. 9 ng e wa is de qV oln,AxAl d.%,
with axa®=1, Fig., 36 shows G for large c’/s.

Ohmic losses determine electron heating to a temperature

above the gas temperature. Thus, consideration of electron
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heating must take into account the large gradient of q;
in the channel. Electron heating causes a local in-
crease in electrical conductivity . The result is a

redistribution cf all electrical parameters.

6. COMPARISON WITH OTHER WORK

The influence of finite-length electrodes on electrical para-
meters was investigated in References [2], [3], and [4].

6.1

Hurwitz, Kilb, and Sutton [2]

In Ref. [2) an MHD generator with segmented electrodes
is analyzed in two-dimensions by conformal mapping.
This procedure is based upon the assumption thatii= 0
at the center of the channel and limited to values of
c/s = 0.5. Figure 37, based on the current effort,

shows that this assumption is valid only for s/h<¢ 1.

Figure 38 shows a comparison of )\, as determined from
Equations 65 and 71 in Reference[2] and as determined
from the present analysis. The values of A\ from Refe-
rence[Q]are smaller than those found by the present
analysis, but approach ezch other for large ﬂ:. In gene-
ral, satisfactory agreement exists only for small

s/h (s/h € 0.1). This checks with information in Figu-
re 37: only for small s/h does the assumption of-§'= 0}
at the center of the channel hold. It should be noted
that the agreement with Reference[é]is much better when
A.is calculated using Equation (71) and the approxima-
tion formula & Y&2f-0.4 of Reference [2].

Schultz-Grunow and Denzel [41

The approach used in Reference [h] is similar to that
used in Reference [2]; both are based on conformal map-
ping. A direct comparison of M\ -values is not possible,
since the data presented in Reference[h]is only in the
form of increased internal resistance at ‘5 » C relative
to that at(d = 0.

.However, values for Egﬁ/k were calculated from present

(=0
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data, and a comparison on this basis is shown in
Figure 39. The curves agree very well, except for
some minor deviations which may be due to the diffi-

culties of reading the published curve in Reference[h].

Crown [3

CROWN [}] used numerical solution of the Laplace-
equation to solve for 15 (which is equivalent to V& S
CROWN published values of I‘h’ for € 2. Within this
range of(S, and for the few examples shown, the agree-
ment with present data is good for reasons given in the
Appendix.

7. CONCLUSIONS

7.1

The inf'luence of finite-size electrodes on clectrical
parameters in MHD generators is generally very large.
Therefore, the equations for one-dimensional theory

should contain the correction factor 4k ‘

The magnitude of A depends upon the geometry of the
channel (s/h and ¢/s) and the Hall parameter (®. The
importance of the correction factor A increases with
increasing e) and increasing s/h. The analysis shows
the existence of an optimum electrode size (maximum N\)
for given(‘.; and s’/h.

7.3 Values of A can be presented in a simple, analytical

7.4

form for all practical ranges of s/h, ¢/s, and -

In the design of an MHD generator, the unfavorable distri-
bution of electrical parameters must be taken into account,
i.e., large current concentration on one edge of the
electrode, and large potential gradient on one edge of the
insulator,
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Fig. 39 .Eh/e(b-o for s’h = 1,0, Comparison with Ref. )

—— Present analysis --— Ref. [4]




7.5 Considerations of electron heating in MHD generators
must also take the distribution of electrical para-
meters into account. Potential drop near electrodes
reduces E* in the channel, causing a steep gradient
of ohmic losses across the channel. (The magnitude
of the current concentration on one edge of the elec-
trode is limited by thermionic emission.)
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A, APPENDIX

Computer Programming

An attempt to solve the Laplace equation for large Hall
parameters using Crown’s [ 3] approach was frustrated,
because Crown’s method did not lead to finite values of x.
The reason for the failure to obtain Y values for large o
was found in the formulation of the boundary equation at
the electrode. But only this equation has an influence on
the distortion of the Y -field due to /b, since only
through this equation does p enter the calculation. There-
fore, the boundary equation at the electrode was newly
developed with the result that it is now applicable and
correct for all /3 -0

— IPresent Analysis
——+ After Ref. [3)

-]

Sf=05
A

o

Fig. A.1 )& for s’h = 0.5, Comparison with Ref.[ }]

Fig. A1 shows a sample of the results of the analysis using
Crown’s method (Ref. [3] ) and using the present method. In
general, Crown’s computation did converge for ﬁz 2, For

very small ¢/s values, convergence is achieved for(% ’s
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below 10. Crown’s method and the present method lead to
approximately the same results for (d=1. At (A = 2 the
two methods still give almost identical answers for large
¢/s. But as c/s becomes smaller, the agreement between
the two methods dissappears,

FIELD DESCRIPTION

The two-dimensional analysis of the MHD channel is performed
with respect to the plane shown in Fig. A.2. This plane was
limited to one section of the MHD generator because of perio-
dicy of the electrical parameters (see Section 4.3.1). In

the calculation, only the lower half of the plane shown was
analyzed because of symmetry of generator phenomena (see
Section 4.3.3).

The plane thus defined for computer analysis was divided
into approximately 500 (square) area elements (ax=0Yy).
The mesh in the lowest row was made finer (“z—x = %‘4’) to ob-

tain greater accuracy.

LAPLACE EQUATION

The Laplace equation (see Equation (13) )

2 2
Yy 4% oo
X ay
can be written, for computer analysis, as a central-diffe-

rence approximation of the second derivative:

(A.1)

|
b,?n,n = a [ X‘m,n—: + Xmu,n + Xn,h-u : 3 %ﬂ-','ﬂ)

In general, throughout the field of approximately 500 area
elements, the values of‘z'vary slowly, so that the central-
difference approximation should assure relatively good accu-
racy.
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A.3 BOUNDARY CONDITIONS

The scheme used to designate ¥ 'in each area element is
shown in Fig. A.3. The e written in each area element re-
fers to the value of B'in the lower right-hand corner of
the element. Points A and B define the left, right, and
upper limits of the analyzed section.

Along the insulator, to the left of the electrode, X = con-
stant :Xl and to the right of the electrode, Y= constant
= ¥ (see also Section 4.3% and Eguation (18) ). It was
assumed that Y, = 0 and Xa_—. 1

At points A and B, x'has the values xqz 0 and ¥z= 1, respec-
tively (see Equation (29) and (30) ). All other boundary con-
ditions (excluding the electrode) are obtained by making use
of symmetry and periodicy of the Bf -Tield. Figure A.3 indi-

cates the scheme which was used.

The major problem concerning boundary conditions occurs on
the electrode. Equation (16) must be fulfilled on this boun-
dary. aqygx may be written as a backward-difference approxi-

mation

Xﬂnt““ XLh-n
X%

as a forward-difference approximation

(A.2)

b’l,‘nﬁ b4 XJ,ﬂ (A.})
“%

or as an average-difference approximation

Khhﬂ T Xhﬂ-l (A.4)
2854

In ecuation (16), ng may be written as an upward-difference

approximation

Lon — Yin (A.5)

-z
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A.5
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All other versions of writing gxzwill introduce an area
element below the electrode which must be removed from
the equation by means of the Laplace equation applied to
the electrode surface. Table A.I shows six versions of

writing equation (16) for computer calculation. Equation 6

(Ref,[}])‘was used initially, until it was found that the

computation for large ﬂa did not converge. Equation 1 was
then used successfully for ﬁ)) 1. AY™runcation error"
(Ref.[}]) was not found, as is apparent from Figures A.4

and A.5. Fig. A.4 shows that when tle "truncation error" in
Crown’s formulation is not large the two methods give practi-

cally identical answers.

PROGRAMMING FOR Yy - VALUES
0

The iteration with Eﬁuation (A.1) was initiated by filling
the field with zeros, except for those boundary area elements
to which definite values had been assigned. The number of
iterations was limited by setting a tolerance on the diffe-
rence between X -values obtained during successive itera-
tions. A tolerance of 0.0001 was selected to obtain suffi-
cient accuracy for further evaluation. It was found that,
using an acceleration factor, roughly 50 to 200 iterations
were required, depending on the channel geometry selected.
The iteration sequence was to travel along each row from
left to right, and from the bottom row up. The bocundary va-
lue equation for the electrode was applied after each ite-

ration across the field.

PRQGRAMMING FOR €@ - VALUES

Equation (35) for integrating vertically through the field

may be written

* I ] Bm,cor ~ ¥me-
foier ™ B D= ol iz [Soemene
ieor ~ Wi = X‘“_a_"" = X“""") (A.6)
2 ] L2 ( 2

+
~u2
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Ve
using the trapezoidal rule. 1In general, ‘P varies suffi-

ciently slowly in the field to permit the use of this appro-
Y
xim’%te form of the integral. ¥m,e and ‘eru’c, refer to Y and
‘P values, respectively, along the perpendicular to the
electrode at the electrode center. At the electrode surface,
»*
(f’,,,'<= ‘f,'c_ is taken as zero (see Section 5).

Equation (37) for integrating horizontally through the field
may be written similarly

?':,'n = tP":,c- i > [\6"'",11 . X’“.c}

__al_ [ Xnu,n ~ Yom-v + Ym-n,c_. - Xm\,c.]

= 2 2
_ “Z": Smet,n — Xm-1,1 (A.7)
2
n=c+\

The sequence of operations for determining ?::n is to inte-
grate in the %_—direction from the center of the lower elec-
trode to point (m,c ), using Equation (A.6). Then Equation
(A.7) is used to integrate in the x-direction from point (‘h,c)
to point (wnﬁb). Points (I,m) over the insulator may be found

by integrating down from points (2,m ).

PROGRAMMING FOR i - VALUES
v

Equations (11) and (12) may be written

(A.8)

j')'m,u = S-‘;}'nm = ZA% ( Khul n T Xm-l,n)

and

?})hn -al;)h-n ZA.X (X‘mn- X‘m,nw) (A.9)

To determine .&g)“““along the insulator wall, use may be made
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of Equations (5) and (36)

» » v e
. - B E*) s A_‘ﬂ ) - ‘Pl.'n-! == "el.'m'l
j’\'m ¢ Cx lim ax hin 2 ax

CA:19)

The determine igl“alOng the electrode wall, Equation (16)
is applied

‘.}x\,n e M ﬁ %ﬁ\lln Lar i)

To make the j’s comparable for differing field geometries,
théy are multiplied by s.

PROGRAMMING FOR OHMIC LOSSES

Values proportional to ohmic losses at each field point are

found by simply adding the squared values of {,}h"and i‘ﬁn,a

for that point.
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