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Summaxiy .

The kinetic equation for a one species homogenéous
plasma in the presence of an external homogeneous magnetic
field is derived with the ald of the extension method of
Sandril). Although collective effects are not taken into
account the collision integral converges for large inter-
action distances due tc the fact that tne Larmor radius
piays the role of a natural cut-off. This is explained by
considering the collision process itself in some detail.

A new contribution to the kinetic equation is found exhibit-
ing an arisotropic character and due to fhe long duration of
the interaction of two gyrating particles with a small re-
lative velocity of the guiding centres.

Interesting results are obtained for the relaxation into
the kinetic regime.
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1. Introduction

We consider a homogeneous electron gas embedded in
a continous neutralizing background and in the presence
of a homogeneous magnetic field.

We want to derive a kinetic equation for this system by
means of the extension method of Sandri 1’2’3’4). This can
be done with the weak coupling expansion as discussed in
Part I, section 5. This means that collective effects are
not taken into account. It turns out, however, that the
Larmor radius plays the role of a natural cut-off, as has
been observed also by Silin 5), so that the method is satis-
factory if the Larmor radius is smaller than the Debye
length. Nevertheless the neglect of collective effects is
only Jjustified if the zero order distribution function is
stable in the sense of Part I, section 5.

Another restriction is that the zero order distribution
should not give rise to currents because otherwise additio-
nal magnetic fields would be present which are not taken
into account actually.

In section 2 we introduce our basic equations and the
notation, in sections 3,4,5 we treat the zero-, first-,

and second order theory respectively, in section 6 we dis-
cuss the first order correlation, in section 7 the colli-
sion integral and in section 8 the collision process of

two electrons in a magnetic field. This gives a good under-
standing of the convergence of the collision integral for
large interaction distances without collective effects.

In section 9 we treat the relaxation into the kinetic re-
glime and in section 10 finally we collect our main results.



o, Basic equations and notation.

We have to complete the equations (2.14) and (2.15) of
Part I with terms representing the Lorentz force. For the
distribution function we have
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and for the pair correlation function
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where 6?&- is the Coulomb potential
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and the correlations are defined as in Part I, eq.(2.13).
The notation is the same as that of Part I.
We choose the z-axis parallel to the magnetic field and write
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Furthermore we introduce relative distances and velocities by
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Frequently Fourier transforms will be used, i.e.
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and similarly for the pair correlation.

It 1s convenient to use cylindrical coordinates in velocity

space and k-space with the axis parallel to the magnetic
field. We use the notation

(2.6)
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As already has been remarked we consider the plasma as a
weakly coupled system and apply the extension method of
Sandril). In Part I, section 7, we have seen that under
certain conditions for the initial correlation functions
the system relaxes into the kinetic regime according to
the results of the so called simple initial value problem
defined by

7s (t=0)=0

FO(t=0)= Flt=c) FOt-0)=0 (x=1)

i.e. all intitial correlations are zero and the initial
distribution function is incorporated in its zeroth order.
In this paper we assume that all conditions of this kind
are satisfied so that we can restrict ourselves to the
initial conditions (2.8).

As in Part I we do not distinguish typographically the
extended functions from the original ones and we usually
do not write down the time coordinates 229123) Z;Jetc. as
arguments of the extended functions.

(2.8)



3, Zero order theory

In zeroth order of the weak coupling expansion we have
( compare Part I, section 5)
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and, because of eq.(2.8),
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er all s.

As is well known the Lorentz force gives rise to a term
respresenting a derivative with respect to the azimuth in ve-
locity space the axis being parallel to the magnetic field.

The solutipon of eq.(3.1) is simply
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It would be natural to assume that the initial f:(}does not

depend on &, . In that case FTdU(sz Z;) is constant in the
time coordinate Z;.

We do not want, however, this loss of generality. It will be
Seen that the general solution (3.3) hardly complicates the
calculations in the following sections. It is easily seen that
the restriction to vanishing zero order electric currents,
mentioned in section 1, means
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1If the properties (3.4) are satisfied initially they are
true for all Z, as is clear from eq.(3.3).

The compensation of the charge density of the electrons by
the continuous background may be expressed by the normalisa-
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4, First order theory.

The equation for the first order distribution function
is
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and has the solution
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if eqs.(2.8) and (3.3) are taken into account. Following Sandril)
we require, however, that Frﬂ)remains small for all 7, .
Therefore
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For the Fourier transform of the first order pair correlation
function we find the equation
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E; and I being fungtions of &, too due to eq. (3.3).
It may be noted that /7 satisfies the differential equation
Ny
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This can be seen also directly from the definition (4.5)

Writing out the scalar product in the right hand side of
eq.(4.4) we are now able to solve this equation. The result
is under the initial condition of eq. (2. 8)
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For large £, this function approaches an asymptotic limit /g/
in the sense of generalized functions ’/ as is proved in section 6.

A
This j/{') may still be a periodic function of To through
(g, — L L,




5. Second order Theory.

We only treat the second order equation for the distribu-
tion function which already leads to the kinetic equation.
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The second term of the left hand side vanishes because of
eq. (4.3).

The solution for Frég)as a function of Z,is then easily seen
to be with eq. (2.8)
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For large 7. c)we obtain
réFM .
@, 2 2 Sk RP) 5
F QQIZQ %"STT%LﬁQ_gi? d g&( 2514 (5.2)
- -

&)

The condition that fT should be small for a]l]Z'now gives
immediately the kinetic equation
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The properties of the collision integral of eq.(5.3) are discussed
further in section 7.
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6. The first order Correlation Function.

By means of elementary trigonometric idendities and
integration by parts eq. (4.€) may be rewritten as
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The introductilon of'Ez and 2, means simply a rotation of the
axls in velocity space over the angle/g in the plane perpendi-
cular to the z-axis. The vector [J is given in eq.(4.5). The

| Fourier transform of the Coulomb potential is given by

ﬁﬁ(k) = T3 (6.3)

By virtue of a well known expansion we mav express h(s) as
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ihking the limit of eq. (0. l) for Z —>co we obtain therefore
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where
a = k ZZ:LCJ_IJ"Jnﬁ

-1
;Rl_is the Bessel function of order /1 and J;_its derivative.
The negative frequency part of the delta function 45_(&) has
A
peen defined in Part I, eq.(5.11). Note thatjA(') may still be
]

a function of Zj through JZi8

The limit (6.5) certainly exists as a generalized function.

This is easily seen after multiplication of eq.(6.5) with

some function of, for instance, ﬁfé and integration over all 5@1.
The resulting series converges because the Bessel functions

J’n(z decrease very fast for large /2, namely as Z,L/;_./. We

do not use the expression (6.5) in this paper. It turns out

that it is more convenient to use directly the asymptotic
correlation given by eq.(6.1) with ,4_(G:b}->c) in the first

term of the right hand side and the integral extended to
infinity.

Let us consider now the 1limit ) —> O .
The function h(s) reduces to

A(S):exp (-—5/?36‘?5)

and a simple calculation using eq. (6.2) leads to
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in agreement with Part I, eq. (5.9).

Another interesting check on the calculations 1s a Mexwellian
zero order distribution, i.e.

FO(7)= Ceop-2v?)

(6.7)




It 1s easily seen that in this case
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and therefore, from eq. (6.1),
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This represents the relaxation of the correlation function

from the initial value zero to its asymptotic walue in equi-
librium. It is seen immediately that this asymptotic correlation
is independent of ¢J . Indeed it is well known that a magnetic
fleld does not change the properties of thermodynamic equilibrium.

Of course, we do not find a shielded correlatior function because
collective effects have not been taken into account.




7. The Collision Integral

In order to make the kinetic equation more explicit we
substitute the asymptotic value of eq.(6.1) into eq. (5.3).
It 1s easily seen that the first term of the right hand side
of eq. (6.1) does not contribute.

Substituting the Coulomb potential (6.3%) we obtain
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The notation is clear frcm eqs.(6.?2) and (4.5).
he of =, 9- , and k- integrations are carried cut in Appendix A.
The result is
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The integral in eq. (7.3) converges for large Z,, but not for
small Z . The convergence for large Z obtained without taking
into account the collective behaviour is due to the confinement
perpendicular to the magnetic field. The fact that the direction
parallel to the magnetic field does not disturb the convergence

(7.6)

is related to the circumstance that in an one-dimensional gas
no energy randomisation is possible and therefore the collision
term vanishes. This becomes clearer in the next section.

For small Z we need a cut-off %Z, séy, corresponding to the
distance of closest approach of two colliding particles. It
is shown in Appendix B that

.264 _qe” < ZZL
Ly = if S ;g>
mlMl m. U (7.7)
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It should be observed that

a) our procedure differs from the usual one in this respect
that we cut off the Z -integral instead of the k-integral. This
is also justified in Appendix B.

b) we are interested in the case CJ.§>C%P (CJf,:plasma frequency ).
In this case the Debye length does not play a role in the inte-
grals in eq. (7.3). This isshown in Appendix C.

If ) <p the magnetic field does not influence the ccllision
term appreciably.

Yie assume also that Lﬁﬁ_/ where Zz-corresponds to the average
distance of closest appreach

. 2e%co
A

( V%_: thermal velocity)
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c¢) The results of the integrations are evaluated in logarith-
mic accuracy, i.e. terms of order unity compared with the
Coulomb logarithm are neglected. A higher accuracy has no sense
pecause of the somewhat arbitrary cutting off procedure.

Because <K / we mav neglect that part of the 5C -integral
for which.QeiajéﬁlLrv is not much smaller than unity. This is
possible because the integrand remains finite for small I .

The remainder of LL -Space consists of three interesting

regions.
I.IZZEI ;; CZJL - The dominant contributions to the

Z -integrals come from the divergence, the region of small Z .
They lead to the modified Coulomb logarithm J{%7 Z_ 441‘2 fz =f

if 'Z and 42_are the average Larmor radivus and dlstance of
closest approach respectively.

V. V.
P S A s st I
c (7.9)
o L LWz,
We have replaced ;2 by Z;_ in the slowly varying logarithm.
The result is -
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(7.10)

or, introducing Cartesian coordinates and using index notation,

’ — < A Z[chyﬁ‘-af ZZb
fra =T, o Bp

7.11)

This substituted in eq. (7.1) gives exactly the Iandau equation
(1. 5.23%) with a modified Ceulomb logarithm. It represents the
Collisions which cannot be influenced considerably by the magne-
tic field.
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4eed 4
mu_/_)«ml« _L.In this region we still have the contri-
bution of eq. (7.10) or (7.11). But now the region of large Z
gives also some interesting results. For Small U, some integrals
give a contribution proportional to'lCzl . This additional
contribution has the form -

I O Jh16

fo =T Belteel\ @ o0 (o) oof

(7.12)
or, in cartesian coordinates
Z
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J—
. = %‘r E’Z(E(zzo)

This contribution has clearly an anisotropic character. Physically
its origin lies in the long duration of the interaction between
two gyrating particles with a small component of the relative
velocity parallel to the magnetic field.

%
IE[ '< (j;f;é) Here Ié[zl is so small that Z.;f? as given

in the first line of eq. (7.7) is much larger than unity.

Therefore the lower limit of the  -integrals 1s larger and these
Integrals become negligible.

462 )'4

Therefore the quantity (ZH.ZQL
the ZZZ ~-integration over region II. We obtain

a/Z[ /. ZZl /
T = P e Iy
i a (7.14)

acts as a lower cut off in




where we have replaced relative velocity components by the
thermal velocity in the slowly variable logarithm, exactly

as has been done in eq. (7.10).
o -
Therefore the terms /I and 7r 1in

o 5 - S
/ “/I /ﬂ_ (7.15)

are of the same order of magnitude.

All the details leading to egs. (7.10) -(7.13) are described
in Appendix C.
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8. Collision of two electrons in a homogeneous magnetic field

In order to understand better the convergence of the
collision integral found in the preceding section without
taking into account collective effects we consider now more
directly the collision process itself.

We treat the weak interaction of two identical particles in
the presence of a homogeneous magnetic field.

We introduce coordinates and velocities of the center of
gravity and the relative motion by

= ) /> =y F_ L[> —»)
R=#(%+%) V=7 (7+%
(8.1)
- - > =%
¥ = X —% u = v-h
The equations of motion together with eq.(2.4) are easily
seen to yleld
—
2V 7, o>
= g W X B (8.2)

¢t

describing a simple gyration of the center of gravity around
a field line, and

—g
QU .zeE’ QZ—[’*X?
= - z (8.3)
oL m
where the electric field is given by

— 2 _//)__ex
F=e3p(2)=" 59 (8.4)

The relative motion may be visualized as the motion of a

"reduced"particle with charge -e and mass % m under the in-
fluence of the magnetic field % BO E; and a fixed charge -e

at the origin r = 0.



In the weak interaction approximation the guiding center
of the "reduced" particle runs approximately along a field
l1ine with constant velocity. Let this straight line be in
the x, z-plane at a distance D from the z-axis and let the
guiding center pass the point x =D, z =0 at t = 0, say.
See fig.l.

2?1\

N/
S

Fig.l Motion of "reduced" particle

The magnitude of the relative velocity {f 1is an exact col-

‘lision invariant, i.e. H(ﬁ':-]—oo}: C((Z‘:-ooj
If, moreover, the electric field felt by the 'reduced" par-
ticle is nearly constant during one cyclotron period, i.e.

1=/ <D and |Q‘-Z'/@ LD (8.5)

4
then the magnetic moment 7’8’9))1==a&/4§, and therefore ZIL
itself, is an approximate collision invariant.

We calculate the actual change cf La_because this 1s connected
with the relaxation towards thermal equilibrium.
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If we measure distances, velocities and times in units of
l))IZZ;Z{and Eb«[cq[respectively, [l,, being the unperturbed
z-component of the relative velocity, we may write eqs.(8.3),
(8.4) in the dimensionless form

= oy
QU z -

where & 1s the parameter of weak interaction and £2 a dimen-
sionless cyclotron frequency

2e* @D
E=70D I 2= (8.6)

We expand Z( in powers of &£ and apply the extension method,
just as an illustration of this method

—> = b4 P 2 2 L
Z[: HO+ELII+—-— —-—-——-—39 "f‘gaz.'f‘—
In zero order we get
> s
"—‘?
s> = -0 U, xe (8.7)
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with the solution
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and therefore

?__ e {H. %J‘M(QZ‘-JLI} "'_§/ Co)(.QL +X)+£72 (8.9)

where
Z[M/!Z{,z 57&1: /b (8.10)

The first order equation is

—3 =2 - (6.11)
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Multiplying the perpendicular components of eqs.(8.7) and
(8.11) with Lé and E(,L respectively and adding we derive

—
2 (qu_' i U, _ Zos ’juo-’-
> 7, < 27 .

or, because Z[J. is independent of Z, according to eq.(8.7)
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Because uo_j_‘ Z[/J_ must be finite for all Z;we have to
require 2
d Uy,
i — O
2,

2
and find for the total change of IZL during the collision
in first order of the weak interaction parameter

0 - —>
- % (). By, (%)
2 oL (te/e “lpy ( Co
/s :.25/ 'z (8.12)
LT 3 (z,) °
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Along quite similar lines we find for the change of C{é
o)
' Z,
) = . (8.13
éﬁ.zﬂé 2203&?)// 12& (ZT C/Z:D )
o H (%)

From eqs.(8,8) and (8.9) we may substitute

2E> iiii.:: j; Cad (3:1 Z;'+.]C)

o
e 10 St v2 Yo (@) 422

By adding eqs.(8.12) and (8.13) it is easily seen then that
< < _
AU+ AU =0

as has been anticipated.
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Using the first inequality of (8.5) we obtain

AZ[J_ ZJES/W cas (O T, +X) O/Z'o

(%)%

=450 K, (2)ea X

whereKI(_Q_) is the Neumann function of first order of pure-

ly imaginary argument.

If the second inequality of (8.5) is also valid we may use
the asymptotic expression for }S(CL) and write

v Z[f = QE§(J77’.Q) ’/Q'EX/D(—Q) 0o X (6.14)

i.e. the changes of the gyration- and therefore also of the
parallel - relative velocity due to the weak interaction col-
lision process are exponentially small. This could have been
expected on basis of the invariance of the magnetic moment

to all ordersT’B)

. This fact explains the convergence of the
collision integral found in the preceding section for large

interaction distances, i.e. large D.

9. Relaxation into the kinetic regime

As in Part I, section 6, we treat here the influence
of transient correlation function on the relaxation of the

distribution function to a solution of the kinetic equation.

It follows from egs. (5.1), (4.3) and (5.3) that this process
is described by

/
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For the sake of simplicity we restrict ourselves to a Max-
wellian f:[gt The result, however, is generally valid. We
found already the relaxation of the correlation function to

its asymptotic value for this case in section 6. Eq.(6.9)
leads to

JM) A _ 255(/()’:@(—?* {"/(V U//L/Z"/ (9.2)

and the Maxwellian distribution (6.7) implies

F (- T)-Y epf Al wlgopff o

)
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], (%—i‘*)f*ﬁﬁ brsn)ocs mozff

After substitution of egs.(9.2), (9.3) and (9.4) into eq.(9.1)
the a-, B-, and &ﬂz -integrations are easily carried out.

The a-integration has been used already in eq.(9.4) and intro-
duces Bessel functions‘]:n , the B-integration gives rise in

a similar way to the Bessel functions of purely imaginary ar-
gument 1}5, , and the &; -integration 1s elementary. The re-

sult is

dF & JF& 24 (v t)
157;5_’ +‘G)-:S??;~—-:: Consts 3‘K1 3 Vv, Jz (9.5)
with
/ ///’T /.//EL/( %/z[ ‘QL ¢ /k}?xp[}(v +?YL€+ (9.6)
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We now get the asymptotic expansion of 46{ and 1€L by intro-
ducu(g the new integration variable C; = K» Z, and expanding

L.'f ?}// ) for small//%;.

It is seen immediately that the leading asymptotic terms have

the form £
/
,fz__> =z > A, cos mewz,
o o

- (9.8)
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The relaxation of Jf: az'ls slower than the Z; 4 -law

found in Part I, section 6. On the other hand it has been found
without taking into account collective effects, while the ap-

plication of the theory leading to the 2:;*~1aw requires a cut-
off at the Debye length in theplasma case.

£3
The expressions (9.8) assure anyway that f:()remains a finite
correction for all Z;
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. 10. Conclusions

We derived the kinetic equation for a one species
homogeneous plasma in a constant external magnetic field by
means of the weak interaction treatment and the extension
method of Sandri 1)

The neglect of self consistent magnetic fields implies that

no zero order electric currents are present.

The weak interaction treatment is only correct if the zero

order distribution function is stable and if the Debye scree-
ning does not play an essential role. The latter condition ap-
pears to be satisfied if the Larmor radius is smaller than the
Debye length because the Larmor radius acts as a natural cut-off
in the collision integral which converges for large interaction
distances. This fact is connected with the adiabatic invariance

of the magnetic moment in collisions.

There is an interesting new contribution to the kinetic equa-
tion due to the possibility of long interaction times. Ex-

pressing the results in one time coordinate only we write

3
a/Qf instead of %Z'o""f /32; === and
find
(o) -3 = o e iy
o F _ B V)XB-‘:)Z({—:.ZEIL 3__}' '{F(")o
St mce oV TTmt v / 2 (10.1)

sty 3
Z U
where the general expression for E,is given in eqs.(7.3)-(7.6)

The relaxation into the kinetic regime is oscillatory and slow
but guarantees that the corrections to the kinetic equation

remain always small.
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Appendix A. Evaluation of collision integral

The a-integrals in eq.(7.2) are the first few coeffi-
cients of the Fourier expansion of A{%ﬂ given in eq.(6.2)

A (S): e,v/n(— (k [, co céj_g"i') ML (Z}@X/D fzfm (e(+ w%)f

where

ZZ-:Z e%;§ LEL Jﬁérfg-Féo a?ié

Tng result is

T R A

Cos B ]; (Z)
= {48 ], (Z)eo(p-“%) | + 5, 5nd.

-/ J"p‘néj: (Z)J%@-ws/.z./
(A.1)
¢ c:aaé?]; (Z)fon A .

o| 7% J‘ybé?ffo(z myi—wsj-rﬁ (Z n;,/sj
— % i 9{]0 (Z)co (B-w5)+ ], (z)(:m/ajf {

The 6 - integration can be carried out by means of Gegenbauer's

finite integral L0

i ) Y
/' exp ({x co o y//]U_ % ( X $in & Sim W C, (co ¢) sin Vg pp

o

Qi e/ L
= @\’Z) [;t J;"J I/‘ﬂéy C;)/('(D}I/) ]_1)1"'1’ (X) (A.2)
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_ v . . ¥
wnere(:;(%j, the Gegenbauer function, is the coefficient of @

in the expansion of [7 ~«&2ﬁ*+a%)_1)1n ascending powers of Q-
( ) arbitrary).

The © -~ integrals in eq.(A.1) may be written as combinations
of integrals of the type (A.2). The calculation results in

/= gyaava|

. 4 -

4 |= ”ﬂ"ﬂ‘(ﬂ (B.- “45)-

Va4 ¢ 2 i
=/ JJ,/_L (x}— UZ'ZV-'Z 2 (x)

|~ U, U, V-'ZZ‘“/I#;Z'J;Z&(X}Cm (/G-Z’j +
._,Z[z' ZQ L]'_"ZZ--/J:,,;, Z-];Z?.(X} J“;'n//f—Zj (B .5

W UW "z Ty ()
-/'52 X_/-]‘-Z (X)J‘y;q /ﬁ,,gzj_/_ Z{_f W--;Z‘_-e\ﬂ"'?i?v& &}Ccoyf—zj
- X-,]:’/_Z (){) Con /ﬁ*-? Zj‘/‘ [(_ZZ W-JZ'“'Z'JI%EZJ:Z {x}ﬂ;@—[} |

where

- _ WS
X = A’S'FVP 5 'z‘___zr_
and W is defined in eq.(7.4)

The k-integration is now simple and leads immediately to
eqs.(7.3) - (7.6).
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Appendix B. Landau cut-off

It is clear that the closest approach of two particles
is realized if they gyrate around the same field line. As long
as the particles are far from each other &g_is an adiabatic
invariant (see section 8). Therefore the conservation of énergy
may approximately be written as

m U N et o m I,
Z > Z (B.1)

where znais the longitudinal relative velocity before the
interaction process. It is obvious that eq.(B.1) leads to a
distance of closest approach

2{9: 7 772 (B.2)

This result is only correct, however, if this distance is still
much larger than the Larmor radius z%g/és . If this is not the
case we can only state that the distance of closest approach

is not smaller than

- 4 et
’Zf* W2

following from the exact conservation of the total energy in

(B.3)

the relative motion.

Now we consider the transition of the Landau cut-off from the
k-integration to the Z= -integration. We modify the Coulomb
potential 1n order to avoid the difficulties due to the sin-
gularity for small distances. We may write for instance

A X

2
F ()= 57| K, (c)dns ey o

o
el
For /(2, X >>{ we have ig{)()-—? T and for A"g)(<< /
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2
QS(X)h; - 2-‘?,_7_"2& %\L . This singular behaviour is

milld =nough for our purposes.

We find for the Fourier transform

A
@ (k) = elhy (B.5)
o VSR S

This means that we should correct the integrand in eq.(A.3)
by the factor

k%

AT+ A’j

The simplicity of this factor is the reason for the rather
strange choice (B.4).

The k-integration in eq.(A.3) is stiil simple if one uses
the residue theory. The result is

% Jy (ksW) & 72 2
CUT) o/ (ks W)% AL+ K5 "SWXE' {Xf_'“'

(B.6)

2 ep(-)y+) |
)l Tles) {4+

(ksW)%  Kk*+kf T s V,Q

+ ex/)/— xj)(xj+3xf %3)}
Where

Xp = K, Ll (B.7)

The s-integrals now converge for small s as can be verified

easlly.




The use of the expressions in the curly brackets in eq.(B.6)
is roughly equivalent to a cutt-off 220== ijgkg given
by

Jin 2 72
K T {z(: + z[_f/—z_ff) } = (8.8)

It can be shown easily that eq.(B.8) together with the alter-
natives (B.2) and (B.3) leads in good approximation to eq.(7.7).

Appendix C. Evaluation of the integrals in eq.(7.3)

The integrals in eq.(7.3) are provided with the cut-
off 2:? and split up in the intervals ( Z%)'ZTJ and (77, oo )
We have seen in section 7 that Z? is alsways small in regions
of U-space which are of interest.

-
Those integrands which diverge as £ for small Z give rise
to the result dg;‘%; in the interval (22)773. The error is
of order unity.

[}
We consider as an example the integral containing of

eq.(7.9). It is

Y St W | S = el (C.1)
= - = -
I/ ZQi Q(SJZ.E + Jzirﬂr)% 4 o,

The interval (zy)vr) gives the logarithmic contribution and
the interval (m,o) yie%ds, as may be seen easily, a term smal-
ler than (_2' [[_L‘? g—") .This is unimportant in the region I of
)

section 7. In region II, however, we must consider ca.‘r‘efully}E

0o
I* Ut . (c.2)
/ = ({z y J/’; for é e A
7

z_“'z’f-u‘ﬂ'ﬁ"z’ Z‘) -

*) The exact value of the lower 1limit of the integral 1is

immaterial.
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We write

g 4
* 4] /1-cmor cnIT -
I =a* | — dz

/ (1+282r%*% EEY e

7

and expand the expression in curly brackets in a Taylor
series. We obtain

(c.3)

(ed]
%Y | ()] cosar { 20 +/
=2 /LZO._ 2 BT E 3 132 57T —
a

In lowest order of S we can take the average of Ckodg.Z'
over a period, i.e.

39 N/ /
L [ e dx =0 L fenydx = . (C.4)
T 27T 2 nl)*
0
After that we observe that

oo

=%, 1)7%
/ k3 = % (/) (c.5)

(1 +28%¢) % § ()] 2

7

Substituting egs.(C.4) and (C.5) inot eq.(C.3) we see that
every term except the n = 0 one vanishes and therefore

(C.6)

I, S ’
y z é; for —_—
-/

Therefore I' of eq.(C.1) leads to a IZZ;! divergence.

The only other integral leading to such a divergence (it should
be noticed that only an even divergence as ,CQJti?nd not e.g.
Z@; gives an important contribution to the Z{ -integral

in eq.(7.1)) 1s

Can 2L ,
‘[ /(541-4* qc,;,,-‘dz—) 72 iks (8.7)
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appearing in eq.(7.3) due to the first term of the right
hand sides of eq.(7.6) for 4,, and </'z@ . Applying the
same method as the one leading to eq.(C.6) we obtain

X

/ zao (2n)/!
Y AL} o

2 2% (P tr)

Using Stirling's formula it is easily seen that

%
a/,z ¥ BT .a/)?_ = for 21— 00 (C.9)

A numerical calculation using eq.(C.9) and

2N e A;i/z‘%( sV-1)

for N=20 leads to

_Z“z KN 0,55*0 Fises S 30 (C.10)

It 1s hard to obtain a more accurate numerical result because
of the slow convergence of the series in eq.(C.8).

Finally we show that the Debye length does not influence the
results. We could assign an upper limit to the integrals I-*
and I* by means of eq.(B.8) with the subscripts o instead
of -f and

2
Pr. . Y75 &

* m. vE (C.11)

We then obtain

t 2
o 34Tt 2K, 7, >/
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It follows immediately that

/
Z;/ ts;> S5 (C.18)

Under these circumstances the upper limit plays no role at
all. This is understandable because for decreasing LQ;) the

time needed to pass the Debye sphere in the z-direction in-
creases.




