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1. Introduction

1)

of a constant tensor friction on the motion of a particle

In a previous paper” ’, Kursunoglu discussed the effect

in a plasma. The friction tensor consisted of two partc,

one due to the rotation of the particle orbits by the
magnetic field, and the other due to the average deviation
suffered by a particle colliding with the other particles

in the plasma. In reference (1) this "dynamical friction"

was assumed to be constant in time. This may be a satis-
factory approximation if one wishes to treat the decellera-
tion of a single fast particle injected into a plasma, or

if the main contribution to the decelleration is due to
collisions with a neutral background. But it is less satis-
factory if one wishes to treat the randomization of a typical
particle of the plasma due to Coulomb scattering. In the
appendix, it is shown that, for a weak magnetic field, the
friction tensor depends critically on the velocity distribu-
tion function. Therefore, it may be expected that the time
scale in which the particle is "thermalized" should be of

the same order as that in which the plasma velocity distribu-
tion approaches a Maxwellian.



II. The Equations of Motion

The equation of motion of a plasma particle in a constant
magnetic field along Z is:
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where
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f(t) is a symmetric matrix, representing the average effect

of the other particles on a test particle due to Coulomb
scattering. The form of this term is discussed in greater
detail in the appendix. In general if the net momentum and
angular momentum of the system is zero, the trace, determiant
and determinants of the principal minors of f(t) must be greater
than zero, in order for the system to tend toward an equili-
brium. These conditions are sufficient for the eigenvalues

of f(t) to be positive. The term K5 represents the contri-
bution of the magnetic field and

lF(é)) = el 6(“)}

represents the local fluctuating electric field and varies
"fast" to relative to f(t). If the system contains several
species then the friction on a particle of type "i" may be
written as a sum of terms due to interaction with each of
the other species, so that
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Each of the terms fij 1is also in general a function
of the velocity of the test particle, but this dependence
has been disregarded. Equation (1) may be solved by using

the method of Chandrasekhargj.

The solution to equation (1) may be written
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where %% can be considered constant in the interval 4# ,but
4% is large enough so that {## is distributed statistically.

The distribution of fu) will tend tc a Maxwellian if the
probability of various occurences of /%) is governed by
the distribution function
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The probability of [«.) may then be written
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1II. The Average Energy

In order to calculate the average energy, the velocity
distribution function (10) must first be expressed as a

function of the friction coefficients through (3). Thus
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The average energy may then be found from (2) and (14),
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where terms III are odd in u and therefore give zero
contribution. Term I may be written
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and is in general dependent on the magnetic field.
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When the integral 5/;47)07 is diagonal,

é ¢ t . €
S Ay ery ;/pqﬁﬂd? - {/)16””7 ffzuyid?

o

(19)
‘ nd P & P _ ‘
4 - [ Aty - S Aoty _fara )y o2 /ff;,d7
@ : e — e -
‘Then ¢ 4
W-:P;»t’ zzz'anrm—f/—e’.""'{ﬁ"m"'J]"z *
¢ -
-2miT)’ <u;{/-e'z{{‘7)d7) “>
¢ (20)
Il
-2 L Loty
L e ¢ PP +
(.Z_';'l)_ 7oy Pl € [ )
-2/
ot et 2mer (/- € =& gy

o

f,
> - —2 [ fay )]
- X fos€ momors of [mer)”(1-€ ¢ 7) 7

which is independent of the magnetic rfield. Note that only
5
requirement for this to be true is that {/747d7 is diagonal.

In other words any off diagonal components of f(7) must be
Oscillating functions of time which average out to zero. In

a similar manner, the average energy along the field may be
calculated remembering that
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and the average energy along the field may be written
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and (27) is therefore independent of the magnetic field.
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To summarize, the average total energy of a particle in

a magnetic field and subject to a tensor friction is in
general a function of the field unless the time average

of the friction tensor is a diagonal matrix. The component
of the average energy parallel to the field is independent
of the field whenever one of the principal axes of the
friction tensor is parallel to the lield. Both averages
reduce to their Maxwellian values in the limit of infinite
times for an arbitrary friction tensor.
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IV. Resonance Diffusion

The probability distribution for the displacement ?' of a

Brownian particle at time t which is at Tw at t=o is
found by noting that
y
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term on the right may be neglected in comparison with the left
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Similarly term II may be written
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Therefore the displacement (40) may be written
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If “Af) approaches zero slower than #~' , for large t, (50) will
hold and the first term of (49) is the leading term at large t.

Then

& 12 i - -/
/%f) 2 ¥ ap = /plﬂ/ﬁ “Ap) ap

(51)
at large t and the distribution function
:;,/;{,}fj —; Peé YT KT /(Aﬂfgpj "Ap)) a//a]
R
= ykr(/e/[/mﬁo}ﬁﬁ AW} df] % 2
- 2
(52)
as may be found from equation (10).
The average mean square displacement across and along the
magnetic field is
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where the matrix A is given by equation (21). The mean
square displacement along the field is

- ¢ - -
(AR = % [ O/Mf’”’% Aﬂ) 040]33

(57)
and the corresponding displacement across the field is
kT [ = - )'/‘/]
- A A sis
L) = 2;2 a/(/lsw% o
(58)
Equation (57) leads to
{Ai‘f’;/L> = '200’t (59)

only when

V’tw -/ =) ] =
[/ i #7205

6 .
™ & = — 0 ,
|/ (aphoasl o |, (60)



20

Since the trace is invariant under a rotation, equation (5&)
may then be written as

(ar) = 0 ¢ 48, (61)

It 1s easy to show that in general
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for equation (59). In this case the diffusion along the
field is independent of the field. This will not be true
when fl} and f23 are different from zero.

Now consider some specific examples with constant friction
tensors of various forms.
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where @2F in order that all the eigenvalues of £
be positive and that the system will approach a2 Maxwellian
equilibrium.
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By comparing the diffusion in the three cases (66), (70),
(76) it is found that for a friction of the form (70}, the
diffusion along the field is the same as with a scalar friec-
tion. However the diffusion across the field is increased by
the ratio

pl.*_“)‘n._kl

This is Jjust the ratio that would be found by substituting
the eigenvalues of the friction tensor (70) into equation (69),
and does therefore not represent a physical difference unless
4 is a function of the field strength. For a friction of the
form of (76) the diffusion across the field is smaller than

L_d'l
for a scalar friction by 49;7‘—' while

@1* “)&1

the diffusion along the field is increased by F‘wuy-aJ“

These ratios can not be tranformed away by a simple diagonal-
ization of the friction tensor (7€), but represent a true
mixing of the contributions of the dynamical friction and the
magnetic field to the diffusion rates which may occur when
none of the principal axes of the dynamical friction

tensor are parallel to the field.

It is evident that the presence of a magnetic field tends

to stabilize the diffusion not only by reducing the diffusion
rate across the field, but also by reducing the diffusion rates
of an anisotropic plasma towards those of a Maxwellian one,

in the presence of a strong field.

It is thus suggested that the addition of a constant magnetic
field does not lead to resonance peaks in the diffusion rates
across or along the fields, but rather serves as a stabilizing
influence. On the other hand, the presenrce of a tensor friction
will alter the diffusion rates compared tc those of a Maxwellian




plasma. Of course, if the off-diagonal terms of the friction
tensor are also dependent on the field, then resonance be-

navior is still possible.

It must be emphasized, however, that the assumed distribution
function (5) is valid only for a stationary non-rotating system.
In general an infinite plasma may alsc have a net drift and
rotational velocity. Even a2 laboratory plasma that is cylindric-
al in shape may rotate, as seems to be the case for may plasma
beams. In this case the diffusion rates acrcss the field should
be a critical function of the field strength, so that the high
energy particles may be dissipated out of the field.
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V. The Fokker-Planck Equation.

It is possible to derive the differential equation governing
the distribution function w(ﬁ;,t) of particles whose motion
is described by a generalized Langevin equation similar to(1)
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where (82)
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represents the dynamical friction in an anisotropic plasma
and the rotation of the particle orbits due to a varying
external magnetic field which is parallel to the Z axis.
The term é??{i) may represent an external electric force
field. It will be assumed that there exists a time a¢ which
is long relative to fluctuations in the local stochastic
field E?t) but short compared to changes in the physical

parameters. Then it is possible to set
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Equation (82) may be integrated in the same way as (2) to
give
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The distribution at time ¢t +at may be written
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This may be written in terms of the momentum transition
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using equation (5). The differential equation for the
distribution function is now found by expanding (85)
in a Taylor series
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After performing the integrations and grouping the terms,
the equation may be written:
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in the limit as a¢#*9. This is of the same form as the
equation given by Kurgunoglu, and reduces to the ordinary
Fokker-Planck equation for a diagonal friction tensor.
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Appendix

A. On the Form of the Dvnamical Friction Tensor

The Chandrasekhar method of treating the deviation of

a particle interacting successively with a large number

of other particles under a (%?2 force field may be general-
ized to arbitrary velocity distribution functions 3). The
particles are assumed to interact through the attractive

gravitational force,

—_ G e d
F: — 7, M2 er_ J

re (A.1)

but the results are equally valid for charged particles

suffering successive two body coulomb ercounters, where

- (A.2)

B. Derivation of the Equations of Motion

Assume that the velocity c¢f an incident star is ?é before
collision and v; after collision. The angle of deviation
is w-2¥
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-

-
. GG

4

St
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In order to find the time deflection, it is necessary to
- 7

express VvV, as a function of the initial parameters. Assume
that the velocity of the star in the cm frame of reference

before and after an encounter is G?g’ Vég. it
collides with another star with respective velocities Vi, Vye.

Then the velocity of the center of gravity §é can be related

Assume that it
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to the particles' velocities:
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where my and m, are the masses of the two particles, since
“
the total momentum of the system is invariant. The relative

velocity before and after collision is
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Assume that 3? is parallel to the z - axis of our coordinate

system and that the angle between ?? and ?1 is &.

Then
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and
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The angle between v and v is the same as the angle
—> —!, 2%‘ r’*)g > -\l
between V and V,° since it may be £hown that v = Jv’l. due

to the fact that energy is conserved in the ccllision. In

the orbital plane each body describes a hyperbola about the
L=

other. At the end of the encounter, the relative velocity V
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is deflected by 7 -=2y in the orbital plane, where 4)
oo Yo = 4 \
(7* _J:V_‘f__q}’i (A.9a)
GH( )t
The impact parameter is denoted by D.
Equation (A.9) gives
- —> L
o -2 = 7 (& )
<2 2 'z / f (A-].O)
y r] = —)_ pals = 2
G olr-2 )= 4oty G-l (A.11"
- -
1. Call the direction cosine of Vo with respect to V =
cos (§-4)
IT. Call the direction cosine of an axis in the orbital
plane perpendicular to ﬁ = -sin@-<) cos @ 3
IIT. Call the direction cosine of an axis perpendicular
to the orbital plane and v = sin@-J) sin @ s
- - s
where o is the angle between ?9 and Vg. Since Vog is along
>, 2
V', the direction cosines of ?gé in the same directions are

I along 7\!’, = cos (P8)

£ ] in the orbital plane andl to ﬁi = sin(A-#) i

>
ITT perpendicular to the orbital plane and V, = O.

Therefore
= e ;- r &L s \
Lep = Qz"@p (wv(ﬁ-—(/’/ -] = Sin ([BEB) Sonlfp-F) e 9/ (A.12)
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and equation (A.11) may be written

G eac(7-28) = & {‘f,?/[;““ (#=py cealPp=-T) =

, (A.13)
= rnlp=-p) S (FI) co7 O] + Vo cos & } . g

However the angle between V and ?'has already been defined
to be Z-<2¢

T =2 ¢ = il .
y=9-9 (A.14)
Equation(A.13) may thus be written:
cos2¥ = -E./z{; {%,(Q’;: 24 aos (P~ ) + Sur 2 S (P-dI) <as Q)—.
A.15)
- -
Now the direction cosine of v, with respect to V is Just
>
o L kAT A 4 - 4 os &
505(25'—(5} — Ei.,__________ - K T e o &Y
S v (A.16)
and
. e - tref Pd-LV; _ cid-,,?g
«f/f?(_’f"d’) refl. vel b V "
(A7

Equation(A.4) gives

- . - -
("75«'-/"‘97?_;} % - 7 v 7, Y i




Vf cos d’:(ﬂ,*m_gj-/("’?,”; cos & -*7"10:2‘) . (A.IB)
- .5‘
since IVl = |Vl equation (A.9) gives
ya
77,4+
e (A.19)

By substituting (A.16), (A.17), (A.18) and (A.19) into
(A.15) this reduces toc:

el e

Cos 2 ¥ =
j(/ (”’f"’”;) 73

2m, (-l cws ©) os* ¥ *+

2T 10 © 3 1D Sun g Cas g~ (77 27 cg} -

(A.20)
The change in velocity parallel and perpendicular to the
original direction of motion is
Aq:q’co&(}t—ziﬁ/"ﬁ' ) (h.21)

Ay, = &' simlr-2¢) -
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Combining (A.20) and (A.21},

wl Ty

44, = :’;—; {(q{-l/; c;o.;‘&}al_r%-fg{- RPZr - 605@4‘//?}/-} ooy : }
A.23)

which is the same expression as that given by Chandrasekhar.
In order to find the deviation perpendicular to the field, it
is necessary to choose two specific axes to refer to since
(A.22) will only give the magnitude of the deviation. The
various angles are identified in the diagram.

N (A.24)

- . 5 - : - .
g = {({’[ SIG (T-2 ) COSN. B+ S (T-2F) S 6_? +

* COSOT—2%F) 5;] -
é may be calculated, using equation (A.9)

(%""2’/: ”.z-”.;_j/[.('“f/f.-lf[f-—é’}' fm@f,n(y)'{_fo'/é‘ P

P
+ S @-rf) Son @ cosp=pl e,

-

+ [m:(ﬁqrﬁ S (pip) + Se (P-3) cos & QL;M’f.f/ 5:

- - 3
P oL Vjﬁf S S @1.}‘,1@0}. N
Pl

(A.25)

where

- . — -




34

- ; . . -
In the same way as for v,, the direction cosine of v,
[

_> .
respect tc V 1s

cos (ﬁ-cﬁe) , since it lies in the plane of TJ’? and V.

Therefore,

7= g { cos (-8+©) & - s (F-5+6) cos ®é& +
¢ (A.27)

+ Sinp-S+e) S @ & 1

and

Rt =g { [ D Im & codfSie) = cosf) SHFS:91 5381 & 4

# [l P-5) cos @ coalP-548] ~ cosF~I) om @-dep) s 6] 51;] ’
(pn.28)

Substituting (A.14).(A.16Y,(A.17) and (A.13)

VU" st & Sen(r2 ) coufn-«i) =

(Gxo) Fx &) =

= gy O {:r smte [ 1-wa(r=2f)] +
ml‘ 7’1;,

i . . & —
e B Sen 224 o7
* ¢ Sme _ (A.29)

— G NG Smlr-2f) 01 © )

Gryg ! Smesin(r-2 ) Sy & =

GxF) x G T) =
¥ " -3
— gy VY sin & Smbr-24 yme Eq (A.30)

DNt 77
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so that (A.29) and (A.30) reduce to

G Sn @ SHE(T-2F) Coun-w) = :;;f—f{;nz— [t{ Sia’e[/-coafr2p)] +

+ U SO w08 S7(T-24) coo & -

- & SN 8 S [rt-2y) coo 57] 7

(A.31} L

|

T ] _ g V : . - :

‘,; J/QVZ"ZK/ J/q(JL-u)}— - prp— Srn Qﬂné-r—.l}‘/ Sme .
(A.32)
However,

Sin . = om0 oA (N-w) £ g ew @0 (N~-w) (R
n N = mew e (L-w) - Senw S (A-w) (A.34)

Using (A.33) and (A.34). eouations (A.31) and (A.32) may
be combined to give

U758 OS2 f Sin = —BRU— fovsé.rf},sf-yx‘.; O S/7 ¥ oo+
4 Py

_’.,_p,:.,,,_;[(&'.!fr;éc-oay&f@'caaﬁafh;#‘oﬂg-q‘r”."‘majg 3 (A.35)

G Sine Sm2¥ s = ﬁ-——&bswsé[l/mamwﬁ;u+ (A.36)
r * 7Yy

b Covw [ 4 SmO ooy +qzﬂa9_ﬂ.‘.9¢m@—q~rfr}¢fm5’]} ’
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From (A.24) it is obvious that

Ay, = g = Glamednn
(A.37°
ana
AU;?': o = q".rp'nz’yi._rm_n_
(A.38)
so that
L Pl
o, )= (g ) ) = R et Ut e gt 2y -
7 (?ﬂ,\ﬁ?n_l}
i I €O Laosl # U StnB Sim e log
[ (o ) oot e 03 0] .

which is the result derived by Chandrasekhar
If the particle 1s subject to a series of collisions then
(A.23), (A.37) and (A.3&) may he averaged over these such
that

Jﬂ

27T
Zdbj,; “Aé/a’:f//a/(/w //g /"’-—;9 2T N Sw) VD 4ad;:

(A.40)
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where N is the density distribution of particles of type 1,

D is the impact parameter and is related to w through (A.9a)
and it is assumed that at is a time such that the particle
suffers many collisions but the density distribution may be
considered to be unchanged. If the density distribution has

a sharp gradient then it would also be a function of &

and D. It is assumed that this dependence may be neglected.
Now

2T
- 2T Y fa_41)
174 Coa o Cov v (A.41
/Q’Q 445, 7, Sin @ cory /

Pys

= TR tor i Stnta Sm & oo
,,/f/éw by = ey TV > 2 (A.42)
27T -
S @by, =~ L v (- yens)
2 Gk (A.43)
so that (A.40) may be written
F T LT Do
—
2 4y = Aﬁ/af(,r/ole/o/w/a@ 277 Negew) VO -
o o el e .
AL4E)
L _Lm (-3 ) cos F . (
7+,
The integral
Vo N N
2 = !E tﬂl*ml! é" ¥
o/”ow as’s = BT g (14 W»’J%T} (A.45)

It will be noted, that it is necessary to cut this integral
i OfL at some maximum value rather than allowing the integral
go to infinite impact parameters, in order to aveld divergence
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of the term. This is a characteristic of the long range (%)9
force law. In this case such a cut off is also necessary
on theoretical grcocunds, because the problem may be treated
as a series of two body ccllisions, only for the short range
collisions. For charged particles with impact parameters
greater than the Debye length,
o1
Ao = (“_ﬁl;_ﬁ) J

gz et (A.45a)

the collective interaction will predominate.

The number of field particles per volume with velocities
between ?l and 51 + d;l in the element cf solid angle
sinede dw is Nw ew i declw . This may be also

written as
N frew) ydgg omo dwde ,

where #fi e 1is the normalized density distribution of
particles cof type 1, and N1 is the density of these particles
in configuration space.

Thus

N;ew) = N Fiyow) 4 sne (A.46)

and using (A. 45) and (A. 45), (A.44) may be written

5 A“*,{ = —pt 2z N, (m+m,) G -

72

él‘/‘f
'//o?(/ *JB‘{m,rmJ‘) [7 f2) o
V

-

-0

(A.47)
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gimilarly the change of energy of a particle due to a
ollision may be found from (A.23), (A.37), and (A.38)

L
e < 277, 1
3 %(——-—*’—-’”*M 6055‘)[/ -

AKE,= 2

i a:u'}é(o(, Cosfc,-ozlﬂia%[o,r@/ 9
(A.48)

where

og = U SmE

The change in energy due to many such collisions is thus:

S AKE, = ~AC AN momy (o) &
(A.49)

fw dE

’-/ 47 (/ ” ‘/nfm)‘)

using (A.4).
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The net change in momentum of the system due to collisions
may be written as a sum over the species Jj.

(A.50)
- = -
) A o =0,

S
AW

//o/o[!v« J{, “;] %{%ﬁf)/{

as may be seen by switching indices and adding. This changes
the sign ¢of the vector.

Similarly, the net change in erergy of the system due to
collisions 1is:

2 (Tlrtg) G AG =

= Af Z.ZJE/V Ny ey (omormy) (A.51)

—/47[ G‘(M‘fwjj'w—lfw') Fi6) A6 LG =

in the same way. Thus the energy and momentum of the system
is invariant under collisions. However a necessary criterion
for this to hold is that we set

d{,j = 0/-4- .
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In other words the maximum impact parameter must be

chosen such that an equal number of collisions of type

ij are retained, both for species i and species j. If the
Debye length is used this must be some average value for
collisions between ions and electrcns for example. Of course
one may use different maximum values for ion-ion, electron-
ion and electron-electron collision.:

Now consider a system of only one type of particles. If

the incoming particle is travelling with the mean velocity

of the system and f(V¥) is® symmmetric function about the
average velocity, then (A.47) shows that it will experience
no net deviation due to collisions. A particle travelling
faster than with the mean velocity will be slowed down, and
one travelling slower will be accelerated. Because of the
difficulty associated with the integration of (A.47) it is
customary to assume that v, is a fast particle that would

lie in the "tall" of the velocity distribution of f(Vlﬁ.
Then it is possible to expand the functions in powers of
vl/V2 . Chandrasekhar justifies this procedure by the fact
that“major contribution to the change in velocity 1is due

to the slower particles. This may be valid when discussing
the decelleration of an incident particle, but is not as
satisfactory when one wishes to follow the motion of a typical
particle of the system. For example, in this paper the diffusion
coefficients of a plasma were derived and found to be propor-
tional to 7& . If the friction in turn is different for the
fast and slow particles, it would be of interest to find out
if it is the fast or the slow particles that leave the system
more rapidly and if the average energy per particle, or the
temperature, is decreased or increased due to diffusion.

C. The Dynamical Friction due to Coulomb Collisions.

From equations (A.1) and (A.2) it 1is evident that

e, e-l

G _— - e — e

47’,1-??&

—~
b
.
\n
N
N
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For an electrostatic interaction force(A47) and(A%9) may
thus be written

- _ -2)?'-443,1@21 -~ —3
FTag = at ——2— L lprav) K Ay, (A:52)
: E
N = -Af 2ax Ne ;//’ .
A K E Za VrCal/ ———1 5
1__{ Jz e 4}‘("‘ } fV‘Ja/V (A.54)
where «¢ 1s the reduced mass of the particles and
Co = = z 0{2_ (A‘55)

It is customary to set the maximum impact parameter equal
to the Debye length(A45a). The friction coefficientA is then
defined by the equation

2 lag)y = - at Aty ) (A.56)

From equation (A.52) it is obvious thatAmay be a tensor.
Normally it is assumed that A is a constant, but it will

be shown that this is not correct unless the velocity of

the incident particle is much less than the thermal velo-
cities of the field particles. When the distribution function
is Maxwellian, then (A.56) is parallel totz and the friction
tensor is a scalar.

In the previous work, it was assumed that the equations

(A.53) and (A.54) should be integrated to some maximum

impact parameter independent of the relative velocity ;h.

This is customary for Rutherford scattering of two particles

ﬁhen this distance may be chosen by requiring that the scattering
angle be greater than some minimum value. However, in a plasma,
it may be more suitable to include only collisions where

the distance of closest approach of the particles is less

than a specified value. For example, two-particle collisicons
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predominate when the particles are within a Debye length
of each other. Placing such a condition on the spatial
integration gives "greater weight" to collisions between
particles having a large relative velocity, since these
can approach closer to each other than particles having
less energy.

Equations (A.53) and (A.54) may then be written

4 1 —
— ,Qez —
S du; = -at J—)ﬂ-—*—/{o{; &ch‘}&—‘% fi2) AT 5

‘%/"u‘ (A-B?)
2 Merel : ;72
- ) = - SR S FRe / E Y i e P ¢ o
S (AKE) = —At — logl1#cv) =23 fulr &4 5 (p.58)
where
Y 4
Cs~%p 'e (A.59)
and r, is the maximum distance of closest approach giving
two-body scattering. The integration over V| must be re-
stricted to
i REEy (A.60)

for particles having the same sign charge. Particles with

a smaller relative velocity than this cannot approach to
within a distance % of each other and therefore will not
suffer two particle collisions. For particles having opposite
charge the integration is performed over all velocities as

in (A.53) and (A.54).

The distance v may be approximated by the effective 1engt2\
at which the Salpeter two-particle correlation functions”’
are reduced to Ffe of their unshielded values. This gives T,
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equal to

g Ve? el
r;‘l = (____ 5 ST AN

kTe KTy (A.61)
for electron-electron and ion-ion collisions and £, equal
to
yrver
n (-2 nenm TR
%= © * " € =/
(pn.62)
for ion-electron collisions.
D. Integration of the Scattering Functions.
In this section the integrals
2 7
@ = Slghrer) L fAt) a2 (8.63)

Y
0 =) e BB g a2 (h.61)

which appear in the equations (A.57) e&nd (A.58) will be
cglculated for a Maxwellian distribution function. The
mathematical details are carried out for attracting particles,
where ¢>e, but the corresponding results for repulsing charges

are also given.

5)
Using the Fourier convolution productt" ,(A.63) may be written

- oo
- . )
@ = 'Z_{ 2G-5) S 4G = —Z_m/;ce*; gty &K% g (A65
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pC-3 = Lylrev) L (A.66)

and FK) is the Fourier transform of the velocity distribution

‘function.

Then

r > ¥ -2
- 1 — chk-v — Y logGrev?/
s =r) [ gy e =i [ B R e 5

where.aﬁwlis a Bessel function of order 3/2. For a Maxwellian

distribution function

- KVt
) zer)H e
= 24T (A.68)
. 7y
50 that
c? O'CV/ AV
&), = & u* “’V.//; ky) € dk =
7 gt vy v
= ?x-égk e '“5_// éﬁj&iﬁ——r jr (qecz V) € B2 ) _
2 é (A.09)
i
after performing the integrations over the angles and k, where
L] 3
Z,0 = pACE (A.70)
It is convenient to set
e vi = ¢ > (A.71)
(A.72)

|~
]
®
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Then (A.69) may be written

9 = crxtg e " 5 xTeyy’s

’ .
Pz Ir”‘l{lj

. (A.73)

where Z@«/v) has been expanded in a power series. Note that

o’ - |
. - % 4 - ™ 2 ’ -
,_,//?’/"“)f e T = )" L o//‘}‘ tre) @ ote = (A.TH)
s ) S [t e Een]
where &, ~x) 1is the exponential integral,
g ¢
5'(‘*}:"'*/%——“’(‘: az&fo-d v
S (A.75)
and = 4297, (A.76)
Thus
z e 2 o »” Fil
4= 2e® G e 3 ) 8 Geq m P f"‘L e“tity)] -
N <
(A.TT7)

The corresponding equation for repulsing particles is

%

Q'= 2xe Ze % 2 e ) e .‘rtn[ t e Ley] -

o (A.78)

The energy scattering function (A.G4), may be integrated in
the same way, setting

i Y — _ s = i (A.79)
GL-: 2//“j%?42). A& ST = 2.//;5@3'/q6 e chﬁ‘;
= o>
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_-+
where jiﬁ-f!/ is given by (A.6¢t) and

— - '
Then
= - A i
Fo =@ "y, e[ L, AL (A.81)

for a Maxwellian distribution and

--w"/(o (/ch/ ...fV‘

Q= ¥ty ]kﬁi’cxw‘V/‘(V“

ol F ""d;i/‘;‘ﬁé (/fcg/lje-("&] (-Z-NIV/ ‘/V)
e y op £ (A.82)

o, L5

in the same way as with (A.69). Making the substitutions
(A.71) and (A.72) and expanding the hypsrbolic Bessel func-
tions in power series gives

—-d"‘:‘ = gt kel F/}"
= 2V & 2 X w@x) it
@, =< - ¥ (A.83)

1
o &

— ’,,Z] ,,/,(,.(zc d—x}}

for attracting particles and

~ec Lt b v 2™ (‘/Zh
@;’; 2V € - ﬂ;o ():}”T 67(‘{) ! rrig)

[ m& - | Jz’?(x * L) (A.B4)

for repulsing particles. The rates of loss of velocity and
energy of a particle are thus functions of the ratio of the
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particle speed to thermal speed and of X,

- (A.85)

where kT, is the average thermal energy of the field particles.
This parameter x may be recognized as the ratio of the Lan-
dau length, or the distance of closest approach of the field
particles, to the Debye length. This ratio is in general much
smaller than one in a plasma, where small angle collisions
normally predominate. When & <<s , the scattering terms for
attracting and repulsing charged particles are approximately
fhe same and

» Mt
o tx ) m!
o [-£ e ﬁgﬁ%{] =3 e log X

(A.86)

Therefore equations (A.77), (A.78), and (A.84) reduce to

_ x ~ —w Lt = 1 sas () JL
A 7 ) —d—— = 2 -
@r 2 ‘HZIH ‘/j Leness) /F'X[/ [{E_Jf(é/‘/‘fl}A 87)
g =2 e ™ zwv"/m [ @9 . za]=
f’(ﬁr%’) 77*‘;& P
Loz, ad? /' Llk,%) }:
A {[/ Ty A Sl T
. —wly? [Gs n(b:‘) :
syt s e - e
F] [3
where
= £
(@x) = er_tqudT‘: [a) —g/e‘f("”aq . (A.89)
it

jsing (A.63) and (A.64), equations (A.57) and (A.58) may be
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written
L i = - 7/’77:/1’1/6116,1— < f(}/db"z.’
4o = -at - £ - “4]:
> A 7, g o L/ [(%)

P 4Gz )

~

_ vz Mee” o . 75 2 1(a.90)
—— At Lo log 4 [ [z e ot M

Z(AKEL:_ALA‘%/&),%[%{/_ I“f-}mr 3

2 —ec it VAN
’”V_/he J__ AE —.ﬂ_‘}_z_._.a.z ola

2 VAT 2
. 3 S LA I (A.91)
e [F ott - L Vit € ]

These equations hold for all values of «¢4* when x<<s .

If the velocity distribution function-ﬂﬁ)is also Maxwellian,
then equation (A.91) may be multiplied by A; AJ)and integrated
over # to give the average change in energy of particles "2"

due to collisions with particles "1". The resulting expression,

& (AKE}-Z>av. > 7 =7a 5 (A.92)

demonstrates that the particles "2" will gain energy on the
average due to collisions with the field particles if they
have a lower temperature than the field, and loose energy
if they are "hotter" than the field particles.

The asymptotic expressions of the velocity diffusion coeffi-
cient (A.90) and (A.91) for fast and slow particles may also
be given.

When ~<g*<</ -
L G — L&) -5&57)7 5
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so that (A.90) and (A.91) become

- _ 6V AfeLP" >77 <
Ay, =gl p ==y =+ 4 Lyl
F .27, ‘(’-'L ""ﬁ"f) 4 ? J (A.9"+)
and
4
| _ LIT 2 o L 2 i
Z («ﬂ KEf — AT 3 Yve 4“- ~ AT <A T, 7, (A.95)

The friction coefficient (A.56) is thus a constant when the
incident particle is slower than the thermal velocity of the
field particles.

When o< ¢*2>~/,

L @ug) = vazr e "% [0 ] (4.96)
and
— sxMelet o y
Z AU = -Af e, :-{—13 s % > (A.97)
)= —Alt VJ%EﬂéﬁﬁQC./’ ! [}Jﬂ _.;i;ﬁﬁfca““°£L],
EE:Cﬂ,fCJ:‘ or Bk L e« Um
/] (A.98)

For a fast incident particle the friction coefficient is
proportional to({"3and the energy loss due to binary collisions

-1
goes as < .

-Chandrasekharﬁgas performed a similar integration of (A.47)
and (A.49).For a Maxwellian plasma under the assumption that
& " 2= and that the relative velocity may be replaced

by some average valuc in the logarithmic term before performing
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the integration over ¢ . Furthermore, the integration

over ¢ , is limited to o < v; . The resulting expressions
correspond to (A.97) and (A.G8) for a fast incident particle.
In deriving his formula for the resistivity of a plasma,
Spitzerr) used expressions of this type for the velocity

diffusion coefficients ¢avZ, and <av?z 8),9),10).
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