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ABSTRACT: The three-dimensional velocity-space eigenmodes of

the linearized Vlasov equation for an electronic plasma, with

and without a uniform applied magnetic field, are derived in

the electrostatic limit, and are shown to be complete. In general,
a continuum of modes exists (except for e « B = 0) and, if the
plasma is unstable, an additional set of discrete modes appears.
Forfgo = 0 these modes reduce to the Van Kampen-Case spectrum
upon integration over all velocities perpendicular to,ﬁ: The
adjoint modes are also derived, and used to est:blish certain
orthogonality properties which are sufficient to enable one to
use essentially standard eigenfunction techniques. It is shown
forqgo = 0 that the Balescu-Lenard kinetic equation can readily
be derived with the use of the three-dimensional modes. For the
case with magnetic field it is found that a particular functional
of the undisturbed function plays a role (for A # 0) ana-
logous to Case's q/(w) in establishing the properties of the
modes. For the case Eu'dgo = 0, which must be treated separately,
two discrete sets of modes exist, only one of which contributes
to the density and field fluctuations in the electrostatic

approximation.




I) Introduction

The theory of electrostatic plasma oscillations has
progressed along two seemingly widely varylng paths. The

1 in the case of disturbances

first, introduced by Landau
in a uniform (collisionless) electronic plasma without mag-
netic field, involves solving the initial value problem for
the linearized Vlasov equation with the use of Laplace
transforms and analytic extension in the complex plane of

the transform variable. Bernstein2 applied the same tech-
nique to the more complicated problem of a multi-specles
collisionless plasma in a uniform magnetic fleld. Bernstein
included transverse (electromagnetic) as well as longitudinal
(electrostatic) oscillations.

3 and

The second technique, introduced by Van Kampen
extended in a decisive manner by Caseu, applies the theory
of distributions to allow the interpretation of one-dimension-
al (in velocity space) statlonary wave solutions of the
linearized Vlasov equation (integrated over all velocitiles

perpendicular to the propagation vector Jﬁ ) in a uniform

plasma without magnetic field. Van Kampen showed, for a




plasma with an isotropic distribution function in the undis-
turbed state, that this contimuum of "stationary wave' solu-
tions forms a complete set of normal modes which can be used
through superposition to describe any disturbance of such a
plasma which can be adequately described in terms of the one
remaining dimension in velocity space. Such a description
is sufficient to determine the (electrostatic) electric
field perturbations, for example, and Van Kampen demonstrated
the equivalence (under certain restrictions) of his electric
ield solution, obtained by superposition of normal modes,
with the solution of Landau. He also indicated certain
differences in cases where analytical extension -- essential

in Landau's technique -- 1s not permissiblefs

Case extended Van Kampen's technique in several important

ways. Introducing a set of functions adjoint to the one-
dimensional normal modes, he demonstrated orthogonality
between the normal modes and their adjoints. Using this
property he was able to show that the addition of a set of
discrete modes, including modes with discrete complex fre-
quencies (eigenvalues), to the Van Kampen "continuum" modes,
provides a complete set of normal modes for a linearly
unstable plasma without magnetic field. The condition for
the existence of the discrete modes can be shown to corre-
spond to the Penrose criterion for instability.6 In this

.anse, Case provided the final proof that the Van Kampen

continuum modes (if one includes Case's "lb modes") are



complete (in one-dimensional velocity space) for any stable
plasma with‘Eo = 0. Unfortunately, however, Case did not
correctly treat the situation for which marginally stable discrete
modes exist (the "lc modes", see below). A consequence of

this 1s that his theory does not give a well-defined state-

ment of the contribution of the marginally stable modes to

the plasma behavior.

In a later paperT

, Zelazny extended the work of Van
Kampen and Case (again for B, = 0) to show that the initial
value problem for longitudinal plasma oscillations can be
solved in three dimensions in velocity space by an analogous
superposition of three-dimensional eigenfunctions. He
emphasized that the successful solution of the initial value
problem b%@?is technique amounts to a proof of the complete-
ness of the normal modes used (by the uniqueness of the
solution). An interesting feature of Zelazny's approach,
nowever, is that his "eigenfunctions" actually remain
implicit; they contain an arbitrary function A(vhgl)(compare
Section II) which is determined differently for each function
to be expanded. For the initial value problem, this pro-
cedure cannot be criticized; in the following, however, we
adopt the point of view that the normal modes are of interest
in themselves and that it is useful to have at hand an
explicit complete set, independent of the function to be
expanded, for use in a variety of problems. Zelazny glves

some attention to the marginally stable modes, including the




possibility of their being degenerate, but he again glves
no explicit prescription fot the determination of thelr net
contribution to the plasma behavior.

Felderhof‘8 has also generallzed the Van Kampen modes
to three dimenslions withﬂgo = 0. His treatment 1s limited
however, to the stable case (no discrete modes); indeed, he
gives an explicit set of modes only 1f the undisturbed dis-
tribution function is Maxwellian. Nevertheless, his pro-
cedure, quite different from the following, has a number of
points to recommend it, and illustrates the fact that in
normal mode theory there is not a unique path to follow.

The purpose of the present paper is two-fold. In the
first part an explicit, relatively straightforward generall-
zation to three dimensions in velocity space of the Van
Kampen-Case modes (and their adjoints) for electrostatic
disturbances eof a uniform electronic plasma without magnetic
field 1s given. It is shown (by including discrete modes in
the marginally unstable and unstable cases) that these modes
form a complete set for three-dimensional disturbances of
an electronic plasma, and superposition of the modes provides
a solution of the initial value problem which agrees not
only with the electric field solution of Landau, but also
with his solution for the complete disturbance distribution
function in terms of all three dimensions in velocity space.
Orthogonality between the normal modes and their adjoints,

in an interesting restricted sense, is demonstrated.




Integration of the generalized modes over all veloclties perpen-
dicular to the propagation vector reproduces the Van Kampen-Case
spectrum. It 1s also shown, in the proof of completeness, that
the difficulties associated with Case's treatment when marginally
stable discrete modes exist can be circumvented, and an explicit
determination of the contribution of such modes to the solution
of any given problem can be provided.

There are important examples for which the integrated ('"one-
dimensional"”) modes of Van Kampen and Case are insuffilcient and
for which the three dimensional modes are required i1f an eigen-

9,10

mode technique is to be employed. In this paper we limit

ourselves to one interesting example: a simple derivation of the

Algde equation based on the three-dimensional eigen-

Balescu-Lenard
modes derived below.

The second part of the paper is devoted to the derivation
of a set of normal modes (and their adjoints) for electrostatic

perturbations of a plasma in a uniform applied magnetic fileld .

Bo' Here, we shall make essential use of the ideas developed for

Ay

the zero - B_ case. In analogy to the zero magnetic fleld case
L

there exists (for A B, # 0) again a continuum, and, if the
AN A

plasma is unstable, an additional set of discrete set of eligen-
modes. A completeness proof is given, and this provides the
necessary and sufficient condition for the existence of the
discrete modes when f. B, # 0. It is pointed out that this
corresponds to a necessary and sufficient condition for
instability of a plasma with uniform magnetic field (for

,ﬂ . Bo # 0).13 For the special case of propagation perpen-

Paand




dicular to the applied magnetic field (2 - B, = O), the

normal modes are discrete whether the plasma 1is stable to

such disturbances or not.2

i) Three-Dimensional Eigenmodes without Magnetic Fileld (B.= 0)

We seek stationary solutions of the linearized Vlasov
equation for a uniform unbounded electronic plasma without

magnetic fleld in the form
éﬁ- = (ot
Jp(k—}l‘) 7[’{1{')7'"5(2; ("’JL% = (1)

#*
We have then, in the electrostatic limit,

(-cw +L U‘)g = /49’(;@“} o/i{{"f = 0 (2)

71’2 sl T &

where with reference to mks units 6%;"2 hoal/ﬁiJn , € is the
electronic charge, m the electronic mass, n, is the mean
electron density, and £o is the permittivity of free space.
Following Van Kampen and Case we normallze the statlonary

* %
modes such that

/% € =4 (3)

*®
See footnote below Equ. (11).

* % 7
Zelazny

normalized his modes to a function @ (w/;) which
plays the role of our "expansion coefficients" %h (WJ intro-
duced later. We shall also find certain modes for which

fa{zE = O (compare Ref. 8).




A

e B -
fo:':yw and A . Defining W =@/ U= :-:3',../4% ) 4=[k]

B - < V£ , we may then rewrite (1) in the form
. 4

2 -
(w-v) ECuw ) = = 7% gfe(“»‘f

)
2 ¢ v

[

(%)

—

.
where o/ov =(£/R)* S5y . within the framework of the
theory of distributionslu, the solution of (4) is

Elufo) <-4 2600 T, A (5,0,)§ (-v)

42 v W-v (5)
where '$) indicates that the Cauchy princigfl part is to be
taken upon integration over v (or w) and A is any function
of V and J{i . The first term is the '"particular" solution

of (4), the second term the "homogeneous" solution.

Utilizing (3), we find
L wyr F:/[r)db‘
A(w) fdi.% Aby) = 1+t f’/““{"‘ (6)

where the prime denotes differentiation with respect to

it

argument, and

Fo(v)= [42% £ G v)

o] A

(7)

7{’*) = “%E(v) (8)
and

Niv, )= -2 2605%) )




so that (6) reads, for example

)= /- p | 282
o w - v (10)

The dependence of A (%ﬁil) on 7, is of course not deter-
mined by the normalizatian condition (3); it is left to our
cholce. Zelazny7 left J(%igl) undetermined in the modes them-
selves, treating it, in effect, as a part of the expansion
coefficients, and choosing it therefore differently for each
function to be expanded. However, we seek an expﬁ@if.ret'

of stationary solutions which can provide a complete set of
eigenmodes for the description of any disturbance function
f(ﬁ{) in three dimensions. For this purpose, 1t 1s apparent
that we require two further parameters, in addition to w ,
to be included in the normal modes Z? . Let us denote these
two parameters by a real two dimensional vector X' We

then choose our function (b U') in the form

)‘3: (VJKJ.) (v) f}ﬁ( m

(11)
SO that*

é(v;uﬁ;/wa’ - ﬁb/V/U“) i )(U);(ﬁi-z)g(v-w)

(12)

One measure of the error inherenu in Bhe elecgrosuatic approx-

1mation is (A X E)/ 4+ E = (w/c)(1 - we/c2)! (§ Xk)phe  wnere

& and df are the perturbation charge and current. It is
apparent™that for sufficiently large w and [¥) , the modes given

(cont'd. p. 9)




If we require the normalization condition (3) to hold for
each i{ as well as for each w, the expression (10) for
stil1l holds, and is identical to that used by Case.}'L It is
jmportant to note that ) fbj depends only on ?7(”) , 1.e.

the integral of /V’C%iﬂ) over ;gl . Since
Cu Non) = 7 (*) (13)

we note further that integration of the modes over 1£.reduces

the three-dimensional modes (12) to the one-dimensional Van

Kampen-Case modes, l.e.,
' s> 1. (V)
Jn £z = £t PET A0

In analogy to Case's treatment of the one-dimensional
modes, we may distinguish several classes of modes, depending
on the properties of ‘? 5 /V and ) . (Recall that mgj is
always real.)

Class la. Here we have [/ real, /V(N,;KJ%O These
modes form the main continuum of the plasma spectrum. In
the present three-dimensional treatment, the special case
/C‘{ié’/yfw,g/) = 7 (w) = o, Q(W)#Olcan be included in this class

without difficulty (see discussion of adjoints).

E
(cont'd from p. 8) here are not consistent with thils approx-
imation. We proceed, however, with the assumption that for many
problems of interest the "important" values of W and [{7 in an

expansion involving the normal modes will be much less than c.
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éwiass 1b. For these modes, we have W real, N(w,¥ )= 0,
: ﬂ(ur) # 0. These special modes generally form part of the
-ontinuum, and differ from Class la most markedly through

 ;§ nature of their adjoints (Section III). The explicit
_Qrm for the normal modes themselves is still given by (12).
7. using these and other continuum modes we must give special
ttention to the real points of Class lc (1f such points
ceur) .

) ss lc. These modes appear if the undisturbed plasma dis-

ribution is such that for real values of W&Ew;) both

. a (v) v
Q)=0=1- [ 122 (15)

ilwe assume for simplicity that (15) have only simple
esTo ¥

, then in the three-dimensional case two independent
ts of modes arise at these points:

C“ N )

5 blas le, 1 W
i s lc, 1) ! v v

._‘,‘

ﬂ

| (16)
(oass 10, 2) & ("“’(w Jo) = Ny §r-vi)

”Eh sets are independent of the parameters ¥ . The Class

» 1 modes reduce to Case's one-dimensional modes, upon
-tegration over If , while the lc¢,2 modes vanish after such

tesration and therefore do not appear in the one-dimensional




o X1 =

 treatment. The normalization (3) applied to Class lc, 1
iireproduces (15) Note that even for simple roots of (15)
_%a degeneracy arises at lc points in the three-dimensional
case.

gilass 2. Finally we may have eigensolutions for complex W .

5:} such modes occur they form a discrete set

(17)

é?(b'V' ) A/((J %)

iith complex eigenvalues W = W? such that, with the

;;,xmalization £8)s

j:’: c/:"if /V[V ) /‘h/"u- (18)
./

‘g,e latter relation defines the 1@& . Again, these modes

gre independent of the parameters 3’ . Note that if tﬁ- is
‘a solution of (18), so is H?#i

Before demonstrating completeness of these normal modes,

18

‘we discuss their adjoints.

i:For further discussion of the lc modes, see Section III. The
jﬁeader will note that additional modes of the type lc¢,2 can be
jgkmmd at discrete points '?(luk) =0, A(w,) #0. However,
;f@m shall have no need for such modes, as the modes listed

f}gbove are already complete for functions of physical interest.

~ (Section IV).
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III. Adjoint Modes for Bo = 0.

The adjoint equation to (2) is
1 ) 7 N
[lv+;4a-o‘)€ “r ;.z ./;/.'f-,y- % E’ e

or

i~ A
(o) Elofuiz’)= [23 W) E (o0, wix) (20)

Multiplying the complbx conjugate of (20) by Ej(u& /ufz’) ¥

(19)

o>
PY

multiplying (4) by Z: {i*o.ﬁu Y ) » Integrating both equa-

tions over all V° , utilizing (3), and subtracting, we find

(w'-w) Ja7v E *(V;il/W'fI')E("lﬁl jwx)=0 (21)

or, for the continuum modes (these are purely real, w ¥ =W)
ot
: i, .
/[/?E [U;KJJNLB./Q Z(I,KJ- ) =g (w-w') (’(,M “) (22)

and, for the discrete modes (independent of ¥ )

(Uu' )EUI?/M/) ww* C’ (23)

fi of
We see that equation (4) and its adjoint (20) implies
orvhogonality between the normal modes and their adjoints
With respect to W -space, but not necessarily with respect
to ‘E: -space. For the discrete modes (independent of ¥ )
this is completely sufficient; for the continuum modes, our
choice (11) for A[ J_)will provide a certain amount of

"sharpness" in ¥ -space and we shall see that this is



sufficient. In what follows we give the explicit adjoint

solutions for each class of normal modes, and the correspon-
_ /

ding values of the normalization factors C(IV,JE’,E{') and

c .
we

Class la.
For this class of continuum modes we normalize the adjoints

such that

/c/ie Ny, ) Elgoifsx)=1

(24)
and find the solution
Jw x) = PL ) ¢
E( X) W-v- +/\/(w;3: 5( )y(u W) (25)

where, because of (24), ‘A(Q) is again given by (10). The
normal modes themselves are given by (12), both E and éf
are real, and we find, utilizing techniques for singular
integrals which are related to the proof of the Poincaré:

15

Bertrand formulas

) W+ Aw) § (2-2)
ﬁd 5(‘“’3")5( lva’) J(ww) !m( /\/(,V Y) } (26)

Agalin, note that in the three-dimensional treatment the

case m (w) =0, A(w) # 0 (the "1b Class" for the one-

dimensiopal modes) can be included in this Class without

difficulty.
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Class 1b ( w real, N(w,:{)=0, A(w) #0)

For these modes, we may take

; ey ]
- W= rj ""J_ s y

since then

/g/i{ /V(V):é‘.) g " N(wy)=0 (28)

and (27) indeed solves equation (20) for this class. With
E  given by (12) we find

/ R CTATS I AN TRy CHCLICE YO

Class lec ( w/, real, '7(vqj =0= ) (w:))
In this class we find two independent sets of adjoint modes
Ej}/m 71

w, = v

(Class lc, 1)
(30)

A%

(Class lc, 2) E(A) %ﬁj_/wz) o y(?r—w‘.)

Clearly, because of the first of (15), the lc¢,2 adjoint

modes cause both sides of (20) to vanish for [V W- oy
whereas the normalization (24) applied to the 1lc,1 adjoint
modes guarantees solution of (20) for i/ = W; » wnile at

the same time reproducing (15).
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In the following we actually have no direct need for
the lc adjoints; we include them here for the sake of com-
pleteness. Case's prescm’.ption}‘l for determining the coef-
ficients of the lc modes via orthogonality -- see Section IV --
does not work in the form he gave it; the integrals in his
expression for these coefficients do not exist=% We shall
see below, however, that a rigor ous proof of completeness
of the modes of Section II, including proper treatment of
any existing lc modes.

On the other hand, we shall be able to make good use

of the orthogonallty property

i (1) A X
JdE & (v, v, |w) E (mulv 9:): O (31)
' 13
which can be verified by direct computation.

Zelazny7 discussed 1n some detall the situation which
arises if equations (15) possess multiple roots at any W,
in which case further lc,l modes exist. However, he did not
note the need for modes of the type l¢,2 (or their multi-
plicity at multiple roots), nor did ne explicitly discuss
the problem of finding the "weights" (expansicn coefficients)

in the solution of his initial value problem.

wVélklO recently pointed out a part of this difficulty. The
author 1s indebted to Dr. V8lk for bringing his attention to

the problem.
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Class 2 ( Wy complex )

For this class of discrete modes, which are necessary for
the description of the disturbance of an unstable plasma,

we again use (24) and find (for simple roots of (18))
Vv (W)= __.._—f:.__-
Eluly)= = (32)

Again, the normalization reduces to (18), which defines the
discrete complex eigenvalues ug . We again assume for

simplicity, that (18) has only simple roots. For Class 2,

7 € lyu ) E(nfu;) = ot o

where o (33)
0 < [ 2ENCL) [ dvyp)
it W,,-b)z /. (w;-v)"

exactly as in the one-dimensional case. As pointed out by
Caseu, CE,, # .0 tf k; is a simple root of (18).
d
We have been forced to give speclal attention to the

discrete set of points Mﬁv for real |y at which both

b

i (w;) =0=) (wp; ) if such points exist (Class 1lc, above).
The necessity of doing so can be seen, for example, from the
"norm" (26) for the continuum modes. There remains, however,
another set of discrete real points which, in the three-
dimensional case, could in principle cause difficulty.

"hese are the points Wy such that }\(Wh) = 0, ’i((wg,_) £ 0.
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These points exist even for a stable pl,asma6, and 1t would
be strange indeed if they caused any real problems. Never-
theless, one sees from (26) that at such points the norm
(26) loses its sharpness in X—space, That this 1s only a
formal difficulty will be shown in the following proof of

completeness of the normal modes.

IV) Completeness Proof (B, = 0)

/(\100

We wish to show that the normal modes given in Section
II are complete in the sense that "any" funetion” f‘ ( U’,MI:'L)

can be expanded in the form

#{V' V’L) = Z dw_ E(V,‘{ ) +§- (d Z (z;;“uy_'f_/te/‘-)f- ékzg(‘}f@_.ﬁ/uy})

(34)

/u/*a/ﬂ(wy/; /L“" /W Y)

The sums in (34) run over all real ( W; ) and complex ( w;.r )
discrete eigenvalues, and we must specify the manner in which
the integral over real Ww in (34) 1s to be defined at

the points W, of Class 1lc.

Utilizing the orthogonality of the complex dlscrete

adjoint modes with the real discrete and continuum modes, we

¥The function Q[I(V,“Zfi_) must of course satisfy certain

smoothness conditions. Case4 pointed out that the H8lder

condition is sufficient, but probably not necessary,




find readily’

e (35
4 r 7_-’ J B 1L 7 <y
o ¢ E7 ()

)‘ -

P

C .
the ,, are given by equations (33), and

7[-; (v) = /wll 705 2.)
Vi J w

Thus, the expansion coefficients for the complex discrete

vinere

modes are precisely the same as their counterparts for the

=

one-dimensional case and depend only on the properties of

{‘( V,Ayl_) integrated over UL

Inserting the explicit continuum modes (12) in (34),

W& Nnow have

_— , ; w (1) 52)
J ¢

b AG )20

&/
i~ U

+N@gbﬁw@@)

*Note from (32) that the discrete Class 2 adjoints are actually

independent of V, , and equal to their 'one~-dimensional"

counterparts. Case'J'L gave an expression similar to (35) for the

ﬂuh of the lc¢ modes; however, as already mentioned, the inte-

grals in his formula are undefined. We shall find the &wuand
[

b,,, below by a different method.
L




where

A ) Eﬁ/i{ Alwx)

We define

/ (vv)

{fi

Floz) - Z e, Esely)

o e
/
so that (34) becomes, with the explicit lc modes
A o«
Flov) = AQA G + Nl v,) [dud, e PL
J WU (36)
¢ = ay, PMEL) sy W) (o)
W‘._- [VL' -3 wt: FA e

We shall show below that if simple roots of equations

(15) exist, equation (36) can hold only for par ticular values

B v

of the coefficients 4, and &, (which fact determines
2 ¢

their choice) and that for these particular values, equation
(36) can always be solved for /ﬂlﬁ{) in terms of 7?{%)

Y/
provided equations (35) hold. The special choice of the a ...

&

is required in order that Ah[ﬁd be well-defined for all real
W, including all le¢ points.

If no solutions of (15) exist (i.e., no lc modes), (36)
can always be solved for ,4H(W) with the help of (35), and
the result is identical to that of Case.}"r

It follows in either situation that the three-dimensional

modes derived 1in Section II are complete, since if ”[W) is




xnown and well-defined for all real w , and if all
coefficients of the discrete modes are known, then }{f)/}ﬁzﬁl)
is determined immediately from (36). Since (36) snhows that
we actually require only A(u)/?ﬂggl) and /%j/V)
it is then always possible to determine the relevant expansion
coefficient such that (34) is valid.

We begin by observing that if the given function f(bL3;)

A
(and hence ﬁ (v, v )) contains no delta-functions™, then
ot

Wwe must choose each bhq'f O except when the integral
term in (36) itself gives rise to delta-functions at the
points M/;. In the latter case, the bu& must be chiosen
to cancel such terms. Ve shall see that if lc points exist,
the Dwi are not in general zero

Consider now the result of integrating (30) over vy .

o

This yields a one-dimensional integral equation for /%(ﬁ)of

the foram

: , i P
D) = A@) A, () + 7(1’)/“/ A, (w) va,

(37)

A
were G ()= [0, fge) - T a, 3D
4 i

Equation (37) is independent of the b, . This equation is
[3
to be solved in conjunction with equation {10). Except for

the fact that the 4 are still undetermined, (37) and (10)

are exactly the equations studied by Case.l‘L

“l

"This is obviously the situation of primary physical interest.
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Case's solution

' s 7 ¢ CA';" / W -
A @) = A/ [ /;/m_- ) ;J¢(w)]
1*(w) + i z[w) wr~V Z(w’)

(W) [' /ﬂdiu 2 |
. i _ AW N
/‘17_{1“) -f'i/xi.'«}llﬂv) / r y /;ﬂ”/

in fact holds for both stable and unstable plasmas provided
no le (marginally stable) modes exist. (In this result one
may write either ?Qb) or f;[u) in view of the orthcgonality
property (31) plus the orth;;orality of thne Class 2 wodes
with the la adjoints.) It is clear, however, that Case's

/hf(w ) is undefined at any points w'; such that bot

A (w;) =0 = 7 (w;). If such lc points exist, Case's
treatment must bé substantially modified to provide a meaning
to the integrals in (34), (36), and (37)

To accomplish this we assume that there exists a set of
simple roots W, of equations (15) and look for solutions
of (36) and (37) in the forn

(W)A(W,f.) = () ((w, %)L

"-W"

iy - i Lﬁ

Inserting this Ansatz in (36) and (37) we find, respec-

Aﬂﬂﬂ = C (}é;.-iiénw

tively,

» Foctnete on next F“j"*
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fYrvi>.: C[LLL)ZL_fJ@J g ﬁﬂbu ZL.C @!JL@bwﬂ

- i.z -

+2_ buy, (s 1) S (- w) 4 2_ 0. M/[,, A
v[z v (363_)

c,{w ,l.“") / ‘:’/\ ]
W= W=V

+ N5 v,

and

! A
blv) — W' ._Lﬁ__ P am:C’(L) - 96{b);:

2’_ _"L[t:_ P [ 4w Gy cfn/f(d . (b)[' (U})

wy~v W=V OU

In deriving (36a) we have used (essentially) the Poincare-
Bertrand formula. We see from (36a), according to our
previous arguments, that if a solution of (34) or (35) of
the type (38) exists, then we must choose

b,. = -FzC;(W'z)

L

(39)

Our task then reduces to finding a self-consistent solution

C% ﬁw) of (3*&) which is regular over the real line.
Our procedure will be first to solve (37z2) implicitly,

obtaining C}{w) in terms of ;2(}) , which itself

TThe reader will note that we could also look for solutions for
A(@)Aﬁggj including delta-functions at & = 4/ . The above

proof shows that this additional complication is unneccesary.




=~ D3 =

contains C” (w) . We shall then show that a particular
choice of the coefficients 4“/5 1s required to render
the solution self-consistent and explicit.

We define the Hilbert transforms for complex z

/V-;_-’— = _L/C‘/I{w)d‘w
(=) /0

Ww-z

[ o) o
Ple) = - [ 3L~

2ire -z
: P e
M( ) Ey1 L -2

o

Q(%)_oim /f’{v);&’ IS 2*—;;7«7

If a solution of the type we are seeking exists, we must be
analytic (n the cut
able to find a function A/ (z) which isf\ﬂ—plane cut along
the real axis.3>*™7 Note that R(v) = Z ((») (v-w;)~
is regular over the entire real line (or elsre satisfles a
A
H8lder condition), so Q(z), M(z) and Q(z) are analytic in

the cut plane)f Now
_ “_ clo [.-,} _ R > :{v) (,,]
Q( ) ame w /;ir wtj(zr-z) AN 2— Z - [j —b" 4

(/+a‘1n CP(E))Z_ e

* This statement [s Sfmcz‘ﬁr true for CP(Z} 2nd 47[2) For M(2)
which contains Cylw) iy its a’c’fmz‘mn (t (s trye /g;aw:/ec! we.
can Find a well-detined solution O”{w,l i;f tuis pethed.

4
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where we have used the second of equations (15).

If Q & (w) are the limits of Q(z) as z approaches the
real axis from above and below respectively, then%’4 using
(10) and the properties of Hilbert transforms , /+ 2. G}iﬁﬁ):=

) (w) *+ W ?(W) . Thus, both /+ 22i (¥ (w)
have simple zeros at each lc point Vﬂr. We may conclude
that the corresponding limits C§t6%)of é%(z) are simply

'At [ g A T —
6 - e L,

AT

since each of these functions is regular over the entire
real line. Moreover, each is non-zero on the real line for
Jwl < ¢ (by our assumption of simple roots of (15)).

Using the properties of Hilbert transforms, with A/ikb)
and ﬂﬂi(W) the limits of the corresponding functions (40)
as z approaches the real axis from above and below, we find

that (37a) and (10) imply
M)~ M W)= Nw)2ne §70) ~ N fw)yari Q7(w) (81)

We observe that the complex zeros of Q(z) coincide with the
complex zeros (if any) of /%.ﬁﬁV'GD(E) . However, any
such zeros of /#ail ()(z) are just the Class 2 eigen-
values w@- (equation (18)). Therefore, upon utilizing

N

the orthogonality conditlons (23), one finds" that conditions

(35) are precisely what is required to guarantee that M(z)
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A
vanish at the complex zeros of Q(z).

Hence
M ()
[+ 27 @(z) (42)

W) =

is analytic in the complex plane cut along the real axis and

satisfies (41); the (implicit) solution we seek is therefore

! ﬂ4+nuj "
6// (w) = ;_"""m- £+ - N.[ ,Q_‘ ‘
Gw) 2 G (43)

R (w) 1?“(“} FT ” *w) (w)

which 1s indeed regular over the real line. In the last

equality of (43) we may write either #?(v) or 1{(b}
in view of (31) and the orthogonality of the Class 2 modes
with the la adjoints. Thus, the solution C}(W) appears to
be explicit. However, again from the properties of the

Hilbert transforms ;

wo/d“" O yifWen®] = L8 -0,

( ((al i/
o (+) &)
=5 '_3,60(”) %“ L"Z(" */ww l?fé:-l; (42a)
— Q (Uf C-( )

The latter results checks that (42) indeed provides the
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(implicit) solution of (37a). However, putting V= wz in

the above, where W—E is any one of the points w::, we

find the consistency condition

P G/Lv - {!(b"e) . ( ‘ &O c(w[(W) ;l("“) I (u/)
)

V.;'-wfe I/w W =, Z(w() ['4

——

which shows that we must choose for each lc¢ point

&y, = X)) - ’p'JL__-f“’"J

C oyl 2 ) (44)

This yields finally, after some rearrangement

N(w:) Z £6) s ) )
aw' = £ - L 1 (W¢
© Q%) iy ) ( merl T A

Similarly, from (38)

-7 (w:) dflo) 1) p
b, = )(w)rffg'zw (fpa, Wi~V ’()”()) (86)

)
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Finally, insertingz (43) in (38) we find

Py (v) § ??u:ﬁf.ﬁf‘ ;
Ay = LX) e 20 gy

2"(W)L+yr,’g‘(w) o v gl (47)

=

'hi

[}

1s Case's result except for the appearance of the

)

sdditional principal value sign; we see that if lc points

exisc /a(w) is in fact to be interpreted as a distribution
and in that sense the integrals in (34), (36) and (37) are
perfectly well-defined. In addition, our derivation of this
result has gilven the further information we require in order
to make (34) meaningful, namely the values of the txwf

-and b”i . Moreover, we see explicitly that /%(WJ is
well-defined at points AW/ =0 , (v 5 © ,
and such points cause no difficulties. Thus ;Jﬁd,4ﬁzg1)

is determined by (36) (we do not need ,4[5:@) itself) and

the eigenmodes are complete.

V) The Expansion Coefficients and the Landau Initial Value

Problem

daving demonstrated the completeness of The elgenmodes,
we wish now to give a few useful explicit formulas for
AW AW X) = (w, .{2:) appearing in (36). The
coefficients for the various discrete modecs are given by
(35), (45) and (46). We shall then use our results to show

the correspondence between the Landau (three-dimensional)
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.
(3]

solution of the Vliasov initial value problem and the solution
obtaincd by superposition of eigenmodes.

When lc points (i.e., marginally stable discrete modes )
co not exist for the piasma, it is convenient to use the
orthogonality property (25). In such cases we obtain from

(34) with (26) for the la modes

[ Fln) Elraluy) =0 76 A o) MOEICH
Wi, X)

or, using (25) and Case's formula for ,4”(w)

~

o for ¥ ( 7 _ f‘“,o_ .‘/J)
/j("{,-{) g )[“)/J{WE) = ,['6",‘{:) - //('“‘;-)l f?f«z(u) g(w) ~;l(u)‘f?’ {:__’:; )
Az(u)f"ﬁ'-"z /) IV )

Wnen lc points occur, however, it is more straightforward
o use the results of the previous section directly in (36a).

We then find, from (47) and (42a)

, : . _ (7/7-7 () {1!"’ ; '](w), t;?[z:‘/u')
ot 1) = fa 2] - i v) L Py - A [ bl
b(‘{,i) )D(W)EZ:) //\J)’;{)J,:{W)f/ffﬁ(l(‘.‘;)l, ,:r() 42’(”) g W=o., 49)

the only change in K?[y)g) being the prescription of takilng
%he principal value of the last term. In this form we see
immediately that this expression also holds +or the Class 1lb
modes ( N(W,,gf)=0) A@w) # 0 , compare (29)). Note

also from (47) that if 4((xv) =0, A(w) # 0,

)= 5
A//( ) Af(‘*’) (50)
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27 ey \ - - - 3 B ¥
cnd O (%, ) is perfectly well-defined. This justifies
our inclusion of such mecdes in Class la, whereas in the one-
imensional treatment they had to be treated separately.

Equation (49) can also be written in the form”

Blwy) = fluy) + PHY) {J(w)A”(w) - ,{@
7

(51)

o =
where we have used (47) and (37). In this form it 1s easy
to check that /r‘/?g,’ Blvy) = j(u/)A”(W) as required. (It is
fortunate that we were able to show in the previous Section
that we need only /3 ( W,“):) and /11”( w ) but not ,4(10,.9"
The normal modes we have derived are the eigenmodes of

the linearized (three-dimensional) Vlasov operator

o
b N @ g b )
Llhg)= idy - Fid D0 o

such that

L x)E (g)wmx) = kv (2jw )

(53)

”
The results of the previcus Section show that

fV{l l.) dh///(“’) : i - JO/V/"’; J)[{) é/ //{WJ[PL]

- L -'r u) w-v
i Z?’ C'(W)/V(H%) f[w =)

so that (51) and (36) agree(um:j (39)).
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Tne initial value prod for small disturdances of a
spatially homogeneous plasma, formulated in vcrms of tThe
Laplace and Pourier transform of the linearized Viasov

P de oy 1 . l ",'b. r .
equation takes the form (UL&“T > 0O)

(./ + .\/7(’? v )J[ ][ —_ ! i /..\

(/S AL o/ W":j ) By = /(’1’51:":}‘// (54)
Ve expand both /r(w}“ CD and /(’,\“)“‘) accoraing to the
prescription (34) -- using an obvious shorthand for the
Giscrete modes

I \ e . by (I} K"I)

;v o) =2 a,& F g;.(&w_ - 5 Ef

. pety f M. z o/
“w 6\/; ¢
J
/ o ) (55)
SAESE R ACTN Y
a@ LA
Flte)= Z@(ﬁf +2 6(,4)?5(”1”/()5 i)
/i “ ” W f)
J
o W, b/ ; 5
7‘/fr’:~|/ (/JJ’ ﬁ[/‘ F(ﬁi} L/W,m) (55)
[ ) Ty Tl
The coefficients d,, , &y, s by ; and [ (W, ) are
J € : '
given by (35), (45), (46), and (49), respectively, in terms
0,
of the specified initial disturbance ~F(¢¢,v-, 0) which also

.
determines their ./ -dependence.

We

determine the coefficients in (56).

5= 730w
% (p+ af,)c..,df

=2 4.k
e v
d

r 2{ (frabnu)LC c

b+ T (o B b E L) W}y

W

Bl

use (54) and (52) to

Thus, (54) ds

b 2
rea

[€9)] (z)
‘_ ¥+ CJ‘U ) ﬁ,«//j‘f n.[v’

)5’( v %)

() (57)

C(U‘ ny\




We ©ind, therefore, -- either

rom tne orthogonality

properties {23), or the uniquencss of the soluvion of (54)

F{7a A .
C’w '\f}/ = o . ¢ (’,) - (éufi._-— (58)
/ : f"t..rs - / e f VA A
priby frit
A
. (p) = —L— (59)
¢ /'5,;; L
and
nr ooy G4 E)
Dy i) = _*(____ (60)
j”v’:c'.'éw'
Thus,
o (i) : o (2)
il C wt ' a , . [
/f/md"‘? Sl E g e Y b by
“_’, 71+.m ‘f w: /+L£_w{
(61)
(v v, )
l .\,J_ 4
# + W ) il A (w 21
‘/54'1/’ j/f iAw W= v

Adding and subtracting (55) divided by ( 75+ Lhv ) -- this

is equivalent to using (51) -- we find

A
y‘/;/% £ '.r.r)- /“1“;

/51%;5:}‘

” 2—(‘ Z;éﬂmv H/w] Z “

(62)
= flivel bW 1, /‘mﬂ(w) S S 3T Aw 7
b jsﬂ/mr 7 7‘544'/:»«4-j

jﬁ-u'/ztf' +l/w'

y //("J /)L s /},,()
/V[UV [f /7—:11/%;— W~ /WffuflV W - u~

—_

FCQ [
[/61‘:/45# jiu/w]
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From (61) and (3), with the help of the Poincare-

Bertrand formula, we find

o?
") s b )= 7 2 o5t [l

“:j. f&x'bw:" w(-'ﬁ,w;{:ﬁ/" A f,#z.éw (63)

To show that this result leads to the correct time dependencel

for the density (or electric field) fluctuations, one need
only complete the proof given by Caseu based on two-sided
transforms by explicitly computing the (2”5 arising -from

the partial residues at the imaginary poles (lc points)
mentioned by Case. One finds that the contributions at such
points are exactly those given by equations (45). Thus, (62)
is precisely the correct Laplace transform of the three-

dimensional solution of the Vlasov initial value problem as

given by Landau.
In the next Section we shall give an example in which
the use of the three-dimensional eigenmodes of the linearized

Vlasov operator appears to be quite powerful.

VI) A Derivation of the Balescu-Lenard Equation

We consider a spatially uniform, stable electronic
plasma without magnetic field far from thermodynamic

equilibrium. The single-particle distribution function




evolves on the slow ("collisional") time scale &7 accord-

ing to the relation +9-11,12,17

where ;Zm (V')Vu 4, ¢ |et) 1is the Fourier transform of the

two-particle correlation function ;1;1 (ﬁ,ﬁ,);{,“&z)é/é{) s
and € 1s the "plasma discretenesc" parameter, ¢-{ = M‘,V‘D‘?

with ¥, the Debye length, ?’:‘DJ'—* £ K-/—Aoe?' :
The fast-time behavior of the two-particle correlation
function is determined to first order in € by an equation

made up of two linearized Vlasov operators as defined by

(51) 29 1T, (/(-/:)

-1 =
where (,'5(_/%) = &, (an) 362/,!’32 is the Fourier transform
of the Coulomb interaction potential, and equation (65)

defines . (%,Y;,%) - Utilizing the fact that L (% y;)ana

4 20
I(ﬁ,ﬁij commute
change appreciably on the fast time scale (adiabatic hypo-
19,20

and the hypothesis that £(K) does not

thesis or "multiple-time scales"2l) one may formally

write the solution to (65) in the form el,17

Z [ tp dp, (B - -4
Ji Q’;Z ,Zfi) )”v/é;;f ﬂ}i ;5#;":. ({’ﬁz(-fg}}fz)) &f*z(ﬁ,ﬂ)) 5/2 (66)
LL "N




i . L / L
where the Laplace contours "“! and L ran as usual from

—-[aa-fca ) 1—Li>F<T4 to the right of any singularities
of the integrand in the Tﬁf and «%17 planes, respectively.
The quantities in (66) are defined for [/7&.{:_‘,)01 ﬁ?a-ﬁﬁ:ﬁ;
they may be analytically extended to negative real'values.
In (606) we have neglected the initial value of ?12 ("'-‘—'0)
because one can prove readily for a stable plasma that the
initial value will not contribute to

Ay ﬁﬂzﬁ ﬂ [ v, Z‘)

; )m J

=0 (67)

because of phase mixing, and this is the quantity actually
required in (64).

We shall start from (66) and utilize the three-dimen-
slonal eigenmodes of the operators Zﬁ(é)j{,) and Z('ié}g_)
We put (for the stable case assumed in this Section, there

re no discrete modes)

S 4 fz/w/ - B(u 4)«9 £, !W‘ a,‘)
M" ){Wl) P )m.J' s (68)

and in turn

7 <G 3 > y} A
B (42,5, )= ot ) g
A ) /o ;\(WL) K

so that finally

d’u/c/w d?/ oy
/ — 2 Blw v, w,v, L) £ &
‘S;z (4""“,3)3'1-) / W.)).(m) ()”" %) 3 4 (70)
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1
i

Applying the same arguments as those used under

equation (59), we find immediately

;/4 (u :“e t)= [/J{” Bl el A5, '5, [, %, L)EE

() fﬁ/é )(W;))(uﬁ)(/) il J}\,A—..rew) (71

where we have used the fact that Mf(—éaj:: —lv(i&) (see

equations (52) and (53)). We may perform the 1?a-integration
over L_x to find

rl.b
(v, v, J f)ﬁ"“z“’f’ -BEE, relt W)LL
j/ J"’“}M) (W)A(WL) (72)

(b,+ L/eu/)([)ﬁ(,l M/J)

The first term in brackets in (72) vanishes upon integration
over i'i since we may close the i‘i contour to the right
ror that term, and there are no singularities in the right-

nalf 7%3 -plane. The second term ylelds simply

GI;L (V.,V; {e{;):/ %dﬂ’“d?‘dk’gg‘g /~6—"/‘(“’J'Wa)i‘
d o 4 )-un} 2(”.)2(“’,_) 174 cu (W W)

3
dw dw, J cfy t e
i 35)2’/‘8-*6:2(&/ W)“d‘u
A(w)A(V*

Thus, for large times

Alw,)A (W)

iy, 49, P ,,.\g(,g,w-,fewj a
v, 2 $ (hw,
£ 7::0 i (y;)-«i’m ) / /55;' ga. £ o



’U;,_) 1s pure imaginary and odd in /.g :

) A

o J
J PP
Now  J, [*“15
therefore, from (70) and the known properties of E‘d and
Zi (real, even in <t ), 3 1s also imaginary and odd in

,)Q . Since the eigenvalues |/ are odd in,g , as already
AN

Al

pointed out, we see that the first term in square brackets

in (74) is real and even in Jg. ; it therefore contributes
Ma

nothing to the .ﬁ-integral in (64). We are left only with
~y
n

A

the second term, which is pure imaginary and odd in

Moreover, we require only the integral over 1Q of
o

qu , and /dj?fi &’2 = 1 .« Thus (64) with (74) becomes

a/;(zﬁ) Gé)__ - T / .?p [Z/c_f";/ el /} D(Vyv'fi)yr),}:a) g,;
21ed) () NEUP S

We make immediate use of the fact that /3 in (75) is inte-

N
JBL bd

Laand

grated over From the defining expansion (69) and

from (47)

2, Blw, .Y, ¥ ) 9 (W2) /" ), |
/('j e T A———- C!V-LE (Iﬁ[;‘av (M) m..)f")
| ;l(wz) l(W)ﬂ: ZZ[Wz) @')

where g (Vd p1/(wz V) + (A(wl)/q (Wa)) S (w v*) On the

other hand from the defining expansion (68) and from (51)

B (w2, S Chw, x|y ) - Mg //m
75 [%) ) W }v {(M) e %, 7,)

N 31);][ ) S”“(’if U'/ : ;J_)E (v_)
2(w') 1-7;‘2/?4@

(77)



where we have introduced the notation

Dﬂ(ﬂ f S; (,2)1,;}1/' /b}, 1L ) 5 «=12 )

12

{}(1 1 3 b =5 ]
e S )=_c/fﬁ%!ﬁ(m,f(g)—fv@)/;{w)jwp""‘ (78a)

12
=) _ - % — N
Sm = -ck’”%)[/\/%}/;m) “7[(“)£@J]wf’ (780)

Introducing further

= i 0,2) 3 2 A _
Q/a = _/;f«:;u/;{i;; ‘S;;z (1215)33)
= =k 4%)[?{14)5 v)-700) K ()] (19)

we have

2 - II(R) N i),
fdm?ﬁ_;_ B(V-G’“)E}E)}E_“é ) S ( )7 j ) /L(b,‘) S ( /y_;)
S /’/(w,){,)/'?(""-’:) /:,{u; M//(IZJ(” l/v‘?)g (zr) (80)
A°(w) +7()
Thus, setting w,= W, in (76), as required by (75), we find

a2 1 o~

S B0 ) [W“’f IS, /dVd'VS 74 b/u;)E(».)E(»l.
A64) A7)+ ) LA @iy (w) 4,

g [o1e, W) G H (81)
/J&’f )[5 i;m ) {(w) /QMJW' -f)

UV, and U;

Since Sl(ﬂ v,/:g) is odd under 1nuerchan0‘e of VY,

(see (79)) while the product of (‘; (V,) E ('zf) is even,
the double integral in (81) vanishes by sy'nnetry. This cor-

responds to the fact that there 1s no kinetic equation to
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this order in a one-dimensional plasma; only the "three-
dimensional effects" exemplified by the next two terms

contribute.

I (2)
Using the expressions (78) and (79) for :%2 and
/(1)
.5;2 : and the explicit form of the one-dimensional .

(integrated) adjoint modes, one may reduce the remaining

terms in (81) after some minor algebra to

'/o‘{:2 B(Vf} )}/I 3’;.) _ /f(-?)(_[, V/W,)
A04) ) rriy i)

In deriving this relation, we have used (10). This

(82)

expression is to be inserted in (75), divided by  (¥) and
integrated over 3} and hq . We recall, however, that part
of éf (the prizeipal value part) is independent of Wz’ .
Thus, for this part of C» the integration over B; effects

I (a -
only é? =) n (82) and leads to a term proportional to

//(/

(j w/w) Q

Thus, this term vanishes, and we are left only with the
delta-function term. We may integrate this immediately,

with the result

of (v;,¢t)

= - T,

. 1)
2. [ 2 O “U,v 1. )%

s 8
0 (et) P?’i{; A p (7};)1&?:2?4(7}7) (83)
If we recall that
P — wz- W/ / P Z
Wraly©) = 1= ) B gii ey o,

- 'D(_""éﬂt{) «fﬂi) |
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is exactly the "dielectric constant" of the Landau theory
evaluated at yﬁz-g;f.b” , we recognize in (83) the fami-

A, A
8 i 12

liar denominator obtained by Balescu and Lenard

)I‘?[v;)wf%/z(v,k | Db, )" (&5)

Equation (83) is one form of the Balescu-Lenard kinetlc
equation. Its derivation via the three-dimensional elgen-
mocdes 1llustrates the power of the normal mode approach ror

some problems involving the linearized Vlasov operator.
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VII) Normal Modes with Uniform Magnetic Field

We turn now to a derivation of a set of normal wodes
for an electronic plasma in a uniform appiied magnetic field

2

B . Bernstein® studied the general® inltial value problem

400
in a nmulti-speciles plasma using Laplace transform techniques
and included electromagnetic (transverse) disturbances. We
shall 1limlt¢ ourselves here to electrostatic disturbances.
HarriSEQTms given a very helpful discussion of the conditions
under which this restriction is a realistic one.

We use the usual cylindrical coordinate system with the
z-axls aligned witn the applied magnetic field;ﬁo (Figure 1).
As is well-known the equilibrium (undisturbed) distribution

function is necessarily independent of the azimuthal angle

about the Bo -{lelad:
!

V= (%Y, 8) 5 V= /e

(86)
of,
h=0 5 ,C:: é:(@; 1@)
o¢ ’ (87)
We seek stationary solutions of the linearized Vlasov
equation for thls case in the form
nﬂ _g t
: Y = ,ﬂ,) lﬁ'x Lw
Flu,t) = Fmu) + Awy, g wh)e== -

* Althougzh non-relativistic. See Ref. 17, Chap. 10 for a

discussion of the relativistlec equations.
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We make no restriction, for the moment, on the direction of

,ﬁ with respect to;&o. We have then for the disturbance

function 7 17,22
%, Q'a& dvﬁ.
2 / tp (4 2o 4 ) o ST
Wt I--gJ_U_LCOJQ)w-ca%,\g ——"( 'Dbz +.4a VL 89)

where (0 _.QBI/m, = (& 'g_;.d) =/t n{f; and 9=¢-—a{
is the angle between ;g; and 4%1 Gl (Figure 1). We see that
the entire equation is invarié:; to rotation about ‘cl"zeqiwlfswo -
axis, i.e. 4 (©) 1is independent of « . Equation (89) is
restricted to electrostatic disturbances, since we have used
jﬁ:{jﬁt= 0 and Poisson's equation instead of the full Maxwell
equations.e2

We normalize the stationary modes foréao # 0 such that

/(/j{’%[%ul)‘g/w/()lé) = 7%%/2{/:) (90)

and look for solutions of (89) periodic in & with period

|
|
|
|
2r. (The meaning of the two real parameter J» and//f will i
be made clear shortly (see discussion above equ. (95).) ,

I

They are related to the fact that we seek modes "complete"
in three-dimensional velocity space and thus require (in
analogy to our previous work) two parameters in addition to

& (or /k). We shall choose 97.,(4 ) below in a convenient
7

"™ In this Section and all that follows the symbol L refers to

"perpendicular to magnetic field", and is not to be confused
with 1fs use in earlier sections with reference to the direc-

tlon of 4% :

AN,
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way )_. Defining

vy =0 - ok p r o
= ZZ . z T 2L [} 9%
F o 4% § 7 (8) wc.eﬁ(““*au; Hagal; )(91)

we find, if 7])P(/() £ 0%

e-.zih'ﬁ 2 p o/
d9!e cp e

/g ( w/l() 7?]/{) tﬂﬁ ~(y4inl {;W / 0‘(9) =

& i R *
(9/&.;F9 +ca’wt£90_(9,)}
0

Thls expression i1s readily seen to satisfy _4 (94—;17‘;‘):.,&(9)5
since 6‘(9:#27?):(,-(9)) and to be the "solution" of (89) with
(90). However, we are left with the problem of interpreting
the singular denominator in (92), in analogy to the similar
problem of interpreting (fi-j{* CO)—i in the case with-
out magnetic field, and of guaranteeing that (90) is
satisfied (see below).

To facilitate this Interpretation, we first rewrite

" again
We shall see below that it is /possible to find non-trivial

solutions of (89) for which pﬁ():@l.e., modes whose integral
over velocity space vanishes. Such modes do not contribute

to the electric field fluctuations in our electrostatic approx-
imation, although they may contribute to the disturbance dis-
tribution function. Such "zero field" modes are especially

important for the speclal case k¥ « By = 0.
SR P

|
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(92) using the Bessel 1dentity'23

eiz%wzé’: ZJ;,(V)GJIM@

N==40

(93)

/
To enable us to evaluate the integrals. Performing the & .-

integrals, and comblning terms, we arrive finally at the

expression
o o ny OF
: _ W G . s
jby(vzlﬁlgla%)‘jg&%)j _e’_a_j___ Z (]};(3))6"”9[ & O Y ij,
© = +N
(94)

The singularities at P=-n, of course, are the same as those
of the singular denominator (1 - e'EFiB) in (92).

AT this point we restrict our attention to disturbances
for which k, # 0 (/3; -A];:%ﬁo;é 0). We shall disucss this limit-
ing case subsequently. So long as kz # 0, all characteristic
frequencies are Doppler shifted by the particle motion along
z; thilis 1s the physical reason for the continuum of character-
istic frequencies we shall find. We now note, from the point
of view of the theory of distributions, that taking the Cauchy

principal value (with respect to integration over V% ) of each

(64—n)—1 in the sum in (94) provides us with a "particular

solution" to the inhomogeneous equation (89), provided the
normalization condition (90) holds. As before, we must then

seek a "homogeneous solution", again within the theory of dis-

tributions, which provides us with the freedom to satisfy (90).

At the same time, as we learned from our earlier work, we




must require of our homogeneous solution that 1t provides

the maximum amount of "completeness" in (- and U,~- space.

In analogy to our procedure for zeroigo -field, we use two
parameters: the discrete parameter V (all real integer
values) corresponding to the £ -variation, and the contin-
uous (positive, real) parameter‘/q corresponding to the

V) -variation. We are then led from the above considerations

to the choice

ho;no .

s AT 4 4

jﬂ:}’() - . cmw&w@)ip (Véyd Stuzn) g’(ﬁw) 77/,,/@)(95)
The reader will readily verify that the "generalized function"
,ﬁ;f“TZ7) is indeed a homogeneous solution of (89) for any

¥ , i.e. it satisfies left-hand-side (89) = 0. Moreover,
The dependence on VU, 1is arbitrary. Our final form for the
continuum modes will thus involve for each YV the sum of
(95) and (94) with each (64—n)-1 in the sum over n in (94)
replaced by its Cauchy principal value. (Our restriction to
X, # 0 must be kept in mind; the solutions (95) do not apply
for kz = 0. As we shall see, all modes for kz = 0 require
discrete frequencies w )

Defining
wc,
/

-<

(96)
b = /,fe: +£j

w

I
1]

.
k5 W




(97)

we may finally write our continuum modes in the form (kz # 0)

' s . A . 1@3 ”“/c. -
A, (a,0050) = ap LG 40 [ 5 Jpet TLEN T

+ "l.v(”é)e{pé
Ly . ()

74
where 5( = -!é_%/wc , and /L, (v%//()

oy (R, (v2) (aiy T, () *
tion of (90); the _A -dependence

In (98) we have chosen our normalization (90) in

T p)= 224 Y, ()

f(?ﬁy() S(w- Wc""'"ezva/&)}

e
W= wein — Lo L4

=0

(98)

has been replaced
in anticipation of applica-
of this term i1s then explicit.

the form

(90a)

s0 that the modes are well-defined at the zeros of i%J}:(_}/J{(}

in /o(-space.

This 1s especilally helpful in interpreting the

limit k, = O (disturbances propagating along B, see below).

That J,(v;) defined by (98) is in fact independent of 4

wlll be seen immediately below.

a7 2 ©
a0 Jese fas b, o000
o o oo

and again using the identity (93)

= 52?7}(((];)(/3){)

*
Thus, we require

(90)

, we may carry out the {9 -

"We shall find it convenient throughout the present discussion

to replace the integral over o

in J@3y by the integral over & = ¢

For the normal modes this is tTrivial since their angular depen-

dence involves only © .

- A e ST By

| For a more general function, £ (¢,«)
~__ ve transform to 7 (&,x) before integrating.

.-‘x'.
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integrals explicitly to find, with the help of the delta-

functions: .
: S i 2, »
L3,k (we) = 4 - fos E ST fnda TN, 51

(99)

7, )= S, () + S 0, ()

We may immediately draw an important conclusion from

We see explicitly that A})(j OM WJQ) is in fact

(99)-
it is the same function of

also independent of }

§ Lz

W for any Y We therefore define

;'/.‘(W) J/J)( (w- w‘P)) /(u;) ﬁﬁ'

L JE) N, (5,)

(100)

and find that

= - [|d v

Y= 1 /u > frrvrey)

| - P/du [j Jyn ;)_R} 7,, (,,ﬁ (u~ Wcﬂ))
w—u

Je 773 f;&L'7)(u)

W-u

i\

(101)

i

-

where

A 4
'j s i 0 .:L ~W.h
F(#)= 2‘ ] (E)/” ﬁe(a “ )) (102)

h=-x0
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P(u) is a reasonably smooth function of u if kz # O.

Triese results will be very useful in our later discussion
o completeness of the modes; they are also important in deter-
mining the classification of the modes. I¢ is apparent that
P(u) plays a role for’am)% 0 analogous to %he role played by
’? (V") in the case of zero magnetic field. This fact has
been exploited elsewherel3 to study the stability properties
of a plasma in a uniform magnetic field.

Before proceeding it is useiful to discuss a few specilal

points where difficulties or ambiguitiles could arise.

The zeros of AWy, [i4), (*@.7’10) 4,42':/0)
AL 7
The reader will note that at the zeros of J@}Y(Z:(%%)

the normal modes are normalized locally to zero, and at these
points only the "homogeneous solution" (second part of (98))
survives. Since )y(v}) 1s independent of//q it can be
regarded as belng determined from (99) by virtue of a limitc-

n p T .
ing process as f; approaches one of the zeros of é;(%%)

The special case <L = 0

For disturbances propagating along3§4),(KL= 0), the sum
in (98) reduces to a single term (n = 0) and J; (ﬂl/z(/mc) -0
for )y # 0 while d@ G%/(/Z%)—é,i . The reader will see,
however, that "homogeneous solutions', normalized to zero,
are preserved for »P # 0. It is easy to check that these
are indeed solutions of (89) for k= 0. Again, we regard the

Qp(b;) (P9£0) as being determined by (99) (where now the

sum contains only one term) by virtue of a limiting process.



fFor disturbances propagating perpendicular to BO, (lcz =0),
AAAA

-~

we note that our particular use of generalized functions in
U, ~-space as a means of obvaining normallzable eigensolutions

the lack of Doppler

Lot}
-

o7 (89) no longer applies, and, because o
el

sh..iving, modes with a continuous spectrum of frequencies Go

¢t types of modes

[ o)
O
Y
<
o]
-
4]
Q
W]
4]
)
ot
=S
9}
P
[
ju]
e
~
ot
=
(@]
[oN
o
o
ct
B
%]

with cdiscrete frequencies occur for this propagation direction.
st set of modes, all with non-vanishing normallzation

integral, arise for the discrete frequencies %) or phase
g

o
speeds w, /) = s, ) such that for fixed k . = k)
wr (27
2. 00 -y
[ = 5 ardv; [ v, J /'f_"ﬂ—‘/. (vz v,
L L —— L2 Mg )T (103a)
=0 "‘_.?"ﬂf/c o) - 02 v

(we note in passing that (103a) corresponds formally to putting
el
2 (w,) = O with k, = 0.) Apart from notation, and our
)

neglect here of the ion motion, this is the dispersion relation
studied by Bernstein® (he discussed this relation, however,
only for a Maxwellian distribution f‘o). If £, is Maxwelllan,
only real W, can satisfy (103a). Equation (103a2) has in any

case a denumerably infinite number of discrete solutions Wﬂ;:" V\én.

-

If we normalize these discrete modes for kz = 0 such
3 7 ; s
that fa’ ,j{‘.’f{ﬁ (V.—;}!{;)é’/@)/() 4 , they are independent of P

and/t( and may be written explicitly:



_1}9_

~ /U,y nOhw
ilsno B (Z)e O TN (Y

v c i
.//l(a _L\'jl"'/}n_o)"a % z_ —

h=-a W, ~ vy in (104a)

It 1s easy to check that these modes are solutions of (89) for
kX = 0 and w-‘fivi,, and that their normalization to 1 repro-
duces (103a). Note that these modes contain no free parameters
correspondéing to the C)— and Ql—variationsg they can scarcely

o

W

e¢xpected to be complete for the expansion of a function in
three-cdimensional velocity space. (See Section X).

This dllemma is resolved by the recognition of the exis-
tence of an independent setl of modes A%Wn with discrete

frequencies given by the cyclotron frequency or one of its

harmonics
= / ¢ /}1 = / g 5
w, = me, ; [ml=143,3, .. —
olus a "d.c." or zero-fregquency mode 4% For m # O these

modes are solutions of (89) for k, = O having the property
/;/ig'.«q”(% Q/bd,u K) » 1.e. they are solutions which
do not contribute to the electric field or density fluctua-

tions. They have the general form, for each integer m # O

o (41,0]0,,55 K) = € 5O f) (1)) (s

Their "zero-field" property requires for each m £ 0, &, and

X (using (93)):

S

ﬁ.:o

/c&il{}_ v G (24, (59 [5K) =0

] o




e shall discuss in Section X a possible speclal choice of
the functions (v V) /6’%{) . We shall show there that
continuous parameters ¢ and K can be chosen to correspond,
respectively, to the U;h and QL-variations in veloclity space
(the © -variation being associated with the parameter m). We

ark here that such modes do not contribute to the disper-
sion relation of Bernstein since they do not contribute to
the electric field fluctuations. One can readily verify, by
studying the initial value problem of the linearized Vlasov
equation in the electrostatic limit for kz = 0, that modes of
the general type (104b) are included in the solution for
fT}{, t), but vanish upon integration over v . In contrast,
the "d.c. component" (m =0 mode) does contribute to the
electric field perturbation and represents an interesting
static solution of the linearized Vlasov equation for

k « B_= 0 (Section X).

A, MO

VIII) The Adjoint Modes (k - B, # 0) and lMode Classification

M

The adjoint modes 4% satisfy the equation

» 7 15 7 ﬂ ﬂ i
—Wof 202 ! J'c{oj@ "'IV ?_‘_ﬂ_ = - a’ji/‘[:fé‘ + 7 )ﬂ
=¥ )M ZF e s

Utilizing the same (standard) procedure as that described under

equation (20) we may prove immediately from (105) and (89) that

(w’#— w)/a"if.ﬁ. (v; IQ/W//)/ (" /”//?) o (106)

Once agailn, the basic equations imply orthogonality in

W' -space but not necessarily with respect to,/ﬁ’ or » .
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The main continuum (Class la)

In this class of modes we have W real, k, #£ 0, the
eigenmodes are given explicitly by (98), and for each V,

_/T and W 1in this class

22y (50 Dl (7 (v )

(107)

7, ( —" ) ) # 0

For the modes so defined we normalize the adjoints such that

/d’i?i‘ "?M 4 '%'Q/I/)"f (”é -L)Q/W’/(): g ‘Z’-ﬁ) (108)

The Class la adjoint modes then take the form (k, # O)

"'y( 9/7{) = .,?% \Z-//‘,f() t()’rh.(ﬁ Z ()Ccné 79

P W= - {Epe—_/{
fAl)evO (109)

270 S )G Jﬂﬁ//) f[w~z%y —.éé—vé-/-r'g)}
/9? ﬂjéﬁ)’%i&égqé) .
since with (108) this solves the adjoint equation (105), and
application of (108) leads again to expression (99) for
,f),, () - With the restriction (107), the adjoint modes
given by (109) are well-defined within this class. They
2ls0o hold in the 1limit ka" 0.

We may also determine explicitly the orthogonality

properties; again, careful application of techniques related




da s,

0 the Poincare-Bertrand formula yields, in znalogy with (26):

[ 58104, (gl p) < S [12PL)

A
m~ame D/ \ . . s e v /= A 1 1 ==, 2 <)

whare P(W) 1s defined by (102), A (w) by (100), and 7, 15
L

\ 50 ) nr AR T~ - p o IR Walra PR | DO .

in (99). Ve see that with the restriction (107) the "norm

f 9 ~ T e rad ] 1 TN R . o ey - g T Ae - Y

(_..‘O) e h\.:.a..-n.—cu.‘.’a.i.uc.‘d Lo Clc-Su 14, <G IFAO.LU-.; iu ta c

i T T s}

T Ve —_— U

RO CAdis
T 5 G g 4 q o e s e o
These rodes are the analog Class 1lb for the =zero-magnetic
o o
ficld cazse (Sections II and III). The normal modes them-

given by (98); nowever, for the adjoint

A e pee ~c - n
MoOUCsS We nay now caLe

-,

-

*, ( :afa,@/w‘ = & OO [y ) [ (o fi)  (121)

a2

since this expression causes the left hand side of (105) to

/Z/:’K [‘%_/l/e ’ "4*;”"9/'4_) 6"’”’}"’"’ ée (v gfﬁ{/{) f@/_%;} - /eévé//e)

(112)

= S {/ﬂ 77[4 }'_O



fhus, (111) indeed solves (105) for this class. Moreover,

‘/;ij"/ (z) U'Q/zy(),% (VU 9///) #/:' (4 (- ‘”})) yy,/y/jf(u&zvj

/ v

= j[”){y,&y/jf[w-wj (113)

Ir using the continuum modes la and 1lb, we are to omit the

points of lc.

The discrete modes (classes lc and 2).

Class lc. Thls class of modes is defined for the set

of real points #/ such that both (see Equ. (101))

Afw) = 0

(114)

and

Plw) =0 (115)

It is useful to note that this definition of tThe discrete

modes includes as special case those discrete modes (104a)

of the case kyz = O for which ", is real. That Thls is so

can be seen as follows: as already noted the condition (114)
is the same as (103a) if k, = 0, and the solutions of (103a)
are such that Mﬁ.# w,n  for any n. But inspection of
definition (102) shows that P(w )—=> 0 for k, —7 O'excegt
where. w=#.n . (In fact, P(w ) approaches a sum of

delta-functions in the limit k,—> O with singular points at
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A

#=W.n ). Hence, at the points W; defined by )(%‘]-‘-‘0,
Pﬁy)==0 if k, —= 0, and the (real) discrete modes (10Oka)
are a simple limiting case of the general Class lc modes.
In Class lc we find two sets of solutions such that

?ﬁp(/z() =1 (Class le,l) and '?/;lfp(/l() = 0 (Class le,2):

() L
Class .,lC,l /g (U; Z/:,_‘ 9/;’/2) o 6"60’»{/4/’19 (]J—-@I)e LI?Q 77 ( ]{Q
) ) H= - '[/‘/;-n = sz;’/j&
: ;; (.z) iRl D (116)
ass lc, : 2 (Y20 @
Cless 1o, 2 U;)G/ ) c 2___%[)7 / /] [; ‘)J(-' ’“’”‘/2" {,)

Note that (10ka) is the limit of the le,1 modes as 4,~—» 0 (the
72

princiy vaiue sign is then irrelevant). These discrete

ke
L))
=

ILl

)
H

e independent of the parameters »¥ and 4 . For
RN

nodes

the adjoint modes, we normalize according t©o

" '-T) ; w-’f_. 4 !

or ) (117)

/f?wdgu— o1 (et €22y, ) = 0

and find again two sets of adjoint modes

/N(zr v- (9/4/) = g"‘m”‘& J, ()e e
- wem it - £V (118)
oy ) < o e O 5:1, T ()enO8 (v -wn—Lats )
Application of (117) to (118) or (90) with ZW’;%) 4 or D to
(116) leads simply to '\(W‘) and P(#;) = 0, which

defines the Class lc modes.
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Class 2. ( w discrete and complex). This class of

modes is cefined for the set of discrete complex polints M? »

if They exist, which satisfy |

5 25, J; ()7, (4
i:—éw nZz‘.u W-r{h,—-ﬂ 2/ b /7//1/ L% ﬂ(z) JF)

(119)

::/é_f /7/:(”:?) F/&ZMP/H)
. ,\5 byl /4 L Wl

(Note that (119) reduces to (103a) for k, = O if (103a) has

complex roots.) Normalizing these modes sucn tThat

s

/30 j[?f 9/1«J) c/*’l/“.&{[?/%!f 9/#)(*3//2 4, w:.,ﬂ =

(120)

we have explicitly

NS,

- -4V (121)

Ao )g) = €T 69

H==w

i
and
AL . . > . Y
. wlyirn@ <— sy, nE b
/'Q-. (Vé) UI) @/i"é/) = & MZ_ ‘-j;;[‘/)e‘ V:/-—ii/l'l—-/é’;?f‘;//é (122)
== 7 e

Again, the normalization conditions simply reproduce the
defining relation (119). All the discrete modes arising in

the limit kz = 0 are included in Classes lc and 2.



For Class lc4aﬂd Class 2, we find™®

;?Q%cﬂ? (123)
wnere &6
C7, = EﬁD clic Plu)
" L (-uj*
For the leimodes this integral exists, since P(#r) = 0.

For the Class 2 modas ( W, complex), of course, the principal
velue sign is not needed. (See also discussion in Section III
reiative to the lc modes for B = 0). For simplicity we

assume that only simple roots of (119) and (1li) exist, which

guarancees @ 7= O . In the limit kz-—> 0 (123) reduces TO

W,
y — /"ﬁf/%f A ni, 1, (0
C¥x (ié::év = ;2—' J// (/ ) : : ) 4
‘ e (hg..uﬁn)z 2h)

for w. Dboth real and complex.

Some care must be exercised here in the case of the lq;modes.
Upon forming the indicated product in (123) and integrating
over & and vV, , one finds that the only surviving contri-

bution is the integral of a sum:

=3
div;, 5 s ¢ )
/ (,,_,_N["[ V.- /‘,va%,i W B it~ LUz e

Tor k_ £ 0 uhb integrand has meaning only as a sum, l.e. it

cannot be integrated term by term. However, use of The same
transformation as in (10l) shows that the integral of the

sum is well-defined because P(# )= O, and (123) results.




..LJ{_.

X) Completeness of the Normal Modes (k - By # 0)
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We have already noted the analogous role played by

in the construction of the normal modes witn magnetic

)
fi1eld to that of Z(//) in the Van Kampen-Case theory and

-J'-

Xtension given in this paper This

o~

analogy holds for all propagation directions except the

imiting case k¥, = 0 (kx - By = 0). We have also seen that

Z R, SN

in this limiting case (ﬁ = 0) we always obtain a denumer-

ably infinite set of discrete normal modes belonging to

the general Class lc and/or 2 (whether the plasma is stable

or

2t

e field

not) plus a second discrete set of "zero- modes.

This is an essential new feature of the plasma spectrun

introduced by the presence of the magnetic field. In a

I

plasma without magnetic field, the treatment of Case’ , com-

-

e ke G : - 3 . : "
vined with the Penrose criterion”, shows that discrete

modes exist if and only if the plasma is unstable or margin-

zlly stable at the given value of E& We shall see below
P

(=4

wat this is also true for a plasma with magnetic field for

any propagation direction of electrostatic disturbances

other than k, = O3 i.e., for k, # 0, the discrete modes

Z

exist for the given value offy and givenéao if and only if
i

the plasma is unstable or marginally stable to such distur-

bances for the specified conditions.

In discussing completeness of the normal modes, we

shall first limit our attention to disturbances for which

kz # 0. For the sake of brevity we shall also restrict our proof

to plasmas for which no lc points exist. (It will become apparent

below that the generalization to include lc points proceeds exactly

as in Section IV.) We wish to show for such cases that it 1is always
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P = * de o2 e /\ g
possible to expand any  function f(?/ o ) = F {'l«:} f 9}& ,{i 5{)
/ /7

¥,

(see Fig. 1) according to the scheme
7£?%‘ar L ) )= > Va4 - - jife )
Ao i B R "‘/ =L 4y, A (Zﬁ‘,?ﬁ, 9/”‘/5)
s

(125)

+ 42__ n&i//q( A (///?),27 (@ v é%/i/ﬁﬂ)

M=o
- o0
The sum over //; runs over all complex discrete modes (Class 2).
We shall have no difficulty here in defining the integral because of
our assumption of no lc points. Althougn in the interest of

-

simplicity we have suppressed the dependence on k in the

P

H

hand side of (125), we recall here explicitly that

ot

igh
the normal modes are functions of k,; and kz. Moxreover, the
3 - | r =
expansion coerfficients Qh,ana ‘Ayé;Y)W¢ll depend parametri-
] 1 xR,
cally on K, xi_and
We use the orthogonality of the continuum and discrete

modes with the adjoint modes to Iind (suppressing thegﬁ»

dependence)

4= L o o) K )
é/-

where the Cﬁ,. are given by (123).
"y

We define

j; (v2,v2,6) = //@J&;_j &) —~ 5_ é,ﬂ/fﬁg}zf 6/;) _
4

e
See footnote under first sentence, Section IV.
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and using the expiieit continuum modes (98) in (125), find

[ r ) —-sz’z'é =
7, (55,8) = &7 L/ﬁ/’ e L)e” )it

-

&0
ragy L (5) 2 o Getn? EA54) ]

iEste w-wn -6/

E "'4.;4/»9 fuJ ;
5 2 ) },[/Vr’f/ J'_')/? (%)

P’*"" @ ke (128)
s (:_'0 TN .:' \95" o!
ol JUIY B b i AR I //Tt/’,d.f.f
flz=wco “ / /‘/? {V ) M- }'/rl"n‘ ?f /( O,) (/{)/
-
Since e_aﬁﬁﬁg-}z o , We may define
?j’" U é_; i t/.ﬁ’/ié) 4 ~
s (z © /= e 7, (”Z 2, 6) (129)
and in turn the Fourier coefficient
T sl
g A w’u’ "

(With the coefficients &W; given by (120 /,,,(H ;) is
completely determined=through definitions (127), (129) and
(130)_;— in terms of the given function £(%,%,&).) Per-
forming in (128) the operations indicated in (129) and (130)

we f£ind

/yz(”;bi) // (f/pﬁ V)
(131)

A7

L (0) 7, 59) 7 7 N /@75@%/%)%

/x W= (z;/‘




waus, in analogy to our previous work, Co prove the vaildilty

icient ©o show that (131) can always be

a/’, (132)

Y
-
inee if ;E/'l is kncwn Tthen th roduces e /., } Wr /, -,‘f?\?;’ ,-\.
since if (ifw) 1 m then the produ A1 /3:) /_ “"{/"7‘-‘_&.‘"—“}_ 13_/
is dctermined directly from (131). (This product is anzalo-
gous to the 3(W, ¥ ) used in Section IV, and we see from
AN
s PGP : 53 2/
(128) that it is just this product, in addition to [Q(WJ
which we neel (o cetermine the expansion (125). We o not
il LS
require Ay [WP+ =2 4 zlone. )
To show that [J(w) can always be determined, we write
i s | o \ / F IR, ) - "‘?._ 1. o~ 4 -
(131) for each ¥’ in terms of the variable o{;&;afirfﬁﬂ
/ .
g Zlu-wv) v = ,
T (5‘.(“ W ),”_L) = //});(&J?{;}// (7 (u-w»//
e (133)
é‘ eliy .{,{{.’/V)
* L7, Gl %) ﬂ
}"/
b= L
¥ltipiying by 2TV (}gq\/ﬁ » integreting over !, and swa-

ming ¥ over zll }’, we arrive finally at the inftegral equation

Ge)= Gl)](w) + Py ¢ «v L) (134)

W=
- &

We use no index on u in (133) by virtue of the following

. o 3, ) / 3 de
argument. If (131) has a solution for each Y , then it must
o ;
L 2 da L, L . ) - vl 7 s e ~ - / e . o~
hold atv the points L;—;—é%ﬁﬂﬂ) for eacn »#° . We then periorm

. , - . . . . 2
the operations leading to (134), including the sum over VYV  ,

o

at fixed u rather than fixed %, . The result is (134).
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i=u’ (101)

G(a)f)é—___w wf:xd \/[),,,/ﬁ, (x ), *) (135)

o

p(u) is defined by (102). In deriving (134) we have made

Lt

use O

@

the fact, proven earlier, that /‘ ( (“'”’P{)
18 independent of }J/ .

Equations (134) and (101) are once again the integral
ecuations studied by Case and Van Kampen. Thus, we know
immediately that if there are no points at which ;?@Q and

(u) vanish simultaneously (i.e., no Class lc or Class 2
modes), then (134) with (101) always has a solutlon d?ég}.
This is true, for example, for all isotropic distributions
£y, &s one can readily prove from the definitions of P(u)

A
nd }t(u)-lB'B

We wisnh now to show that (134) with (101) can always
be solved for é?ﬁg, even when complex discrete modes exist. We

b

define for complex 2

. Ly / 7 [iv)
R(#)= e “‘(’)“ v

oo (136)

&o
7“(2 = S G(w) v
291 w3z




nose that For k, # 0) ©(z) and S(z) eare analytic in The cut

plane. Hence the oniy poles of R(z) that can arise are at
1

those points <X (if they exist™~), such that

\

I+ 2wl S(z) = O

“

g

But these are Jjust our points M&- defined by (119). Thus,

R(z) can be analytic in the cut plane only if

L (140)




This requires

o0

/c‘/;u G—[&‘/) _ O
o W o

o

/ . %‘fﬂ éw‘&;t/é @/* /il ;7,,[ (o148, Y] ) s

e

LS.
v

Transforming back to 775 - space, we see that the above

reiuces to (with (129) ana (130))

0 ://v— /J’C/‘. /C. u—h?gr./w.mﬁ' /‘(2’ V' /‘ 'y
-0 PE=p

é! {:J’)_Jr{’) 0“///i

PATN o &
e /Wz., / 5% eIl AT Cf sy, 7-44,,, Ll efv) ]

S AL (141)

o

~-

/Jr [f U 9/ )Z}{Z«% Ui} :9) *—_7_- éw,_‘,,@,, (V%I/IJQ/%)]
w; -

Thus, from the orthogonality of the discrete modes, the

condition T(aj) = O requires

) sk .
C’;f é’j = /c/{;{ Flz v 0)4 (%4,004) %)

Hence, the requirement that T(ug) vanish is indeed satilsfled,
since the condition (142) is precisely the same as our form-
ula (126) for the expansion coefficients of the discrete

modes. (As already noted, by assuming simple roots of (119),




on

b

solut

v

e ‘ e L‘ /- - 2} Fs
wa guarantee C:Mﬁ 7= ). We conclude that

-
I R— : " . .
(i {w) of (134) always exists for K, # 0 and hence the product

4 “N

-) =~ ) ; ‘-’-.\'-. h‘-.‘ S / | 5 ad 3 4 < = \
/ (Eljﬂ',{;f=#kw§‘;) is determined from (131).

VII are complete, i.e., the expansion (125) is wvalid.
1t nas been snown elsewherel3', by studying the properties
tion for electrostatic disturbances in
the form given by Harris that a Vliasov plasma'with ~nplied

uniform magnetic field is unstable to such disturbances

over & range of values of By and k (for X, # 0) if end
2 . =t Shicd
L~
only if the Penrose criter+o“° is satisfied by the function

the Penrose criterion and the definitions (114} and (115)
of the lc modes) that discrete modes exist for k_ # O if

Z

and only if the plasma is unstable or marginally stable at
the given values of/B and k we are considering.
b Rt A A Lo LS

In contrast, Tor kX _ = O, the continuum vanishes

altogether, and we always have two independent denumerably

the plasma is stable or not. Our above treatment says
nothing concerning the completeness of these modes for
arbitrary disturbances with kz = 0. In the following

section we discuss the normal modes Tfor this specilal case.

“As already stated, the proof given here is restricted to the case
for.which there are no lc points. When such points exist, the proof
can be generalized exactly as in Section IV. The results for CZ(M)
and the corresponding coefficients of the lc modes are then obtained
by replacing f7(W) by P(&) and f;(v) by C(v) in formulas (10),
(45), (46), ana (47).




%) The normal modes for k_ = 0.

For the special case of propagacion perpendiculer to
3 there exist two independent sets of normal modes corre-
spondiang to discrete excitation {reguencies, the general
properties of which (except for the zero-frequency componens)
are described in equations (103a)-{104b). The first of
These sets, with frequencies given by the Bernstein dispersion
relation, contributes to the electric field oscillations and

is a simple limiting case (equation (10La)) of the general

Class lc or 2 modes (equations (118) and (121)). The

adjoints of the modes (104a) are given by (118) or (122)
for kz = 0. The second of these two sets is made up of modes

excited at the cyclotron frequency and its harmonics, plus a
zero=-Irequency component wnich we shall derive below. A par-
ticular choice of “he functions / /6“ /V) (MUJ.O) in
{(104b) is apparently left to our discretion.

We first note a special property of the modes (104a):
if we multiply any one of them by e E%S”"i o and inte-
crate over @ rfrom O to 2w, the result ting integral vanishes.
Thus, any function jp(fé)qb é%) which is expanded in
terms of the (104a) modes alone would have to have the
property

A7 20
Jo (5,4) 5 % /,f(ff v, 0)d0= L [upe s L 6 g, ‘(1?)
o

However, an arbitrary function cannot have this property.

This provides a direct proof that the modes (104a) alone are




et comblete in velocity space.
The guantity ;Za U, Q;) plays an interesting role
i ‘_-J
in the theory for the special case kz = 0. Let us consider

O in the electro-

Il

the linearized Vlasov equation for kz

tatic approximavion:

]

pn
!

v

’ - £
’G _ o Wy i (= S8 [,y /’
= T'QQ;§%; =l Ot s O e H | 7

@_

We note that g, as well as f,must be periodic in & . Hence,

upon integration over © rrom O to 2T, there results

e eir
/ o ) g = 2 : =
7 52 2ep (55,62) = 57 Jo(575,6)=0 S

i.e., this particular weighted integral of the solution is

constant in time. We are thus led to expect that those

initial disturbances in velocity space which do not satisfy

g = 0, and hence are not expandable in terms of the modes

0
(1042) alone, will excite a static d.c. mode. (Note that



{1e4) anc the conclusions we have drawn from it apply only

We have noted at the end of Section VII that the fact
that the additional modes (104b)(m # 0) do not contribute

to The electric rfield fluctuations leads to the property

/5"‘5 o U (), (i J ) = O (145)
o - o

For reasons similar to those discussed above, we cannov
choose /74” (zr}) y; /oK) so that the integral over U alone
vanilshes (for example), since this would again lead to a
special property of The functions expanded in terms oI such
modes.

To arrive at a particular choice of the fuanctions
/41[%%25/53/{) we have chosen the somewhat unconventional
procedure of studying the initial value problem of the linear-
ized Vlasov equation in the electrostatic limit for “z = Q.
For the sake of brevity, we omit this derivation since it
involves standard techniquesl’g, and the result, which will
be given below, is readily checked. The only part wahich may
not be completely familiar is that contribution to the dis-
turbance distribution function which vanishes upon integration
over U plus that part representing a static mode (pole at

p = 0). This study leads us to choose (for a>=h7wbyall

integer m # 0)




) [ o g = sl Fnd g .
b (5,4,0)5 )= & R T MT U by i)

@4

= (falzv_».-éhlg(_,(mc <;“,L/y;:.-.c;‘(5_‘(1"'}'-';()-- // [b b) b‘b\/n

.u'})’K‘/;_d [K/WC) [”rc{p/u fa (,r VJ)WMJ':I (Vr‘! (

The f%v(%zx/o'f() so defined clearly satisfy (145).
. ) -

the adjoints to these modes are simply given by

Ao 7 ~
-’ﬂ (.U-& U 9/.)%) — S_"'l:_llé: .’-{C/e clﬂg // {Z/- -/,v /G_' /‘\)

T )y

‘ BN, () (17)

The adjoint modes (147) are orthogonal to the Bernstein

104a) as well as to the d.c. mode _4?0 discussed
The orthogonality properties of the "zero-field" modes

and their adjoints are in turn given by (&);37442)
/\.':
[ A, (7,005 k)L, (s 6] K)
§le-e) k) 1 /

\,

o i APEA T e 17 L. - ;
2 (k] EVENG) [, fos o)L 7 ()

4t

)
Q,)

- (=]

]

We turn now to the d.c. mode mentioned previously. If
a zero-frequency eigensolution of (89) for k, = 0 exists,

it must satisfy

[—Zvjcw@)’go" cc*-’c%éo = - —i?cog/@)/l_/,_/\:ﬁ"go (149)

e seek a homogeneous and a particular solution of (149) to

enable us to satisfy ‘/4;%r,£0 = i . A homogeneous
A




o 69 -
solusion orf {1lLg) is seen to be
\ps . ('.'"
’7 /’CJJO ) 5&-(9 ;
—l - C_D, ('U L"’/C) /’1) (150)
A
5 — - i) - o g - e — o~
where /‘0 \/L'E,}L;,_/c;‘;/(/ is any function of UL and i . If
+he sssuned normslization can be satisfied, a particuiar
solution of (149) is then simply (independent of & )
paul
ﬂlﬂd = —_JL g
~ g . v /’..i
@ (151)
Taus, we may cnoose
c%c‘ﬂdﬁ -X) —r—xmﬁl l‘ Nl-)
//z (oK)= & rm/ M/ S ki \
X TK I, (/) v, (152)
Jith the nelp of (93), we find /4;3"4f = as required.
ff.‘/‘-’ “ar 0
The adjoint;]t’sf this mode must satisfy (105) with
k =0 = w. Here we may choose
A J "
Vi { ) 7 a(V‘G}J_(I’J_ '() -tEs5u 9
A /S s o O W
gt g e Y £V (e K) (153)
J??“(/D (T,:) /l_/z_ ()
since this causes both sides of (105) to vanish if k, =0 =w.
Finally, we have (using (93))
/\—‘t\'
1y 2, 0,6176) 4, 55,005) =
ﬁ/ i 4 (06,61 K) B, (05,05 K
(154)

W
K, G4

Cne may readily verify

t0o the Bernstein modes

(frtsfis) -

N
s
: 5 ! s
that the adjoint mode ,é is oxthogonal
tThe remaiaing ,£ modes
7~

(10ka) ana
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With the choices {146) and (¢32) of Lne,fl modes, let
us seek to expand an arbitrary function” in velocity space
in the form

7[* 1’5-)”.2/6‘\‘) = Z C?Ur,g (ué, %9/%‘)/"2’:@
i Z /4'/’"/ | do é’n (u; K)"'gﬂ-z (v:f/ ‘{[) 9/03 {II/) (155)

where the sum over W, runs over all the solutions of (103a).
(We recall that the coafficients Qu¢. and..éwégkj depend para-
metrically on 4£ and & .)

An immediate consequence of (155), if it is valid,

(recalling the normalization of the modes) is

//igr Al 5,6 4,«) = 5 4, (4) + e b, 4
Wi 0 ol

*l/@ /

: )/ ;
Wy P ‘-',f,’:{:’ Jo 7 A Z J
- ‘f;—[fi /cr c/A ), (5 K) (157)

-2 fo}

w - . 2 P 3, >
As before, limited smoothness conditions on the function may

be required for complete rigor.

wilizing the explicit form of the modes, we find (}G{q)

, 29
f.‘w () = &’v/(v; u,80e e L Jup flo g  8)e '™ .”‘“9 ~L8
(2}




Tor ,/ = 0, we find

ol G fRafTn) 555 e [
A o @

@ S

(158)

"constant of the motion" given by (144) is indeed

associated with the d.c. (m = 0) component of the h modes ;

we may in fac

from (158).

contribute the time-varying density and

while the ho mode »rovides

solution.

The expansion coeff

Tthe orthogonali

(126) ror i,

A
W,

/ /03 £
i a/v'/)a
Wl

]

%t determine the expansion coefficient bo(<r,K)

Hence, if (155) is valid, the Bernstein modes alone

Field fluctuations,

N B S

the required static part or the

-~ =

(ficients awvr are determined, from

ty of the corresponding adjoints, by ecuation

= (=

(126)

#1

where the adjoints .4 . are obtained from (118) and/or (122)

with k, = 0,

n # 0, the coe

V/r

and the C? are given by (124). Similarly, for

fficients b @3ﬂ) must each satisfy, from fthe

orthogonality relations (148)

g f<)=
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) ark (L iy v g [ z/d./// L(Z)s,
P Yy e |

2T KT ! ) ik /'J (%)
7!- e - f\
/ o / o /{KA (s /()
2005 €, / o N « : __J,_

A (159)
This set of integ eguations for the bm( o,K)(m # 0) has
the interesting property that if we integrate over ¢ and K,

-~ de

we obstain a set of identities, i.e., each equation has
X (2] .
solutions Tor any value (,—. .» say) of the integral /dcf dX 5, (o‘/. K).
— o

da

SJowever, as it turns out, we do not need unigue solutions
of equations (159); the equations themselves are all we need
to determine the expansion (155). Put another way, the

1,

determination of the expansion (155) is independent of the
cnoice of //m.,

To see this, We use the explicit form (146) of the modes

h, (m # C) in (155) to find

i

F(55,0) = 5 4, A (s, 6/, 4,70) / ot / lo b, 65 K) A1, (13,4, [o, ) =

_ e'-'l'fésf e = /6 (i G b--,- (l’i "J) B // @z /] .L'J_ i )/-4
= J’ mw 155a
M LV‘ /dv-/gﬂb‘_db /‘/ J'c - (W‘-) ( )

where the prime on the sum over m indicates that we are to

omit m = 0. We see that the guantity in parentheses on the



~icht hand side is in fact determined for each m # O from
(159) - P
-Ao
Use of the orthogonzlity relation (154) for th%,mode and
\
its adjoint simply reproduces Eq. (158). Solving (158), we

rind®

§% = 7Y ey /o J = / (rr A
/v//ﬁ( b (s k) = / e/ fo2)
Lo Hy

/%ﬁ/rvdo /aif (/—J’ [w)) W, ()

- O

5, (v2,4)

(/ "ﬂ"f‘["/%/‘é(” L_L)) \/D(p;_) _7_) ol

drd )
" (hé (160)
7 (& j/ U') N N 7 Sl )

:‘,‘ Y
L)
We assume, for simplicity, that ;{ M;Z) is such that

ey

()]

5

the denominator in (160) does not vanish. This is the case,

rYy

or example, 1f fy 1s Maxwellian. If the dencminator were t©o

vanish, (158) would have no solution; i.e. the modes discussed
here would not be complete for such cases. We observe, however
that the vanishing of the denominator in (160) corresponds to a
solution of “he Bernstein dispersion relation (103a) at

w,.= O . If such a solution exists an additional (d.c.) mode

appears which then completes the set of modes for this case.
J_‘h

This leads to a degeneracy, l.e. to two eigensclutions wich

zero eigenvalue. We do not discuss this case further here.




(1552), we

/ (zlu ) P fSu:b" //
o fn i) - 15 [ -

27y \f[__

(161)

:-_‘v-fé j)/”b G.A’—’ dy‘g- ‘]g.[ }‘/jc(vflqz)

A,
A

w4
o -
$ -—Zf".
f—f'~ 2w (1- 3 (%))
/ :’m&daﬁ_/z} 1=,
o . <

where the right-hand-side follows from (160)
Our final result, upon use of (159) and (161) and the
155), is then

explicit form of the Bernstein modes in (
T m.r/ i
v, L_f v /ZL{ )U.L)d

g 1A
- - —(=Fan0 2 :
£l55,0) = 3 q, SO 4
AT —hi,
, s 6 o (m@ ‘.'”"’ fm J&fﬁﬂf 9,ul% Y%
ff‘-'-—-ﬂ
iAo . ¥
(iu#0) .{C” ey, AD/V[ ~4‘ﬂ¢)

i (f‘. A 5, (7é/)).

are defined in (157) for zll m.
in al distur-

1 — -
where the g, [v;f v )
is taken to be the
i
is

T (vi )
) 0) then f[zfczr
&

=

I
bance of the plasma (with k
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ovbtained by muitiplying each of the Bernstein modes in (162)

& 5 i
—
9

- M)
Y i —_ . . o b fuvv n AN, . By e, — - e
by the factor g “~“*r* , where W, is the corresponding root

(155) is valid, i.e., if the modes are complete, this is the
solution, according ©O The normal mode approach, o0f The iInivial
value problem Tor the three-dimensional linearized Vlasov egua-

-

tion with k¥ = 0, the . being given by (126) and (124).

Laplace tTransiforms and subseguent inversion ol the

J —_-) -
We turn now to the ouestion of completeness for the

kz 0 rmodes (with the restriction already noted under Eq.

= \ 3 T o P | L . - o el scfEP
{160)). We begin by obsewrving the following: equation (155a)

H A
. e £ )

can be interpreted as an ecuation for the D, 6544) (m #0)
o - ﬂ S ‘9‘ . de i =
for given 7 D%|g) / since the coefficients atv, and

b,(5; A) are known in terms of £ 3%‘Z\J) and are independent

.‘}L.‘
A H S . i . o b= e
of the o, (GK) (m#0). Maltipiying both sides by g~ #™

m

nd computing the Fourier coefficient (with respect to é?-space)
of the result, we obtain an eguivalent set of integral equations
for each of the b, (7 K) (m # 0)

Ia?u(o
'2'”/ ( )z, M -7-)

Wp = i,

% i Y Jw

j{,,, (vs Vi) airy; I, (& ) Lﬁ
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Integrating over ¥V, and V; , we find that the right-hend-

-side vanishes;,K therefore, (163) has solutions for each m#Z 0O

y U oo .
2
G = :‘,"?“’iat’l “JU‘ / (_‘I’:L) (al- Vs i ﬁ"""f‘ d} d i b/a ” .
” VN ) il J-) T L G g peviy m J 1 z-)l-)
o g bl
! r Cc o

- G /JJ" -

(164)

-t
i

)
iith the 4, glven by (126) and (124) and 9, by (160).
e

m
-

s, if (164) holds, there is always a solution of (163)

L)!

which guarantees the validity of expansion (155). Moreover,
{16L4) is precisely the condition for compatidbility of (163)
with (159), which was obtained by invoking orthogonality.

We have already seen that the fact that (159) has an infinity

—

of solutions causes no difficulty.) If we sum (164) over all
mAO0, use (103a), and add the corresponding Go compuced from
(158), the result reduces to (156); however, (164) is the
stronger condition.

The coefficients a,, given by (126) can be written

j = ”
a = se—— P 27U ey - e {
0 c;y' -?) PRI - t .':A{E j,! /V:E, bj-) e 'V £78
r

L 4 = & /
E = 2 —— («it ") (165)
C‘ J=-w 1’/‘.',"' ."fv‘c




- T =

where we have used our previous definitions of 7”’4 (v;) 01)

end the integrals :._i . If we now define
Ly

/-va (.'.,./,/\/U' \/' MW // ("‘)-J— (

use the expression (124) for the C“,» , and (160) for
»

/;:ir/dkbc (G;K) , the requirement (164) reduces %to (m £ 0O)
]

-
()
(@)

N

_ = B, G,
G, =22 =

n w, _,f < - Jaid ) /w‘ j&.,‘.) ) B {-/ -'ﬂw/

‘]--.-»o

‘\/

5 C J (1642)

=]

n "(/C- 247'1! f(au__‘_/’fa ( \7; W’)) /‘J (‘6 ‘d)

—

where the sum over /. runs over all the roots of (103a):

It

0=1-5 Lo oj

5 '-"Lr\

It (16La) is to hold it must be a property of the
Sernstein dispersion relation ((103a) or (167) ), or more pre-
cisely a property of the function DB (f’) *

o« "
D ()= 1+ ik s/ _Bn__
g f ' = f:u’ﬁ.nwc (168)

=

*1s already pointed out, the denominator in (160) is just D (3=0)
D

We are restricting our present discussion to cases for which

DG=9#0 -
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(169)

sts that a study of the izl value problem for

ized Vlasov equation would be nelp in establishing

L3

7,
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(170)

(171)




We now ovserve that the right-hand-side of (16ia
S T ] f\ /-;‘ S - - . = - - P
(srovicea L (p=0)# O ) is simply the evaluation via the
g

resldue thneorem of an integral involving Z) C?) in the

complex p-plane; i.e., for each m#£0 with G = GM(O)

hs(nug) = b (LB GO, 6,6
vy rd) = P : ; e L, 7
QXL DY 13) 00 2 ey o FHIREN, b Foiein
/ L (1) (p#ehmmg) to-o 7550 S (272)
where ; is the Laplace contour, rurning to the riznt of the
zeros of Z} () . Taus, from (171) and (170)
g
2
; i fead 5 {4 .
o (s1g) = [ (HBZ GID g )
27T ——— ' st
L “‘7/5 tnruf./c - 7‘“5:"“1»'/5,/
/
Y (173)
= &, /] —
c:'lff‘ Gm‘-f) - “n()
/

wnere the last equality follows from the Laplace inversion

Theorem at t = 0. This proves (164). We conclude, therefore,
that (155) is valid, and the modes described in this section

are complete provided DB[/':O) # 0 . (In effect, in this
case, The fact that the normal mode treatment gives the
correct solution of the initial value problem guarantees that
the modes are complete.)

As we have seen, the Bernstein modes (104a) can be obtained

L)

rom the more general discrete modes {¢ { and/or A in

The limit ‘z = 0. There seems to be no simple wey, however,




o interpreting the "zero-rield" modes as the limit as
2 modes (/{6), although there is a
2pivain resemoblance of the expansion (128) for kz # 0 with

sne expansion (155a) for k_ = 0. The implications of This

are that if we consider, over the whole of K-space, The

plasma wWith magzgne-

. o 3 - P P P PRSI N
sic field, we must treat, &t least In a normal mode expansion,

the plane delined by k - 3 _ = O separately Irom the rest ol
A P

k-space. This eppears to be associated with the lack of

A

Doppler shifting of the characteristic freqguencies ror

One might well ask what the physical meaning of the
zero-ficld" modes discussed in this section might be. We
vremark that their somewhat unphysical character is certainly

associzted in part with the electrostatic approximation we

clectrostatic approximation). For example, all of The modes
3% - P ) S g | f 7
discussed here satisiy -« wa = -won, fljrai’{-n » &8

ney raust, ©o be consistent with the Vliasov equation as we
nave used it. However, as in the case B0 = O (see footnote
LA

uwnder E¢. (11)), the eigenmodes possess various non-vanishing

tal ;‘i L] y D -} h) . . < > e o=
values of = X and hernce must always violate The electro-
e 7
e

static approximation to some extent. As is well known, 1in
any problem in which the very high-ITrequency components
(for example) become important, the electrostatic approximation

cannot be used 22
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nave peen overlooked in the literature.
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tnat 1t is consistent, for k6 = 0, with the translational

invariance ol the Vliasov eguation along B .
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plasma in three dimensions in velocity space, with and wi
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