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Abstract:

In order to get more insight in the phenomena of
plasma oscillations we compare the amplitudes of

the different contributions in the free oscillation
problem (poles due to the plasma and the initlal
conditions). We find that for small k only the
Landau poles are excited and they will play the
dominant role already at time t = ¢ (but, may be, not
indefinitely). In the problem of forced oscillations
by a macroscopic electric fleld we also find that

the Landau solutions are dominant for frequency close
to wp . Finally the behaviour of the transient cloud
around an initially correlationless test particle

is shown to be dominated by the waves with a group
veloclty equal to the test particle velocity.




I. Introduction

The problem of plasma oscillations is an old one.
After their discovery by Langmuir around 1928 a first theory
was worked out by Langmuir himself. Finally the correct equa-
tion was given by Vlasov [1] and the correct treatment of this
equation by Landau [2] who introduced the so called Landau dam-
ping. From this time (1946) many article have been written on
this question, most of them supporting the existence of the
damping and trying physical pictures of the phenomenspand some
pointing out difficulties which appear in the Landau treatment.
Among the most interesting contributions an article by Van
Kampen [3] focused the attention to the difficult problem of
initial conditions - a point superficially treated in the Lan-
dau's paper (although Landau made very clear that this problem
has to be studied). In [4] a class of initial conditions was pre-
cised, which, although peculiar,is probably one of the few, de-
scribing an experimental situation: in this case there is no more
problem on initial conditions which 1s an interesting result.
The purpose of this paper is to try again to broaden the sub-
ject and to show that the study of the poles of the dispersion
relation (i.e. the frequency and the damping of the waves) has
to be completed by the computations of the amplitudes of the
different poles. This problem must be solved if we want to de-
fine experiments which exhibit the interesting phenomena.

This paper is divided in three parts. The first one 1is devoted
to the problem of free oscillations, i.e. to the problem of the
pehaviour of a plasma after a perturbation has been introduced
at initial time. The second part deals with the problem of for-
ced longitudinal oscillations, a problem very simllar to the prob-
lem treated in the second part of the Landau's paper, but in socme
respect corresponding to a more "experimental" situatlon. The
third part considers again a problem with initial condition
corresponding to the formation of the asymptotic cloud around

an initially correlationless test particle.




II. Frez oscillations

A) Poles of the dispersion relation

We are dealing with a uniform, infinite, electrons
plasma with a smeared motionless neutralising background; wp
is the plasma frequency; F(v) is the one component velocity
distribution integrated on the two directions perpendicular toc
the given k vector. The double Fourier Laplace transform of the
electrons density is given by the following expression where

g(k, v) is the initial perturbation
n(ﬁ.s): I(g.s_}/éfz,sl)
(1) _':(P:,c): Jg(g.tfjts-tﬁw)"'a’v
s ol sl
Echis) = 1 +fis’/R] [ fAE ) 5-ihv)™" v

Originally &€ and I are defined only for real s » 0 and have

a cut off along the imaginary axis (or from -ik a to i k a if

F and g have cut off for velocites + a i.e. F = g = 0 1if /vﬁ>a).
The Landau method consists in an analytical continuation of €&
and I for real s < O (we suppose that there is no pole of &

for real s » O 1.e. we suppose the distribution stable). Next

we examine the poles of & and singularities of I and we com-
pute n(k, t) by the residue method. Different results can be
found

1. F(v) and g(k,v) are "nice" functions (for example

-n
2) with n integer 2). The integrals are easily computed-

(v2+a
the analytical combination is simple - the number of poles of &

and sigularities of I is finite.

2. F(v) and g(k,v) are Maxwellian distributions.
This fundamental case 1s, unhappily, more complicated. Research
of the zeros of the dispersion relation involves the study of the
error function for complex arguments.

3., F(v) and g(k,v) have a cut off. As pointed out
in [4] the poles - for all wavenumbers - are very sensitive to




¢the value of the derivative d F/d v at the cut off. If
V¢= %s © is the phase velocity of the wave and supposing that
[

Vprawe get
°d
(2) g3= - w}\z _dF/dv  dy
- V¢'V
1f (dF/dv) # 0 ("abrupt" cut off) the integral in(2)can

take value as large as we like and consequently for all k an
undamped mode will appear. If k 1s very large \g has to be
very close to & in order to satisfy the dispersion relation and,
consequently, for very large k W, k a.

Of course such an undamped oscillation is unphysical 1f the
cut off velocity is much larger than the mean square root
velocity. We have to eliminate these poles.

The above considerations and similar ones expressed in [5] show
that the positions of the poles introduced by the analytical com-
tinuatiq technique are too sensitive to the exact form of F(v).
Also we would like to be able to say something for a general
g(k,v) using only the properties of g(k,v) for real, physically
meaning, velocities.

The key of the problem is that the different poles and singulari-
ties have very different importances. Some correspond to the ma-
thematical treatment of the problem but have no physical meaning.
Others desciribe a physical phenomena and play a fundamental role.
Then we have not only to consider the poles but to compute the
amplitude of the different excited waves.

B) General solutions for n(k,t)

We are going to treat in an unsymmetric way the sin-
gularities due to initial conditions and the poles of € . The
reason is that we refrain to take any analytical expression for




g(k, v) and consequently we can really say nothing about
the singularities of I(k, s). But weknow much better F(v) -
very often it will be a Maxwellian,and then we have to take
advantage of the powerful technique of analytical continu-
ation and of the results already obtained by mathematicians

on error functions.

Consequently we conslder n(k, s) as the product of two func-
tions. The first one is I(k, s) (the inverse Laplace transform
of which is easy to perform) and the second is 1/€ (k, s).

The poles of the analytical continuation of E(ﬁ,s) are s""
Now m (%,4) 1is the convolution product of the two inverse
Laplace transforms. Another way to get this result which is
more physical is to write.

(3) gc&.v)=J S(v-§) g(#.%) 4§

i.e. to consider 3(ﬁnvj as the sum of beams. Now for the
beam S(v-{)

() m(RS) = L
£cﬁs) $-CRY
The inverse Laplace transform of (4) is
- : dost_ epsf
ny (A t) - e oxh iRt *é, Ae Sk TRg ok
Si Ai is the residue relative to pole Si

In the general case taking into account (3)

n 36“)6#/10’:?{: df 2% e SJ'}J Ch§) 5
(5) (4”} ECh.ChE) Zn ‘ & 4_“, &S{?-‘.gf

3% Dy
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the calculation of A,g, is given in Appendix I.

Vp = Se /iR and Vg = ‘J‘gff-/fdé* are the phase and grouo
velocities of the wave.

(5) shows that wm (k,t) is the sum of two contributions. The
first 1is the integral on S and can be considered as a
Fourier transform. A prior‘il nothing very general can be said
about such contribution and especially we do not know the asymp-
totiec behaviour. It is not surprising and is simply due to our
refusal to conslder the analytical continuation of g(ﬁ.v}

and I(ﬁ,s) . In the second term we get the different damped
waves. To go further we have now to put a central restriction:
namely we will be interested only in long wavelengths components.

C) Case of long wavelengths

We suppose k small (more precisely for a Maxwelllan
£AD«! ). Then 8()3,53;)—’ goes to zero like 42/£’+ ?Cg'
with

=

J‘. means that we have to take the principal part of the integral

g
L w,}j_‘%f__/;i dv + T wi dE = Mg+l Ng

Consequently we can state that the level of the first contri-
bution in (5) goes to zero like ﬁl , still we have first to
take care of the resonance for §= CO& /ﬁ where ﬁ*.,. M; =0

we have to study

£ T xpLREE 9(R.F) dS
-0 A(§-“R/R)+B

with

A

‘l

Dl = 243 /ey B = N,
§=0yp (4 '

= “Jh'(“ '_l‘-.‘




The integral 1s easily computed by the residue method: We
find
27 w exhiwgt exh/bhBE] A7
F(Ws/R) expicogt xh(r 2€] 4
%

is the Landau damping - rﬁ The contribution of the

sonant particles is consequently %/ g?/wé /ﬂ) W “"l"f‘r*“‘;’gjf
We will assume that for y.—» o°

>iw

®

]

v j H@.V) goes to zero faster than \/-'z

Provided this reasonable constraint we can assume that the
level of the first integral goes to zero like k’»l . Of course
we know nothing about its time behaviour except that it will
eventually be destroyed by phase mixing. In the worst case
(a S shaped initial perturbation) this contribution will be
undamped but at a very low level.

We look now to the second term in (5). If»f goes to zero two
of the poles go to iico,._ (the Landau poles) and the other
go to zero (see appendix II) like é .

For the Landau poles V., —» O and V¢,-—>"° and according!)
to (6) Hﬁ — /2 . On the other hand the integral

JS& g(‘ f)(Sg-:.‘E) df indicates how the initial conditions match
with the plasma resonance. If we take into account that .S‘_ -—-)g
+l'604 with }}t - O and Wp —> LOp we can write

(1) | S8 gk 5) 8.8 iy w
J34-¢4§ i f:-—f/v., %‘" 7 (R, %/%)

-~/
V¢. - o0 and we can expand [l-— E/Vtz becomes

(S)J g(ﬁ.i)df*{}ﬁj g0k,5) § df
-0 ——




We have already supposed that the "resonance term" fwg/%jg ;gég,p,_f_;--
- O much faster than #% . Consequently the two terms of ()
are dominant.

what about the other poles? For small k the dispersion relation
(see Appendix II) is:

(9) Sf-vtR.pbR3

o? is equal to the thermal velocity multiplied by a factor

of order unity,js -y, D'B (Vs is the thermal velocity, D the
Debye length and B a constant). Carrying (9) into (6) we find
that the level of excitation 1s very small A& = —ﬂ“')@‘/ "*’""(M'éa'
and is of order k2.

Let us resume the results we get for small k.

The solution for the charge density is the sum of four contri-
butions:

1) The contribution of the Landau poles - tht'cof‘ with

wp—»@p for -0 . They are excited at the level one and
their contribution is dominant already at time t= O | This
contribution is 1

n(h€) = { n (h,0) cod gt +a34(iz¢ého w‘}qﬁ %t

We notice that we need only n(%,0) and[dn(’e'tf)/dyt_=o=£'g J(#%:°)
(J 1s the current). Strictly speaking d'nf, sdt is of first

order in k amdcould be neglected. We keep 1t because we will
consider later a special but interesting initial condition

where n(%,0)<=Q (Excitation by an impulse of electric

field between two plang grids). We consequently see that the

long wavelengths are self consistent.

2) The contribution of the other poles. It 1s a complicated
expression but the level of excitation is very small (it goes
to zero like k2 for a Maxwellian). Usually also the damping




of these poleésgigger than tne Landau damping. If we have
introduced (by a cut-off in the tail of the distribution)
other (undamped) poles their level of excitation will be
very small because of the form of the dispersion relaticn
wg ~ Ra and although they will, strictly speaking, give
the asymptotic behaviour they take over at a so small level

that they are not interesting.

In the two preceeding contributions the initial perturbation
does not play an important role: the level of excitation is

a quantity of order;t(ﬁ,cv multiplied by a factor independent
of the initial condition which describes how much the plasma

"1likes" the waves.

3) The third contribution comes from the initial pertur-
bations it can be considered as the sum of undamped waves and
will be more or less slowly destroyed by phase mixing - depen-
ding critically on the shape of the perturbation. It may ulti-
mately take over the Landau contribution byf'eyaru, - for long
enough wavele?fhs-at a very low level of order kg.

4) A contribution coming from the particles of the initial
perturbation in resonance with the waves. We have to suppose
that as k goes to zero [wWg /k [ Z (R, w4 /R) « n(k,0) and more
precisely is at least of order k. Then this contribution is
quite negligible and, moreover, is Landau damped. This last
requirement is the only one we have had to make on g(ﬁ,v/

and is quite reasonable in the case of small k.

This treatment completely justify the Landau claim that for
small k only the first (Landau) pole has to be taken into con-
sideration and moreover this property holds already at time €= @
On the other hand strictly speaking other contributions may
take over but at negligible level and more precisely,the longer
the wavelength the smaller is the level. For large k (as soon
as %% is no more small beforeu%) the Landau poles loses 1ts

interest.




D) The double stream instability

It has been found (10) that for a velocity distri-

pution as indicated fig.I. we get an instability for kK¢ ky
This instability is nonconvectlve

IIF(V'
and the rcot of the dispersion re-
lation is &= p+0ap with @ =0
V Fork-0 Jp—»o0 with Jp =«R
Fi16I o’ 1s given by the equation
_V__‘ﬂé—v— AV = 0
x3+ve

Due to the dispersionless character of the phase velocity of
these waves they will be poorly excited. More precisely we
have to find the next term of the approximation. It 1s easy
to see that for small k

= “&4‘ ﬁﬁ’s
@ is given by _?ﬂﬂw,,j [jF}[a:"-va dv =

The solution is

) R* vwd vg th)dv
AT ey i dF/dv) dy [«*{j s‘"(i"i V} H I:*(ﬁ)d }&Y‘ﬂchﬁ

>
o | R

Consequently the long wavelengths will be excilted on&J’through
non linear interactions. Consequently it seems unlikely that
the excitation found by Kofold [6] with long wavelengths are
due to double stream instability. Of course the other poles

at the usual plasma frequency are fully excited.




III. Forced oscillations

In a previous paper [4] we noticed that there is practi-
cally only two ways to excite plasma oscillations. The first
is to send a modulated beam in a plasma. At the limit the beam
problem becomes the problem of aninitlally correlationless Tesi
particle suddenly created in a plasma (for example byﬂ decay)
In the next paragraph we will study how fast correlation are esta-
blished. The .second method is to apply between two grids distant
of A an electric field E during a time interval T . In [h] A was
supposed to be much smaller than the Debye distance and the ap-
plied electric field was a pulse ETA = K . We found a decrease
of the electric field accordingly an (u-‘,.&) 2 1aw and a diffu-
sion of a zone where the electric field was in phase. The di-

mension of this zone was growing like t',

From an experimental point of view such a signal is difficult
both to produce and to measure, and the answer to a:ci,ssoidal

signal (after the transients have died) is a much easier quanti-
ty to measure. We will consequently consider the excitation signal
Eupiw,t applied between two grids distant of f (weth D&D) .

We have already shown that the answer to the impulse during a
very short time T of the applied field E was(gn') E(ﬁ 5)"' ETA

Consequently the Laplace Fourier transform of the answer to a
eassoidal excitation is

Ea (2W)" (s-iwo)[E(Ris)] ]

For the stationary problem only the poles S= W, matters.
After integration on k the other (plasma) poles give a contri-
bution which decreases as (w,. t‘}"’i . We have to compute:

(10)  E(x) = himi? - Eéf exp-ihx AR
Fso, W) __ E(h, s=cWotd)




To compute the integral let us consider the branch lines in
.ne k plane (Fig.2). ris a small positive quantity and will
Lo .ltimately to zero. Also we introduce on F(v) a cut off at
veloclty za Fitv)z0 V> a - we will let &t go to eo
The path of integration is the real k axis. The branch cut
off is indicated (Fig.2)

In this problem we have no difficuity

with the numerator of the integrand
r @ and we could expect to take fully
advantage of an analytical continua-
\zm i “’::“ » tion technique. Unhappily this is

impossible because of the position
of the branch cut with respect to
the path of integration. The left
FiIe T part of the branch cut is above the
integration path while the right part is under. If we remove the

cut branch we consequently modify & (say for Tm. H <O
and we do not compute (10) see [7] .

We consequently decide not to proceed to the analytical continua-
tions but to change the path of integration as described Fig 2.
So doing we have no more Landau-type poles but we can get a pole
for kz-tv X if Wogwy . Now on the two sides of the branch
cut the real part of € are equal and the imaginary part are op-
posite. Consequently (10) can be written

o0
o e 04
(11) E(x) = eventual contribution of the pole + E%f(:_‘.'z.ﬁ—- ‘:ﬁ‘""é-*"
L o‘e(g:“oO)’

The general case is difficult to treat but we can get results
in some extreme cases.

A) wWes»wp . There is no pole and;due to the fact that Wps>wp |
for all values of l{l élis close to 1. We are from now going to y .
Specialize to the case of a Maxwellian distribution F(v)=@mW) 2%
@h-vi/2v2 We introduce y= %o /R as a new variable and




we obtain:

(12) En):M]
o

Lo

o

o
<

£ e-x/l-"_‘%n}_ dv

For large & (12) is computed by the method of steepest des-
cent (see Appendix III). We obtain within an unimportant phase
factor

. EA @t (xws 3 (220 B oeh - ¢33 z_a_{o)”-‘
1) €= % o, O ) -3 (555) " (G

The exponential factor is the same as in the second Landau prob-
lem [2] (but not the factor in front of it). The two problems
correspond to two different excitations. Our type of excitation
is somewhat simpler in an experimental apparatus. We make two
remarks about the solution.

- It is a very heavily damped one (although the damping
is not exponential).

- The fact that we identified [€/‘with | but kept £”in (12),
corresponds to an expansion of the dielectric constant in S~

Echs) = 10t [V dy = 1 v THEL

We have

- F/d
E7'(Rs) = /+w,.f/v ‘fs_éz';_w dv

where we have taken into account that F(v) is an even function
Then (10) is written

(o o4
(1) Ecx) = %‘fw—‘?ﬁj vAE dv [ expotha 4

S+ 4tve

-

The last integral in (14) is easily performed. We obtain

(15) E(x)= f=:_é_,:’r‘ P exp-SX v

(15) is identical to (12) if we replace 5 by g




B) W» &p  and @y wp &wp |
We have no pole but a resonance in the k integration of (11)
when the real part of & is zero, i.e. for B=#Ag with

wi/ewpt= 1+ 3__._'1"L POE N Ve = Yo
We will call dwo/d:%o = v, and Vg = Wo /R o » We take
the Taylor extension around ﬂ‘, ;ﬁw . One can show
Q&' 2 \/4.

'3% }:=$o_ o - Va/Vp
After some algebra we obtain the following result
. ED L@ o +eh
E(x) = 2v, h -(Xo*t%ka)x
Xels the spatial Landau damping. It is related to the tem-
poral Landau damping Vg (for a given ﬁxo) by the very general
relation : See also Appendix 4 :

The contribution of the resonance is very large and goes to
+2© when w-» wWp (as Vc:' i.e.(‘woz-“-’pa')q%'). Of course for
very large x a contribution varying as €xA -C\’Teé will ulti-
mately takes over but at a very low level.

C) The next case to treat is wg wfl with w/,-—wg «60,.
we get a pole for &-_--.:’x.o with

<+
wpt- wet= 3 vt KXo

The contribution of the pole is

Ete)= -9 EA  opp- Xox
2Xo 3Vt
The damping is now much bigger but the excitation of the
wave is still very high and goes to o@ as (w,‘-wal) ~"
The integral along the positive part of the k axis is difficult
to perform, but is at much smaller level. As in the preceeding
case for very large2 it will give a contribution varying as




</a

N e i which will take over but at a very low and un-

interesting level.

D) The last case is Wg ¢ Wp . This 1is probably the case
where the nonlocal character of the dielectric constant (the
fact that &€ 1is not only a function ofe but also ofR ) brings
the most interesting result.

To compute the contribution of the pole we can neglect the

dynamic aspect of the dielectric constant and write

Elwo, k) >~ E(O,R) = ’*gﬁ;; . We get the pole at

4 =_cp-' and the contribution £ is

= —4__5_.‘ - X/
E, oD e D

This solution is quickly damped. As we could guess the scree-
ning distance is the Debye length.

But in the integral on k we cannot completely neglect the
dynamical aspect. More precisely, although w, 1is very small
compared to &, for very long wavelengths the dielectric con-
stant é(ﬁ,w,} is different from the static approximation and
small but interesting effects will occur which disappear only
in the strict limit w,=0.

We get for the contributions of the integral along real £>0

zr Vb ¢ 4t (€2

We introduce V=% /%4 as new variable and integrate for

. e 2
£ ﬁaf_@.gj Loegpot DF L opp-Rx AR
o k3

large 2 by the method of steepest descent. Apart from a
phase factor we get

1. - A
E4 wo [wox]-‘u 3 wolefiwh_;_aﬁ [E&i‘ :

(16) &0x)= s ol




-
1

(16) has the same behaviour as (13) (obtained fﬁ;’ﬁb»%ﬁ;

but now the damping coefficient is very small if wgis small
enough. Of course the level of excitation of such waves is
small but still they will quickly dominate the Debye screened
solution. Analog results have been reported for transmission
of waves in a solid stqte plasma (8). Although the physics

is quite different, the mathematics are similar and the ano-

malous transmission is also due to a nonlocal effect.

IV. Transient cloud around a test particle

If the preceding excitation was interesting for
possible experiments, the problem of an initially correlation-
less test particle is very important from a theoretical point
of view because this problem is closely connected to the que-
stion of relaxation of the two bodies cor‘relationﬁb to a
functional involving only for fy according Bogolinbov hypo-
thesis. The test particle problem is a simplification of this
more general problem but in compensation is more tractable.
Some results have been indicated in (8) and by Tchen (private

communication).

We consider here a one dimensional plasma (i.e. plane sheets)
with only one species of particle and a motionless neutra-
lising smeared background. we will sketch briefly at the end
how the results are modified wren going from the one dimen-
sional plasma to the real (3 dimensions) one.

The densitym (4,5) is given by:

h(#.-',sj = __’_ L E v the Vt/ocr’f)z of t4he
$-ik§ 5(‘4&) test phartrele




and the inverse transforms by:

n(k.&)= expihft +ZA'L Sk u/,.sgé-

Ehihs) g SRS
[ R EA e"/—‘g('x ?&J 2 -lRz: ) &
an MY E(R, ikS) s Zj'q‘%s}’ W[Ht e

¢
A%= i (a5

The first integral ¢m (17) is a function of 2-§f& and des-
cribes the test particle plus its asymptotic cloud. The transi-
ent solution is given by the sum of all the plasma polesand

the integration on kjwe take into account the wvalue of:‘i
previously obtained and we take a system moving w1th the velo-
city of the test particle a= ff""} . We get for f;:f)

(18)eT n* e Z f‘s‘ ,‘ﬂ? m/fsé-‘ij)t—j e.;ﬁ-—u@;_ AR

We see that the transient time will be given by a combination
of two effects: First the Landau damping which will decrease
very quickly the small wavelength contributions. Secondly the
phase mixing of different wavelengths will secure a damping
also in the case where there is no Landau damping. What ef-
fect comes first depends on the velocity of the test particle
and we have to study more carefully the problem.

A) Case of a square distribution.
To get some insight we first treat a simple example which we
have already used and which turned out to give rather general
results.We take a square distribution F'(v}-—-{.?aj_' forlv/<a
and 0 elsewhere. Then for all wavelengths

w“l: w,."+ ﬁ"a‘

There are only the two Landau poles witn no damping. We have




to compute (R for real part)

(19) R ait‘J”oL e»x/'f(“-’ﬁ"gf}& uﬁ—c’ﬂ@; 4"@]
2 ..aom‘ w""ﬁf

Exact integration can be obtained for f==0 . Asymptotic re-
sults in the general case.

For § =0

=9 +r 7 S % >/
n (gn‘l’)= QaL Jo(u-dlf ‘Of-/a")ealu or time €3> a

wpt

(20) will be useful as a check of the asymptotic theory. To
compute (19) for § # 0 .et us first make y = 0. We sup-
pose that f«. a .

We plot Q&= wp-A § as a function of k (see Fig 3). For a
‘ lcﬂ.g value éf _Q.4 has a mini-

: muanzs. In an integral such
wp ol as ]
ﬂf\\ NS “/‘__.-— fﬁﬁ wh cQgt R
Moot o the asymptotic solution
Fle 1T kf R is obtained by the stationary

phase integration method. In such a method we only take into ac-
count the wavenumbers in the neighbourhood of the minimum of flﬁ
which is given by

451& = 'Zéii - ? =0

o 4 d%
These waves with a group velocity equal to the velocity of the
test particle play the dominant role in the damping of the
transient cloud. The fact that the group velocity and not the
phase velocity of the plasma waves ‘Wakters, could have been
Suspected in a transient phenomena. We find as solution

-/ L
(gm0t =R Xt ) w%gg (¢ y)

/ ) "-'—oyf_;ﬁ
With f{ g = ﬁuﬁ [E/Q][l— f’/az]" % w‘,f = w’l ;!;;w {1/a§;€ £D






O T T

To get the general solution ;(?éa we write

F{:-ioy =(§+4f}f with ﬂgug and ¥/¢ should go to zero

(21) 17 (i) =

[ﬂ '(:4.‘{‘94‘!4-’ 4,2-(25 09.1
AP <evrx t)"=

T ed;e"e

We introduce the dimensionless variable

w,.f:zT oyw;»/a': Y t\'=[l— f"/at]%

-or2 i YL T ]
e ! (Y7l / B .y— -—_ — + _—
N Y,7) = CJJ o ord T .

This solution should be compared with the asymptotic solution
In this case

1Y) = e[S~ exh - 4

We consequently find that in this special case (A square di-
stribution)

- Only the phase mixing of wavelengths with a group velocity
€Qual to the test particle velocity secure the damping of the
transient,

- The tr‘an81ent could, for this one dimensional plasma, goes
£o zero as ‘f‘ 'Z(The corresponding law is ¢ ¥ for the 3 dimen-
Siona) plasma)

: - Near the origine the transient cloud is negligible after
dtine T ooy [1- §ar] TR
Of course this result is interesting only if we can generalise it.

\




B) General distribution: Case of small velocity

What was missing in the preceding example was the Lanaau dam-
ping and the existence of poles others than the Landau ones.
But if the group Vélocity f‘or’f: £§ is much smaller than
the thermal velocity and, consequently, 1if f\sv; we can
expect that the Landau damping will play no role. More precis=-

1y let us plot (Fig 4) Real and Imaginary part of ¢’='$%‘"£%f
For f« Ve the minimum ofIm 4> occurs for a value of k
where the Landau damping is so small that the wavenumber phase
mixing is the dominant phenomena and brings a tf!Q law for
the damping of the transient. Then the contribution of the
two Landau poles is exactly given by (21) and (22) where we
have just to replace a® by3¥%? (36Mmin the Maxwellian case).
Of course we have to compute the contribution of the po.ies
others than the Landau ones. Then we can forecast that the
asymptotic behaviour will be given by the integration on small
wavenumbers because of the quick increase of the damping with
k (proportional to k). We seek only the solution for
We write: . .

sp= gk

and “he contribution of J‘“ pole is

o ‘,_' .
1 R [dx% /AR] 4-(§)d
For small k _olf:affqu-/-'t‘l;%ﬁ--- if&>0O and -0(’:-/3)7{31----

if /A<¢o o«“’and/&’ar‘e complex numbers. We find that the con-

tribution of this pole is
Y : e 2 -y
g/sf'ﬁ BZ?a”ttfj +—(h/¢+¢€) -17
This expression is valid for all velocities é.

We consequently see that the contributions of the other poles,
after the k integration, vary asfﬁ{ They are very small because -

- The large damping (proportional to k) of these poles
- The poor excitation of the long wavelengths.



- OO

C) Case of large velocities

we have already estimated the contribution of the poles cthers
than the Landau ones. For those poles the method of the saddle
point integration does not work any more. We can compute k
such that dUz/aig = (f and get an asymptotic behaviour

+-"% exh (56‘_,:,?{ f)f but this term is quickly damped be-
cause for largef the solution of c/.rg/;'q'ﬁz f bring¢a
large k and a large damping}consequently the main contribution

1s no more given by these wavenumbers whose group veloclty equal

the velocity of the particle. In fact there is no more wavenum-
ber playing a dominant role. One could expect that these wave-
numbers which cancel the real part of sg_,'gf (with a very
small imaginary par't)‘ i.e. the wavenumbers around 4:= a.),../i
with a phase velocity equal to the test particle velocity will
play the dominant role. But this is not true. If we neglect in
(18) the term of order 4% we obtain
oo
ij _ Y exp (WAt dR =0
2 oo DR +iY

because the pole 4¢;k¢/f+ébﬁ does not contribute. There is no

other possibility but to perform the integral for all wavelengths

or at least for these wavelengths which are not too heavily
damped.

As we can see in Appendix III the possibility of finding easily
the asymptotic form of the transient cloud for small f comes
from the fact that we have been able to find a contour in the
complex plane of k which replaces the real axls, taking only

into account the developpement around k = O of w,;:w,.'f["/.z]ge’
Then it turned out that the leading contribution comes from a
zone where our approximation is still valid (and consequently
the method is consistent). We cannot do that here. The saddle
point $/&  being for large $ much larger than the inverse

of the Debye length.




The saddle point method would work if we could finc a new

possible contour going for example through k = 0. Such s

casz 1s impossible except if the damping is proprtional to k.
54=CWﬁ+’% with }g:-[ﬁ/q i

A distribution giving such a dispersion relation is FYV}:E?Q:%f‘i'QR

put such a distribution is very objectionable bpecause of an -

infinite amount of kinetic energy.

Nevertheless in this case the terms -él@f and -a conbine
to give as possible path going through k = Osthe two straight
lines(see Fig 4) A = h!+cRY
b Al -k’ L ir B0
%'- R' £ ir B'cO
= _ : red 2

. ‘, On the path Sﬁ-gélea},-g Fra

and for large ¢ the k'inte-

gration give a ¢-'dependence

for the transient cloud. The

absence of any dispersion re-
FIé lation for the Imaglinary part
of §, leads to a wrong result
for small ? . The possibility of generalising the obtained above
dependence for large f is an entirely open question.

The problem of three dimensional plasma can be treated in the

same way. Simple dimensional analysis of the integrals shows
-3

a decay law in Gurt) Lror small velocity test particle.
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Appendix I

-
We computeS"[aé/ﬁsj for S=Sg
We have
GIE = _twpt | OFv 4
(23) —f) = - £ | OI/OV.
(()S S:S“i »g (Slg-‘/é[yda

We compute the integral I in (23) by deriving with respect
to k the dispersion relation ( Sgis there considered as a
function of k)

R fiap = [(05r00 (S, - v) " v

L dse [ v Av-“f'P%VJ A L dsg s (Vv ST
Ley*  JAR (Sé—uyjl : (Sgﬂé./)a— aAp RS-k K

The integral on the right handside is -6,/(ayt . We obtailn

-1 .
g *,( S5 -1y AsailE
. IS [s255 2 // )

SE/%

Appendix II

P o]
Taking into account [J—eﬁyj—L:fC oxf -st expivE A&

the dispersion relation can be written after some transformations
20 . ;x;_ /
L o 4 A IS ) . S -
£+%l§e4/ /{5§7df‘/ (79’-7(¢V§(V—0
v

In the case of a Maxwellian the last Integral 1is QﬁX-?ip%EZZ/
where k}lis the mean square velocity 594« . We obtailn

22 wf}/‘g exh - ?;rle.‘/.féég A5 = O



-~

Or inmtrcducing = A#p and o= Sk fep .

The last integral has a meaning also for real s O . It

zives the analytical continuation of the dispersicn relation.
if K-> © the integral should also go to zero. If -’Jé /K — oo
the integral goes to zero like k* and we recover the plasma

poles <§ -+, . It is impossible that 'Jg/lr-——zv ¢’ (the value of
the integral in this case isfii/2 V.”'). We suppose now that
/;jg/ﬁ goes to a limit o and we try the expansion

-(Sf?/lf = & r/zj Ao
Developping @xh -{- 55//‘1’} €= exh-x §(1-pic? §) we obtain

L,‘g 4’4[1—4'? 2x v “g-qdf P2 él(f,/ﬁjj‘%‘ »_,L/\_*xf ﬁﬂ/\-EL ,_-,li{") o)

X is given by the solution of

(24) i"‘% “nfe —a§ “*%-31 Ad¢ = O

. e . P! -1
/’) is given by ‘1;’5:( I %“ c‘r‘\-*? cxfo - ;f c!‘c;)

To study eq.(24) we use the tables of the error function com-

puted by Fried and Conte [9] After some manipulations equation
(24) is shown to be equivalent to

, 0
with X = =C 2 F and ,?/9,) = o ex/ -8700 € xh -/’?‘-’(/‘

2{9}c‘\wl‘;§mﬂ;etabulated in [9} Fig 5 shows in the complex plane
O;lffﬂff the curves Real (1 2/df = ¢’ and P A2 0 = O
There is an infinity of solutions to equation (25). The less
damped corresponds to ¥= - /.74 *¢ 3,61 and vz -8t 0 L4s




Appendix III

Computation of the transient cloud for small E

-
B =x +!y ~ -l—-oi
) 2
_y . .
.9 \\
‘\\ \
N DN\ Bs
N “ \ ) 2.047
\ ~\
N e
\\\ \\
N\
\\\ \‘
I A /
~
Seo_-X 255
\\ 1.23
\
\
\
N\
Real Z'=0 “\Jm Z'=0
\\\
\“--.._‘_ —_— X ‘
- 1 |
2 3
Fig. 5

We apply the general saddle point method to the computation
of the integral in (18). For small E we think that only the
small wavelengths are important. If this is true we can write

with &= 3%/t
then for the Landau pole

= (.C-/. '—[}"’/g_] fej =

Sy == V4l +¥ RY

_uyﬁ%ﬁﬁlég

I is an arbitrary small and positive number
iwﬁ the integral in (18) is written

c—;‘/‘ C([LI)/\";:- {?2"/3$)& fié_




: £ 5 ? 2 ) . . . .
write i-,:-gﬁ;/’#vt,k - The pathes in the comnlex k pi e 2o

Real [wr.q.% ﬁ.e-gﬂ = W - 3;

2 tne Lwo Steaighs lines 2 ﬁ'ﬂr ?“‘;,"

‘ﬁa; The poles are A= i)&if,f
Conditions at It%l"““’

select the line g4_ 2/ §.

- ‘mee Mg.6)

oy
0 & g

The poles give no contribution

#5' to the integral which is

Fie VT
- iy i) B R RE g
(26) "5 et [ wp - )tfc ko : exp-ak i)

(.Ur— ga/éq +1 & g,z—

For large t only the regrjoncvwwm/é”ftnattorq ar.d the integral
in (#6) is justyw/ot . Taking 1rLo account the contributicn
of the other poles we get

*(_ ~o,t) = (..zuar!:j 4 Caa[?w-fjt‘:arl_]

n
t->




Appendix IV

We should be careful to compute the damping
-3 2
}'/9 = wp‘/gf (4¢.>D} bx/l ‘é_‘;z /w/gm)

due to the fact that A,—» O it is not sufficient to
i A 2 2 2)/3ur)’
use the approximate formula #,%=(@ _wﬁj[ Vrf

to get the exact value of the term exA -If/epg.:t][a)/gdj‘l'.
We need the next term in the dispersion relation.

S SEE /- Sk T A

and the term

L owr .3 WE 4 =3t .S
\’/Vrb 4‘0& < w"_a_}‘l e ‘(71—“?‘1 2

In the same way in the computation of 4 for a given k,

the term (.2,{/,."/" wp/ kT = [Vz] /ﬁ Y K22

The author acknowledges helpful discussions on this subject
with Prof. R. Gould and Dr.P. Schram.
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