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ABSTRACT:

The solution i(r), @ €+ <1 , of the integral
equation

Jix) = 2[ —— l

fa ﬂ
arising in spectroscopy, can be obtained from J(x)

by a half-order differentiation process after substi-
tuting 1-1-_- 4-5, x2'= 4—t. Therefore noise in
the measured values of J is amplified when computing
E by usual numerical methods. In the computation of
i@) two undesirable effects may arise:

(a) lack of smoothness, (b) intervals where 6694110,
although for physical reasons we should have :.(r) =>0.

(a) and (b) can be avoided as follows:- fitting .J(x)
as the sum of an optimum number of suitable orthogonal
functions, and using the extra information l:(r) >0
as a restriction, leads by discretization to a
quadratic programming problem for the coefficients of
the fitting expansion. A modification of this method
is applicable when, instead of a continuous :J(y)

only a few (e.g. 7 or 8) mean values of J
(contaminated with noise) are measured over adjacent
intervals in -1 =x £1.



A. The case of continuously measured Jix)

i. Introduction

The integral transform

Y
SRET SRy gens

where -1sx<1, 0 €+ < 1, J(1)=0, J(-x)= Jx),
solves the ABEL type integral equation
! clr) + o1

@ Jw-2) T

pefuf Y& —%

which arises in spectroscopy when, by "slde-on" observation

of a cylindrical source, a laterally integrated intensity
J(x) is measured from which the radial intensity ¢(r) 1is
to be computed (see for example Eﬂ or [5], where further
references are also given). Fig. 1 illustrates the
geometry.

Substituting

(3) #E=f-s, xr=1-1, i@)=gq(s), J)= @)

)

in (1) yields

s
-1/2
(4) g(s):-]g/(s*f) 4 d ()
£=0
which, in terms of operational calculus (Pq, 290 ete.),
is half-order differentiation of &. Therefore noise of
the measured function :Hx) appears amplified in the
computed function t(¥) . Two unwanted effects may arise
when applying usual numerical procedures for computing
HG
a) lack of smoothness in ¢(r) , that 1s irregular
high-freguency oscillations, superimposed on
{(r) , which do not have a physical meaning.

b) intervals in which ¢{7) < ¢ , although for
physical reasons we should have <¢(r) =0
everywhere.




k-

In figures 2 and 3 examples of effects (a) and (b) are
presented.

A heuristic theory of nolise amplification is developed
in [i], 22-27. The essential results are as follows:

Inverting (2) by any standard discrete method is a process
of linear transformation of a vector (J;,l,..”le)
representing readings of J in equidistant points x, into
a vector (Q, Cgr ** 0 s By a suitable idealization
the errors of J are

(5) gn = &y *+ Ty

where the strongly correlated £, stand for the systematic
error of the continuously working measuring device,
whereas the Q,‘ are reading and rounding errors of the
scanning process giving (J,, J,. . Jdy ) from
the measured continuous function Jix) . The smooth &£,

may yield effect (b); the v n are responsible for (a).

Let us consider the %  only (this 1is Justified if the
€, are sufficiently small). Because of linearity we can
approximately evaluate their influence by applying (1)
to

TIP ([-9/N<=x<jp/N, 7<;%<N,
(6) .Joq =

J X=7,
where the Tj are uncorrelated random variables with
expectation ¢ and standard deviation 6" . The worst case
is to be expected wher: =0 . From
N VI \

- N ]
(1 el) =+ (’7,'%5 (i-1) § 7/

3

we conclude that ¢(0) has expeccation 0 and standard
deviation

f N o e2 -2 W2
(") CNS‘With C-_-_-_’_{"i 4 %“(J-'F’_) 2

o

[
We have C = 0,36 for N>> 1 . MONTE CARLO
calculations confirmed that this is realistic in
magnitude.




P =(xqsy(x))

b= X

Fig 1 i

\-
o a(r) ™,
N

Fig 2

An illustration of effeet (a): 1(r) nct smootlh.



I(x)

'1 v T T T

0 0l 02 03 04

05 06

Fig.:3

07

08

09 1

An illustration of effect (b)t 1i(r) negative near r = o, J(x) = measured function,

Ji) = unrestricted least-squares rit to J(x), b=%.

J
i
A
3 (x)
4+
7 (%)
3
2 -
i (1)
1 <
r
0 e
X
-1 . - v . . ” . : \
0 0] 02 03 04 05 06 07 08 CcS 1
Fig: &

:l(x) as in rig. 3, Jl'-t) = restricted least-squares [1t,
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2, Smoothing by using GEGENBAUER polynomials

Fitting qu as the sum of an optimum number of suitable
orthogonal functions, for which the transforms (1) are
individually known, 1s a natural procedure for obtaining
a smooth function 5(}). One such procedure is developed
as Method D 1in [ﬁ]; numerical experiences are also given.

Let
8 W,& =vV1-x2 U,x),
where

n Q’n
@) Un.=Z_(pm)x "
F:‘-U

with coefficients

(8") P(P”‘)* 4" ;3+/i)(:t}; )

is (in TRICOMI's notation, [é], 177 etc.) the GEGENBAUER

Y2
polynomial (?q () . For even functions :hk), square-
Ln
integrable in -1 £x < 1 . the system
) ¥
'{LV; , mM=0, 1, Z, ...} 1s a complete orthogonal

system with

1 " p i e
(9) a/ Vm (x)\f\/n(K)"(X = _,(l"+4)(2n+l) =
Lpez :
Thus
A %
(100 Jp) =5 ¢, Whw
n=0

1s transformed by (1) into

jl *
10"y ()= F 3 ¢, Plir)
n=0




where

(11) P,na‘(f) = r{—ﬂ Y (r’; n} -r'l'P .

The X‘may be computed by solving the triangular systems
of linear equations
2 ; O S i Y Y = 2l ) < mnsn n20
12y S b (ph)y (A, ) = flpn), 0=psnn=t
A=p

where

n - § Hjp=n " "
w bem =2 e (P63)

=N

The numerical procedure consists of fitting to J(K)
a least-squares approximation

I
1y S e, W ~ Jw,

n=0
where the FOURIER ccefficients

|
' - tn+3 - W
R R T)IeITS) off(*’ W, &) dx

are computed by the SIMPSON integration formula. The
measurements are to be taken at . ='—J'/N; 0 “{J < N'
and hfmust be an even 1integer. .

By this method we obtalned sufficiently smooth functions
¢{) in actual cases, with 20 €N < 320, 4 =5,
Unfortunately ((T)occasionally had intervals of
negativity, especially in such cases where :h%) had a
local minimum at x=0 . This was due, either to
excessive messurement errors or to errors introduced by
truncatlion of the series, or both. 0f cocurse 4& should

not be too large in the presence of nolse. If A is too
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large, the unphysical high-frequency oscillations are
fitted too well. However, 1if & is Jjust sufficiently
small that the noise is suppressed it may be so small
that the truncation error 1s unacceptable.

3, Avoiding intervals in which ((r)< 0 by quadratic
programming

The idea that the extra information (&) =0 can be
used as a restriction on the fit (14) leads to a way
out of the dilemma mentioned at the end of § 2.
Discretization yields a quadratic programming problem:

Choose €y i Cyy

N-1 A 2
minimize Z {J (J'/N) =2 = Ly L/:,#(J'/N)}
J=O h=0

FEPE Cé in order to

(15)

'h ]
subject to 22— €, P: (G-’f)/?‘n) 28, = 2, iym,
n=0

Implementing this idea a doubles-precision FORTRAN

routine was written and successfully applied with values
of N between 20 and 30, and W &= 20, &~§ . Problem (15)
was solved by the iterative method of HILDRETH and
D'ESOPO (Eﬂ, 73-79). Average computer (IBM 7090) running
time depends on N and m 3 for N 25and 4A=S it was
approximately 1 minute.

In figure 4 an example is presented.

We give some details of transforming (15) into the
standard form of a quadratic programming problem. With

(16) :?J‘z :7((}-1)/"9) LJ"(‘?:,_J)::. L/nf((l'-*f)/N)) 7_(‘}-5’/\/)



we have to minimize
f 2
N .
an De) = > (JJ =5 w(n.y) c,J
d-—-

subject to the restrictions

h
(18) 2 <, PX(r) 20, o=(0/m X=12,..,m

with 0 <i €k, 0<n<k, 1<r<m,

2 )

N ¥
Q. = Qu =2 « (&) o= ()

thn 121

N ‘ _ - PF
L" e 2 % oJ"'(H,J) UJ ) AAH "({1)
J=

we get the problem:-

| |
Minimize _.D = c ac. + L c

(19)
subject to Ae = 0.

Further details may be found in § 6 and § 7. In these
paragraphs we have simply to replace 7: by J J(H J} by "‘"(”:J)

The matrix Q is strictly positive definite, when N = > b+
In order to prove it we have only to prove that 1t is
regular, since by (17)

s a,, -

so that @ is positive semi-definite.

.
L

& 9 —
g, = (‘:;T_:_o cy 'va) ; where w— = (c.r(v,f),... , w=(v N));

By definition ;
QA= \WW.

We shall prove first that the rank of \A/) r(u)=‘£"7'
Vis a matrix of @d) rows and Ncolumns.

n e x
ey Bl )



i-1 2
where sj = (iﬂxr—nf)
and Mj-:‘/‘f—SJ- :,tO_
Let )\.,., (n:o, By 4:) be (£+1) constants satisfying
& i , | )
(a) ngo X*’ MJ % F(F’!“) ‘;" =0 for J-‘f) —

Because /'Vl‘j ¥ 0 we get, by changing the order of

summation,
4 b .
(a") f;o ({?}’ X,,F(r,n))fi =0 (j=12,..,N)

The expression

A 4 F
Pl =2 (o0 P (r)s

defines a polynomial of degree JE’, and therefore cannot
have more than £ zeros, unless F(s») =4 ;

The system (a') expresses the fact that F(&) vanishes for
N different values of § , and therefore 1t must be
identically zero.

This leads us to the triangular system of £+7
homogeneous equations, with the £+7 unknowns X\, ;

A&
SN Plpr)=0 proh K

)
n /-3/2
whose diagonal coefficients are, by (8"), P(n,n):f’- (zn)#:o‘

Therefore A,=0 (m=0,1... &)  and all the 4+7

rows of the matrix W are linearly independent, i.e. f(W)-—‘*".

Now, in order to prove that Q = L/\A/’ is regular,
we compute its determinant, making use of the algebralc
theorem (see e.g. [9], pp. 64-65): —

"If A is matrix of order {w,m) , and B is a matrix
of order (n,m), and if M £€m, then et (AB) is
equal to the sum of products of the corresponding majors
of A and B".
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The corresponding majors of W/ and h/;are determinants
of order 4-*4, each major of one being formed from
the transposed matrix of the major of the other.

det (Q) is therefore the sum of Q’Y,,) squares of
determinants of order 4+1 , and therefore olet Q) =
as (W) = 4+1, W has at least one major which is
not zero, and therefore a(ef(a) > 0.

1t N 220, we should have, of course, iéio, because
otherwise the fit would be insufficiently smooth.

B. The case where only a few mean values of fo) are

measured

4. The problem of light-pipes

In this and the following paragraphs we consider the
following oproblem:

Determine in 1‘f§ 1 a radial non-negative intensity
é@? from N "side-on" measurements,

(20) T, = fJ(x; dx, 1 £; <N,
.
For convenience we put

(21) (@ =0 in r>1, Jx)=0 in IX21.
The intervals.g are defined by

(22) A = o | & “""“‘("*JHS’
eJ. = of + (J'-’f}fﬁ-

4118 a positive constant depending on the experimental
configuration, & = €, is the left-hand endpoint of
the first interval. o<==€4 and @€ = &+ Nvf may or

N+1

may not lie in = 1 & x < 7, but e, and e,

must lie in tails interval. From these conditions we
obtain

-1-4 <O‘<’I—-(N—4).l. and o<f<‘2/(’N~2).

Q
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In an actual series of experiments with cylindrical
plasma discharges we had N=Zor N= 8. One possible
configuration is sketched in fig. 5.

Because of the complicated nature of the experiment

and some uncontrollable disturbances eo¢ 1s not exactly
known, and the intensity ¢ (x, )r) in xX%4 \(7‘ <1

is not exactly a radial intensity iﬁj. However, in

order to draw conclusions from the results 13 of the
experiment, we assume ¢ to be a funetion of radius

only. As pointed out by BRACEWELL 1in [é], it is impossible
to determine an arbitrary intensity ¢ (x,Y) by side-on
observation in one direction only.

The difficulty in finding an effective procedure for
computing L(r) is due also to the fact that‘T: is not

exactly equal to f j(x) c{x, but is disturbed by the
L

"noise" of the meaguring apparatus, which 1is estimated to
be as great as 10 to 20% of the maximum of the -Zr. We
suppose the Z; fto be disturbed independently of each other.

Two problems arise:

1) Determine o , or, equivalently, the centre of the
circle in which £(r) exists.

Primarily we have to determine the centre T=0 (that is
the origin of our coordinate system), but for
computational reasons we need the left-hand endpoint

o« =~7 A of the first interval. ¢ 1s the
(not necessarily integral) number of intervals 1: to

the left side of Xx=0 (fig. 6). For reasons to be
explained in § 6 ¢ should not be an integral multiple
of 1/2.

In the analysis of actual experimental results it was
decided to fix the position of the centre on the basis
of physical arguments, because of the lack of a
satisfactory automatic method. This results in the
introduction of some additional noise.
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) When €, and therefore o, is given, determine a
sufficiently smooth function j(x) " lying in an

~ appropriate function space, and approximating the
unknown, true function.

'_or large values of N and sufficiently small measurement
errors we could put

J’((’e +e )/.’2) T/’z

_ d obtain a smooth curve J() by interpolation. !-'G‘)

: ould then be computed, either by one of the usual

w 1screte procedures, or by the quadratic programming
ethod of § 3. However, for values of N <20 this
ethod is not to be recommended, because the error
introduced by considering T'/f as the value of J at the
idpoint of the interval I is too large. We have the
nf‘ormation expressed in (20), and it is wise to make
_;_ull use of it in the computational procedure.

‘This naturally leads to the idea of approximating, in
‘an appropriate function space S, by the least-squares
~principle, which in our case reads as follows:-

N ;- 2
4 Minimize D =2 (7 ~ J J& J") )
3 4 =1 d I,

R(23) d

| where J € S.

.T-Having computed J(x) , we have to solve the integral
5'-" equation (2) for ¢(f) . Because of the "noise", and the
- hon-validity of our symmetry assumptions, the com-
puted i@‘) may turn out to be negative in places. To
avoid this difficulty we can impose upon our
minimization problem the restriction

(24) () = 0 in + £41,
- Which may be approximated by
e ) = r=0, 1, 2, «y My

where {1‘}] is a sufficiently dense set in + =<7.
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5. Approximation by a rational function

The three main qualitative forms of physically plausible
5ﬂ'functions J(x) (arising in an actual series of cylindrical
- plasma discharges) are sketched in fig. 7. All of them are
3 qualitatively obtainable by the rational function

] b
25 J6) = (1-6%) {L' T (xz" b )2}
n 3 P4

~ with suitable coefficients LJ- . The problem now is to
. find that point b = (b,, b,, b, b, ) i BHE Lai-
. dimensional coefficlent space, which solves (23). The

- integrals f J(K) o/x are expressible in terms of
1 k8

d
- elementary functions, although the analytic calculation
.~ 1s tedious and the final expressions are very long.

We used two methods for minimizing D = _D(L).

{ 00 Direct search (see fﬁ]), This is a method based on the
idea of evaluating sequential trial solutions, and

i comparing each solution with the best one previously
yrobtained, together with a strategy for determining the
best direction for the next trial.

(3) SHARE-program SCOOP. This is a similar procedure for
minimizing functions of m parameters, where a first
"guess" is given.

It turned out that .D(L) has many local minima, and
therefore it is very important to find a good first guess,
i.e. a point which is sufficiently near to the absolute
minimum (methods e) and [D yield a local minimum). We
decided to try a randem search fer Jinding a sultable
starting point, but it transvired that this required a
very long computer running time (in the order of

30 minutes for & single curve). Furthermore, although

the approximation of J(x) was quite good, ifr) was negative
near =0 , in absolute value up to 25% of the maximum
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positive value of ¢(r) . We do not have an efficlent
means for avolding negativity by this method, for the
function (25) is nonlinear in b .

We therefore consider these methods to be unsatisfactory.

6. Approximation using GEGENBAUER polynomials

We tried to solve (23} by minimizing D using the

function 4
¥
(100 Jix) =2_ ¢, W, e,
n=o0

without the restriction 86") ._>..' 0 . The main properties
of the \»/,,* are given in § 2. For N=8 we tried the
values of A from 3 to 8. There is no point in taking

A Z N-1 , for then D =0 , the approximation is too
good, and for 42N even not unique. Another reason
why 4 should be not too large 1s that :T('x) has, as
expected for physical reasons, only a few extrema and
inflection points; so a too high 4 would lead to unwanted

oscillations - a characteristic of polynomial
approximation.
With
-~ | "’41
b GJ- if le; b =
(26) a.j. = -/._1 if e. <=1
4
\ 1 L7 e. > 1,
L
2
ey G (a,b) = JVI-x% x7Fdx,
P a
and

a.
! 1

5
S J(b»’\? }/ ""‘/fé“) di = Z,\ (l (r.7) GJ’ (Qi’ aJ'M)
a. f,---*-.'

H
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(the P are defined in § 2, formula (8"))
we have

.£
(29) fj(x) dx = J(n J)
T. 'n='0
d
The &, may be recursively computed by the substitution
x = tim¢ and using formula number 358 on page 321 of
Eﬂ . The results are

G (ab)= %{W x\t + (x m),:’}

("=
(QP‘/’) G-P-‘l ("'-* 1)} |

Fci r?-'/,.

(30) C— (a

2?*

From (23) and (29) we get
N 4 L
Gy De) =5 (7: -5 §(n i) en)
= n=o

Clearly this quadratic form is positive semi-definite.
The minimum of.D may be found by solving the system of
linear equations

2D _ o 0 <. <A.
Bc‘.

By differentiation and interchange of summation symbols
we get

A N
(32) >~ a(,..,:)cn.-;g_qé(:,;)@, 0 £: <4,
J:'

n=aq
where
£ .
32y Q(n, )=f§__-; (¢,§) &(».§)

are the elements of a symmefric matrix (1.
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We consider the three cases

"y A< N-1

(" A& = N-=1 (number of coefficients e,

_ equal to number of intervals I, ).
(™ 4> N-1, ‘
and assume Q to be non-singular for £ < N-7 . of
course, it will depend on the subdivision {eJ}

whether this
computations
non-singular

condition is satisfied. Numerical
showed that usually, but not always, Q 1s
and therefore, because of (32'), positive

definite. Of course, (32') 1s equivalent to

“Z:: Q(h,i)c“ ¢, = JZ(%_J(J,J‘)‘;E)Q-.

Analytical considerations also indicate that Q will
usually be non-singular. Our procedure is a discrete
analogue of method D of Eﬂ, but with the function
system { kﬁf:} , which 1s the orthogonal system of
the continuous 1limit case as N -» oo . Another argument
is that the determinant of Q can be expressed explicitly
in terms of elementary functions of o . If it does not
vanish identically, it can only have 1isolated zeros.

There are two cases where it is guite evident that Q
is singular.
(a) If there is an index A such that e =0 , then

A
CA_4 :-—ex+7 3 and by (27) and (28)
Gr (er.1r8) = 6, (¢, ¢,,,)
and

5 ('n,l-'l) = 8(”1’\)

(b) If there is an index A such that (Cxﬂ-QX+4)/& =0,
then C). :“'Q}.‘_?p
and

G-l’ (‘e.x_f ,eh).-: GP (ekw 'e;\i-l)) S(n,k-'!) = §(n M+ 7)

In both cases the matrix b has two equal columns. Now,

if the number of egual nairs of elements tS(W,J) is hé
(which is equal to ¢he rumber of palrs of intervals
symmetric with respect to x=0 ), then, 1if /4+7>N"‘N¢
the rank of Wis less than 4 +7.
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Using the theorem mentioned in paragraph 3 ([9], p.64-65),
while computing the determinant el Q= ot (§4"),
we find that all the majors are zero, and therefore obfQ=0.

These two cases may be formulated together by saying that
when c =- cx/ﬁ is equal to an integral multiple of
1/2, and when the number of pairs of intervals symmetric
with respect to x=0 is greater than N~ (% +-4),

then Q is singular.

One might think that this is a special disadvantage of
approximating by a system of even orthogonal functions.
But if one imagines the T;/I as a step function to be
fitted by a suitably smooth, even function, one sees,
that information is lost if X=0 1is equal to an endpoint
or a midpoint of an interval. The reason is that :]a)

i1s suonosed to be an even function, and disregarding the
noise, one has less than N values T. If the intervals.I
and .I lie symmetrically with respect to x=0 , then

T- T

Let us return to the three cases ('), (") and (").

Assuming @ to be regular, there is a unique solution

in cases (') and ("). However, in case (") this solution is
uninteresting, since it gives D=0 . To show this,

it 1s sufficient to see that if @ is regular, sc also 1is
the matrix & , since & 1s quadratic, and Q@ = 66'.

Therefore there exists a unique sclution to the system

of linear equa?10n3

"T' ji équ)c =0, j=112,.., A+1,

h=0

and by (31), D=0,
In case (") @ jfiinngular. Proof: The quadratic form

A:—.Z_ Q(F‘))EP C)‘

pX=o
)"

can be exrressed as
dy «©
= (§5(c1), §(i,2), ..., 4(i. N)).

-3

A&
A= (2
=0
with the vectors S
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The system b E*
C =0
\’;D v v q
does not have a unique solution. The J, are
PJ— dimensional vectors, and so more than bJof them
are always linearly dependent.

A double-precision FORTRAN-routine was written for
case (') ineidentally also applicable in case (").
Test runs show that in actual cases either the fit 1is
not sufficiently good (if-k is too small), or that
J(x) has large oscillations (if 4 is too large), even
into negative values of J@Q , which 1is physically
meaningless. In either case 660 may be significantly
negative near v =0. It is possible, as also shown by
test runs, to reproduce a polynomial ((r) of degree-&,
given in advance, from which the values ?} are exactly
calculated, but the method is very sensitive to
superposition of noise on the 7, .

7. Reduction to a quadratic programming problem

We decided to take into account the information f(‘i‘) 20,
Then we have to find a vector

g = (co) PRI cﬁ)
(the prime denotes a row-vector, ¢ denotes the corresponding
column-vector), so that the quadratic form

N £ Z
(31)  Dfe) =2_ {T.-3_ fg(”:g‘ ) Cn}
j=1 ‘4 %0

=

is to be minimized under the restrictions

. *®
i) =2 c, Pr@) 20, =t 2, m.

Here A< N-1, J(?T,J.); ﬁt’: '\/"';‘) are known
constants, ?ﬁf(r) is defined in § 2, formula (11).
M, the number of restrictions, is chosen so as to give
a sufficiently dense set of discrete values f& . After
some trial runs we decided to take 4 =5 and ™M = 2.0/

T&= (A-fl/qﬂ.



.

In order to transform the problem into the standard

form of quadratlc programming we compute

D) f=‘}=7 {AQE: S(%,J) }

N N
S22 (S S T, + 5 T2
n=o0 *~ =1 J J'=1 J

Furthermore, if we set

(32") R.. = Q.

n [ ]

= Q (ﬁ,d))

(33) L.n = -

5(",J')7E: Af.‘h "‘“"'Pn*(ﬁ')r

we can state our problem in matrix form:-

By sultably choosing ¢
|
(34) minimize :D(c) = Cl QRec + b C
subject to the restriction Ae¢ <€ 0,

As pointed out in § 6, we assume @ to be a positive
definite (,£+4) »‘4—’1) matrix, ( 'E=—o{/£
1s not an integral multiple of 1/2).

To solve this problem we used the iterative method

of HILDRETH and D'ESOPO ([7], 73-79). This method yields
a sequence c( )converging to the unique solution ¢ 1if
two conditions are fulfilled:

(.) the matrix @ must be strictly positive definite,
(..) there must exist a vector e such that
A;C < -F for 1<€¢{ < m and some £> 0.

Here A, = (A, Ai)-on Al
(.) 1s assumed to be satisfied if -og/z % J/42 for

all 1ntegermsl (.) is satisfied if ¢'= (1,0, 0, ..., 0).
L *

For then A‘.c =-2_ c, Pn*(-r,) = - E(fi) < -1ZL 0.
h=p L
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As a stopping criterion for the double-precision
FORTRAN-program we used:- "Stop iterating if

v - (r)
’C.(r 1)- CEP)[/, C(:"] < 40 £ and <, = 0

for five values P in succession or after at most [,
iterations with [ =2¢00. "

As a measure of the quality of approximation the

quantity
vV D

d.,, =

Te.

a.,

o

-
q.._“]

was computed.,

8. Numerical experience

We give statistics for the computing times of several
runs. The program was organized so that in one computer
run an arbitrary number of functions ¢ () could be
computed, after reading the corresponding sets of

data [,
d

Number of running average running
functions ¢(r) time in time for one
computed minutes function 1n minutes
56 43 0.77
86 60 0.70
59 63 1.07
66 56 0.85
56 70 1:27
125 120 0.98
4h6 Li2 0.92

The average number of iterations is another important
statistiec. For the 56 functions computed in 43 minutes
the total number of iterations was 1754, and we have
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1754/56 ~ 31.4 as an average number of iterations.
The quality of the approximation 1s 1illustrated by

some sketches'*), in which are olotted the T./4
and the functions.JpQ and ﬂﬁ? . If the measurements

were accurate, in the intervals (ej ’ 6J+4 ) the
curve y = J(x) should intersect the horizontals
Y o= 7;/1 . Of course, this could also be

achieved with inaccurate 7, by choosing ‘ sufficiently
high, but then :ﬂ%) and (@) would be physically
meaningless, strongly oscillating functions. In case of
measurement errors it i1s not wilse to attempt too close

an anproximation. dmf was usually about 10'2.

On the other hand, it must be admitted that polynomial,
least-squares anproximations of sufficiently low degree
yield functions which do not have too many extrema

and inflection points, but at the same time are not
quite satisfactory. This happened especially often

in cases where J(x) had a local minimum at X = 0.
Sometimes J(x) had a local maximum very near to X = 1,
which was considered to be physically meaningless. The
reason for it lies in the wild behaviour of the
functions Lvﬂf (x) at xa1 , which is illustrated in

(B], p.19)

This computational effect was considered tolerable,
because the more interesting region is near x = 0.
Further details are mentioned in the comments under
the sketches (see apnendix).

We tried also to reconstruct an analytically given
function ((r) from the values z; computed for a given
subdivision (e".,ej*,) ef=h 2, 0., N of -1 €x £1.

We chose an even function ((rJ , which has a deep local
minimum at r =0 , and one maximum between O and 1.

*)

see appendix, p. 51
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We took . 4 s , 2
i) = 5 (1-+2)(+7+ B),
which is 201in 0 < + <4, if (320.

Ir o < P <1 , then z,'(r) has a8 maximal value
bmax = g’ (1+ f) at =T «x=V (1-p)/2 , and

by varying {3 one can alter the ratio
1 2
zhuu = 8 (4+p)
¢ (0) pR/2 :
We choose f#=0.4 , which yields i(0)= 0,05,

¢
3 P = — O. 6 AR =
¢ 0.1512§ Ty = Joous 7, :(0) 3415,

Max

. o .
Expanding ¢ r-):_ e P‘ ‘f‘) yields ¢.= 0 for 23
i / /=
€~ 0.22035, «¢,=~0.0029623, ¢,m=—0,013 §¢S5,

from which J(x) and the 7; can be computed.
The 7}— were computed for o€ = — 0, 8,‘2,'7} ji=0.23l N=7

The lists, 1n apnendix p. 50 , give the exactly computed
values of J(x) and (@) (comouted from the given
coefficlients ¢.), and then the values of J(x) and i(r),
computed from the values /.. Subsequently the influence
of 1inaccurate estimated er,and then the influence

of disturbed T are investigated. The values of T

are disturbed by adding normally distrlibuted random
numbers with mean O and standard deviation equal to

w Ty T

{
The authors would llke to express the opinion, that
studies iIn curve-fitting according to ideas proposed
by HOOKE and JEEVES (Eﬂ, 222-224) should be undertaken.
That 1s, one should have an alternative to polynomial
approximation (or more generally: to approximation by
special systems of smooth orthogonal functions) and
instead, fit to given values ;2 (which are supposed
to belong to a sufficiently dense set of equidistant XH)
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a discrete set of points (x,_,, yh) . In determining
Yn » the number of maxima, minima and inflection points
of the smooth curve Y= y{x; , which we suppose to
represent the proper physical process, should be used,
in the form of linear difference inequality restrictions
on the convexity and concavity of the fitted function.

Under these restrictions a convenient deviation function
i —— p ‘
D(ﬁ)n-)yN;}’,,u.,)’u;xf,.-.,xM) is to be

minimized, where the Xf are the speclal abscissae
(of inflection points and extrema), and the yJ. and x;
are to be determined.

By this method it should be possible to avoid the
previously mentioned disadvantages of approximation by
a finite sum of special functions.

9. The case of an arbitrary radius R

Up to now we assumed the radius of the configuration
to be equal to 1. For convenience we shall now give the
essentlal transformation formulae for the case of an
arbitrary, positive radius R . for this purpose let us
assume that for the case R =1 we use the variables §
and @, =15 § < 14, 0<€¢ <4, and the intensities

j({) and t(e)

Then

-6"-\‘.f

G5 Ti== S J(g M= J(ﬁ)ﬁ,
e. “ ‘
i

I l(e) ¢ Ae
/

= 2
(36) j(f) 217 ‘/W

For the case of an arbitrary R >0 we use the variables
X and T, = R<x < IS, 0{1‘5% U#('x)) ;_1\‘(,‘.).
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a discrete set of points (’xn, )”n} . In determining
Yy » Pthe number of maxima, minima and inflection points
of the smooth curve Y = y(x) , which we suppose to
represent the proper physical process, should be used,
in the form of linear difference inequality restrictions
on the convexity and conecavity of the fitted function.
Under these restriccions a convenient deviation function

; v N * 5
D(yf’"")y’v;leuij >m; X:"a”, XM) _LStObe

minimized, where the XJ-* are the special abscissae
(of inflection points and extrema), and the yj and x:
are to be determined.

By this method it should be possible to avoid the
previously mentioned disadvantages of approximation by

a finite sum of special functions.

9. The case of an arbitrary radius R

Up to now we assumed the radius of the configuration
to be equal to 1. For convenience we shall now give the
essentlal transformation formulae for the case of an
arbitrary, positive radius R . For this purpose let us
assume that for the case R =1 we use the variables §’
and @, = 1= § <1, 0<€¢ <4, and the intensities

J(E) and  ifg).

Then
A e 3(F)
(35) 7;%6/ j(f,\:: j\ﬂ/’ﬂy
d

I(5) = 2 f’ L(e) ¢ e
(36) (§) = e
3 e=lg) Vei-F*
For the case of an arbitrary R >0 we use the variables
X and T, -~ R < x SR,O{-{'SR) j*(x), ;*‘(.‘-).
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Then

¥
e.
i +1
' ~ x (e =~ "TRA— %
(35") 7}~e{ T¥6) dx ~ J%6) A,
i
" X ¢ or) o+
6"y J *) = 2 o
i":,!){’ T — X
(The meaning of e, F 5 A* is obvious).

J $J 1 J )

Then F:—:x/R) e T/R, ,&;,KVR.

il

By comparing (35) and (35') we obtain

From (3C) we obtain, by changing the variables,

¢ (1/R) (1/R) (iR FoRT /R ed
JIE) =2 II R(_/1 (fz):_;_*,_j_f R < /R) e dr
T

-":lx - - X

which, by (37), = R J¥%x).

r=)x|

Therefore (36') yields

b . (/R
(38) i*(r) = _éga)_ = —5—(}{{—).
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D. Appendix

a) Description of the prograins

We present here the listings of the two FORTRAN programs
which implement the above methods. In order to use the
programs they may have to be adjusted to suit individual
requirements.

A short descriontion of the programs is given and, together
with the comment cards in the vrograms themselves, this
should be enough to indicate how any necessary changes may
be effected.

Because of limited programming time, program efficliency

and elegance have, in places, been disregarded in the
interests of simplicity. The orograms are given as they
have been run, together with an examrle of a nrinted outnut
(of program 1) and some curves obtained from the outnut of

nrogram 2.

The programs consist of the following routines:

program 1 program 2
standard tyne TNVERS INVERS
LGLSY LGLSY
BKOEFF BKOEFF
BETAKQ BETAKO
GAMMAK GAMMAK
similar tyne MATCAL MATCAL
QUADRA QUADRA
special type MAIN routine MATN routine
COMPUT INOUT
COMPUT
GINDE

DEFIN
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Subroufines INVERS and LGLSY in the two programs differ
in COMMON statements only.

MATCAL and QUADRA have the same function in both programs,
but are a little different in each of them.

The routines BKOEFF, BETAKO, GAMMAK, which compute the

coefficients b(f”")’ (S(r,n),x(ia, n) are given in [5]

Description of program 1 - (continuous case)

The vprogram uses a quadratic-programming method to
approximate a continuous function with Gegenbauer

polynomials of degrees from 4 to 7 successively.

In order to run the program it is necessary to give the
following data deck:

Items on card Format explanation

NT = Number of points
NT, RGROSS 110,E14.4 ineluding O.

RGROSS = scaling factor

Tl’ - T6

Psvwins ’TNT 6E12.4 1; = The measured
values, 5‘1--u»N7;
of J(,k) .

These data can be repeated as often as new measurements

have been made.




Description of program 2 - (discrete case)

This program solves the above problem with polynomials
of degree 5 only.

The results are written on tape as well as on off-line
printer. The results on tape can then be used for further

computations, or for graphical output. Channel 3 is used
in this program.

The input data i1s divided into three classes:
1) Data for one machine run.

2) Data for a whole set of' measurements, which consists
of single measurements at given times.

(A measurement consists o N measured values which are
to be fitted by one curve)

3) Data for a single measurement.

Class 1 consists of a single card, class 2 consists of a
single card which 1is repeated every time a new set is
started , and class 2 consists of 2 cards for every
measurement. (see data sheet).

The obrogram assumes that for each measurement there are 8

measured points, the first of which can be excluded in case

1t was wrongly measured. In that case, NST should be 7.
(see data sheet). This limitation to 8 points can easi-
ly be removed by changing only the READ instructions

in subroutine INOUT. In any case, NST cannot exceed the
value of 20, because of DIMENSION statements. The program
checks then if one of the intervals lies outside the
segment 1<¥4,'1>) and decides how many points will enter
the comnutation (N8 - see glossary).

The comment cards in the various routines, in addition to
the data sheet and the following glossary should be
sufficlent to exnlain the function and the use of each of

them.
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DATA - sheet

class Items on card Format Explanation and comments
1: MISPAR I 12 Mlspar = running number of set of
measurements on tape. It is equal
to the number of sets which are
already on tape.
2 NOB, HROH, I4,4F8.3, NOB = Identification number of =et.
DELAMB, EK, 213 HROH = Original length of interval.
WELL, NST, 'DELAMB, EX, WELL = data irrelevant
NZAHL to this program, but which may be
needed for further comnutations.
NST = number of measured points.
Usually NST = 8. If the first point
was wrongly measured, NST = 7,
3 1)NOB, WALZT, I14,5E12.4 WALZT = time '
T Tz Bl Ti{ = the measured values (L'—-" 4,1)...8)
2)NOB, T . ... 7  FC FC = centre = C.
&) 8
GLOSSARY
Routine FORTRAN Term in Explanation and comments
Varilable theoretical
part
MATN NS N Mumber of measured values which are to
enter comoutation (see NST in data
sheet!)
NL(1) ey end noints of computed intervals
’ N 2 e o ——
DELTA (J,N) §(n. ) } =& Alem) TP IT=3% dlx
Wiy p=° I
R(T) Y; pcints in which the restrictions are
computed ('i‘)\:)\/m) Az 0,1, v, m-?)
P(I,N) Ay o coefficients of restrictions
E(T) by coefficients of the linear part of D
QREC Q The positive definite matrix
T =1
Q Q
v,G,U,W Matrices and vectors needed for
solving the quadratic-programming
E problem (see £7))
NIT number of iteratlions, not exceeding 200
D,DREL D,Dpe1 fbsolute and relative deviation

function
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Routine FORTRAN Term in Exvlanation and comments
Variable theoretical
part
THOUT RGROSS R Radius of Vessel in mm. This
1s a constant in the program.
COMPUT F,RINT J(x),1(m)
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33

AN ]

100
101
102
1704
160

34

b) Lists of the Programs

Program 1

MATHN PRIGRAM TO QUADRATIC PROGRAMMING

CONTINUOQUS CASE

DIVEASION £{11,11),8BETA(11,411),GAMMA(LL,11)
DIMENSION (GREC(11,11),Q(11,11)
DIMENSION RSL(1L)4FMATELI11,11)
UDIVENSLION P(20,20),E020),T(40),X(40)
DIMOCHSTION wE(4D411)

COMMUN By ETAMNK, GAMMA,,K
COMMON NT

CCMMON QRLC,Q
COMMON RSL,FHATEL
COMMON PyabL Ty X
COMMON WeE e RGRASS

DIMENSION CM(11,11) ,C(11)

I1 ¥ P U T.

RCAbL INPUT TAPE 125100,NT3RGROSS
REAL ITHNPUT TAPE 1251013 (T0J)yJ=14NT)
O 1 J=1,711

X(J)=FLOUATIr (J=-1)/FLOATF(NT=-1)

au TP U1 FOR INPUT.
WRITE UUTPUT TAPL 3,102,NT,RGRUSS
NK=11

CALL BKOEFRF
CALL BETAKO
CALL GaMMAK

K =5

CALL MATCAL
WRITE GUTPUT TAPE 3,160
CALL INVeRS
LO 93 I=1,K
00 93 J=1,K
CHalLaJd)=r,
DO 93 L=1,yn
Cllyd)=ChillyJ)+QRECIL,L)=Q(LyJ)
DN 33 I1=1,4kK
VRITE QUTPUT TAPE 3,104,(CH(L1+d)4d=1,K)
CALL QUuADRA(C)
CaLl COMPUI(C)
[FIK=T)2ycs2
K=K+1
Ld T2 4
FORMAT(IIU,FLA44)
FORMAT(E&FL.s4)
FORMAT (LML LOX 4UNT =147111 45X HRGRIESS =T 6.2)
FORMAT (LIl 4652 «4)
FORMAT(Z2BHLCHOLKING THL IMHVERSL ATRIX/Z)

E...'.‘“!l,'n.‘, ".,;15.}1'.1,1’!':"(‘!,11(}'{..,\]:.‘7‘f )
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SULRDUT INT MATCAL

SURRODUTINE MATCAL
COMPUTES MATRICES NECESSARY TO SULVE QUADRATIC-PROGR « PROu:ILEM
DIMENSTION L'l(]}.!ll)’HET"-\(lllll,Il;’.\l'ii"“"\(llillJ

ORI

4

6

ODIMENSION GREC(11411),G(21,11)
DIMCNSION RSLILIL),FMATEL(L1L,11)
CIMENSION PU22422)43E(2 )oT(40)4X(42)
DIMENSION WE(4:4,11)}) ‘
COMMON ByLETA,NKyGAMMA,,K
COMEDN NI
COMMON QRLC, 4
COMMON RSL,FMATLL
COMMFON PaliyTeX
COMMON WE
CIMENSION R(Z :)
CALCULTATION UF WE.
D0 3 J=1,NT
DD 3 a‘Jlle
WE(JyMN)=7
0 2 L=14il

WO s N =WECJyNIABETA(L M) 2 X(d) 2 u(28L=-2)

'u\E(Jy“)—"P‘-S(JHQ)*SQJR?F‘le'XlJ)**Z)
B0 4 I=1,2.
wiWw=1 -1
CALCULATION OF MATRIXP-RESTRICIIONS.
R{I)=Wkn"g:i5
DO 5 N=1,K
P(l,N)=
O 5 L=1,N

PLIyNY=P(Ly)=CAMMA(L ,N)=R([)#a (2% L=2)

CALCULATION 0OF VCCTOR £,
D0 7 N=1,K
E(N)=i"o
CO & J=1,NT
E(N)=c(MN)=WE(J N)=T(J)
Cl)=2.=C(N)
CALCULTAION OF MATRIX GRLC.
DD & HM=1,K
DO 8 L=1,yK
UREC{M'L}:JO
DD 8 J=14NT
GRECIML)=QRECIM,LI+KWE(JyMIBWETJ,L)
RETURN
END(Lgi g 0p 0y gLy tgCylgtiglgliyiyn)
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SO0 O00O0

52

54

700

n

5

100
101
102
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SUBROUTINE COMPUTIC)

SUBROUT INE COMPUTI(C)
COMPUTES AND PRINTS RESULTING FUNCVTION AND INTENSITIES

DIMENSTION SU40)3RE(40),RL2(140)

DIMONSION WiEl4al,11)

CIMENSION V(2C)sPPL11),FL40)RINT(40)
DIMENSION ©(11411),BETA(11,11),GAMMA(]L1Ll,11)
DIMENSIGN QREC(L1,11),G(L1,11)

DIMENSTON RSL(11),FMATEL(11,11)

DIMENSION P(20,20),E(20),T(40)4X(40)
COMMON BysHETA,NK, GAMMA, K

COMMON NT

COMMON QREC .0

COMMON RSL,FMATEL
CDHMDN P,t.T,X
COMMON WE, RGROSS

DIMENSION (1)
WRITE QUTPUT TAPE 3,100,K

GO 52 J = 1,NT
S(J) = u.

B0 52 N = 1,K
SUJ) = S(J) + CIN) # wE(JeN)
0D = 0.

DO 54 J = 14T

D=0+ (TLJ) = S(J))=u?
WRITE QUTPUT TAPLZ 3,7G0,L
FORMAT! 6H D =El12.5)
WRITE QUTPUT TAPLC 3,107
Lo 5 1 LoNT

5 =
DO 2 N

PPN
b 2 L

EX = X

PPIN)

F(I) =

RINT(I)
Cd 4 N =

F(I) =
RINT (I

1

y K
i

o= 4l o= )

s {20l - 2)

PIYN) + GAMMA(LN) = E£X

T i [ |
g [

1
(
N
)
P

e

—

T - (2
W n -~ X u

I) + CIN) #= WE(I4N)
RINT(1) + CIN) = PP(N)
RINTI( RINT(I) /(2.%#RGROSS)
RE(I) F(I) - T(I)
WRITE OUTPUT TAPC 345101y JeX(I)oTUL)sFCL)RINTIL)SRE(L)
CONTINUE
RETURN
FORMAT(IHL ¢ LOXs YOHVALULS FCR K =13/77/7177)
FORMATULIH [43FBe2014Xy5F16e4)
FORMATOLIH 3 7X6HX OR Ry 23X4HTIX) 3 1CXIHCAPTITAL T 99XTHSMALL 1,9X1CHDI
LFFLERENCE// /)
ENUCILg 09Dy g Qpl el gla0plyUglUeDyUa0)

)
)
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509
510

10

(S5 I o)

o

11

12
13

7

Program 2

SOLVES THCD APPROXIMATION PROBLEM BY CONVERTING IT

INTD A QUADRATIC=-PROGRAMING PROBLEM
DISCRETE CASLL.
DIMENSION 8(11,411)y0BETA()Y1,411),GAMMA(LL,11)
DIMENSION TI(2<7),ALPHA(1),H(1)
DIMENSION QREC(11411),Q(11411)
DIMENSION RSL({L1)4FMATCL(1L,411),DELTG(L)
COMMON By BLETA,NK, GAMMA,K
COMMON T,ALPHA, NS
COMMOM QRLC,Q
COriMON RSLyFMATEL.DELTG
COMMON HeWALZTsNZAHL
COMMON MISPARyRGROUSS,FCyNINT
DIMLNSION P(20,2)5E(11),DELTA(LL,11)
COMMON PyLEsDELTA
DIMENSION CMUL11,11),C0L1),ALL21)4ALI(2])
COMMON AL

READ INPUT TAPC 12,5111,MISPAR

REwINU 13
NK = 11

CALL LKOCFF
CALL ©=ETAKO
CALL GAMMAK

IF(MISPAR — 1) 8,579,509
DO 510 I = 1,M415PAR
CALL SKPFIL(13)
READ AND WRITEC DATA FOR A SET OF MEASURCMENTS.
CALL INOUT(1)
NL =
READ AND WRITE DATA FOR SINGLE MEASUREMENTS.
CALL INOUT(?)
MI =
NL = NL + 1
IRANSFORM THE ORIGINAL INTERVAL INTO ONES INCLUDED
L (=1,1)
IF (ABSH (ALPHA)=14) 1,1,2

ALCL) = ALPHA
GO0 TO 5
IFCALPHAY 443145
AL(1) = 1.

GO TO 5

ALIL) = 1.

D0 15 L = 1,N8
J = L+1

ALI(J) = FLOATFIL)=H + ALPHA
IF(ABSF(ALLI(J)Y) = 1) 11411,12
ALLJ) = ALLILJ)

GO 1O 1%

IFCALI(JY) 14,411,153

ALLJ) = 1.
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14
15

93

87

88
33

402

1000
1:39
190
150
160
161
170
137
138

5111

38

SOLVES THE APPROXIMATION PROBLEM 1Y CONVERTINGL

GO TO 15
AL(J) = -1,
CONTINUE
NAN = 3+1
WRITE CUTPUT TAPL 3,15 ,(AL(J)yJ=14NNN)

K = 6

COMPUTE MATRICCS AND VECTORS
CALL MATCAL

WRITE CUTPUT TAPE 3,138,0LETLG
CHECK OREC FOR SINGUALRITY.
O 93 1 = 1,K
BO 93 J = 1,K
CM({I,J) = .
to %3 L = 1,K
CM{IyJ) = CMUI,J) + QRECUILL)=Q(L,J)

IS LOG GF DUTERMINANT TOO SMALL.
IF(DETLG + 3.)87,87,38
iT I1S.CHANGE THE CEMTRE.
MI = MI + 1
Fil = w1l
FC = FC  + (=le)#aMleFMI#0475
CALL INOUT(3)
GO TO 5%

PRINT THE UNIT MAIRIX QBEC*UBEC**@&’
CO 33 I = 14K
WRITE QUTPUT TAPZ 3,1614(CHM(I4J)9J=1,K)

SOLVE THC QUDRATIC-PROGRAMING PROGLEM
CALL GUADRAI(C)

COMPUTE FUMCTION VALUES AND INTENSITIES
CALL COMPUTI(C)
IFINL = NZAHL)YLD, 7,7
ENGFILE 13
GO 10 8
FORMAT(IHJs3(EZ75))
FORMAT(IHI, (8(5E1244,4X)))
FORMAT(IA,F4.1)
FORMAT(13HJTHL INTERVALS ARC/1Hd,9L13.4//77)
FORMAT(29HLCHECKING THLE INVERST HMATRIX//)
FORMAT({1IH wE29.5)
FORMAT(1Z2IILD U T P U T//)
FORMAT(32H SIHGULAR MATRIX, NO COMPUTATION////777)
FORMAT(21H LOGL: OF DEITERMINANI E12.3)
FORMAT(ILZ2)
ENDCLyCypVpuiggUygly g0y lelyTyDyplrgis)
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SUBROUTINE INOUT(I)

SUBROUTINE INOUTI(I)
READS AND WRITLS DATA i
DEFINES ALPHA AND N8, '

DIMENSION :(11,11),BETA(L]1,11),GAMMA(L1,11)

DIMENSION T(29)yALPHA(L)H(1)

DIMENSION GREC(11,411),0(l1,11) i

DIMEMSION RSL(11),FMATCL(11,11),DELTG(Y)

COMMON B,BETA, MK, GAMMA, K

COMMON T,ALPHA,N3

COMMUN OQREC U

COMMON RSL,FMATEL,DELTG

COMMON HyWALZT,NZAHL

COMMON MISPAR,RGROSSyFCyMINT

GO TO (785270 )4l

T REAC INPUT TAPE 124173,NOR,HROH,DELAMByEK ¢WELL s NSTNZAHL
WRITE OUTRPUT TAPE 3,1'.°
WRITE OUTPUT TAPE 3,107 ¢MOEyDELAMBEK yWELL yNZAHL ¢NST

NINT = 25
RGROSS = 23,
10 MISPAR=HISPAR+]

WRITE OUTPUT TAPE 3,1C6,~IS5PAR
106 FORMAT(IHL,ISy16H SCHUSSL ON TAPE/)
WRITE TAPE 134NOY,WELLyNZAHLyNINT
Gu TO 25
8 IFINST=8) . 45,464,406
45 READ INPUT TAPT 12,105 ,NCByWALZTyDUMMY 3 (T(I)9I=143)4yNOBs(T(I)yl=
l4,7),FC
GO TOU 19 :
46 READ INPUT TAPz 1241054NUByWALZTy(T(I)9I=244)4NOB,(T(I)yI=5,8),FC
19 IF(HROH - 4.5) 11,1112
11 IF(FC - 4.) 13,13,14

13 FNST = KWST
RGROSS = (ENST - FC) = HROH
GO 10 12
14 RGROSS = FC # HROH
12 H = 1IROH/RCRUSS
WRITE OQUTPUT TAP:Z 3,1024HR0OHy ROGROSS 4 H
20 ALPHA = =-F(C=H

ALPHA = ALPHA
WRITE JUTPUT TAPE 3,104,FC,ALPHA

ST = NST
EL = ALPHA + (ST = 7145) # H
IF(EL - 1.) 22,22,23
22 NB = NST
GO TO 24
23 N3 = NST - 1
24 WRITE QUTPUT TAPE 2,13 s WALZT o N&
WRITE QUTPUT TAPL 23,82
WRITE QUTPUT TAPL 2,139,(T(L),L=1,N8)

25 RETURN

LOO FORMATII9HLT N P U T 0O AT A/)

102 FORMAT(IHL 2 0K 6ilHR 'H =F1244/1H 418X, 3HRSROSS =L12.4/1H 23X,3HH =E
112.4})

105 FORMAT(14,501264)

102 FORMAT(14,4F85.53,213) 1

139 FORMATL{INI, (8(Z12a4,34%)))
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SUBROUTINE INOUTI(I1)

82 FORMATI(1HJ,24H THE MEASURED VALUES ARE)
104 FORMAT(1IH 422X4HFC =E12+4/1H 319X, THALPHA =El1Z2.4///)

130 FORMATI(IH 430Xy5HTIME E12.433Xy9HMICROSEC. 310X,12,810 LIGHTS/Z)
1000 FORMAT(1HJ,20X410HSCHUSS NR.IS5//1H y18Xs8HDELAME = E12.4/1H 422X,
14HEK =E1244/1H 2043 6HWELL = E12.4//1H 422X+14,11H ZEITPUNKTE/
21H 922Xy314,16H DRIGINAL LIGHTS//)
END(LsOg0p090s091909091450,040,0,0)
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SUBROUT INE COMPUT (C)

SUBROUT INE cawpur £C)
OMPUTES FUMCTION VALUES AND INTENSITIES
DIMENSION r(l}'ll)gb[TA(ll 11),7ANFA(11.11}
CIMENSION T(2),ALPHA(L),HI(1)
DIMEHSION QREGC{11,11),Q(12,11)
GIMENSION RASLOIY)yFMATEL(11411),DELTG(1)
COMMUN Byt TA9 MKy GAMMA K
COMMDN T ALPHASNZ
COMMON QREL U
COMMON RSL,FMATLL,0CLTG
COMMON My WaLZT,NZANL
COIHEDON MISPAR,RGROSSFCyNINT
DIMENSION AL{ZY)
DIMENSTON P(13),C011) o VILIL) o X(1DL)yFU1IOL),RINT(1T1)4XX(21)
FNINT = NINT
R = RGROSS / 1(.
NIN = NE + ]
HROI! = H = R

FRAMSFUORM BACK TO GRIGINAL INTERVALS

AL(1) = ALIPHA # R
DD 6 1 = Z4iin
AL(L) = AL(L1I-1) + HROH

WRITE OUTPUT TaAPE 34107
WRITE UUTPUT TAPL 55103, (AL(I) s I=1,NNN)

CO 5 1T = 1,H1i:d
X(I) = FL”\TT([-I)/FNINT
A1) = A(l) xR
Co 2 Ho= 1y
vy = 0,
P(‘I) = [,
DO 2 L = }.!'\‘i
VINDY = V() + GETALLyN)= X(L)#=(2%L-2)
PLA) = PN o+ SAMMACL,N) # X(I)==(2%L-2)
FOI) = 0.
GIWT(I) =

UC 4 N = 1,K
F(I) = F(1) + VIN) = C(N)
QINTELY = RINTII) 4+ CIN) = P(N)
TRANSFORM ACK TO ORIGINAL VALULS OF FUNCITON AND
INTENSITIES
RINT(I) = RWINT(LI)* H /(2.%R)
F(I) = FU(I) * SCRTF(le = X(1) &= 2) » H
CONTINUL
WRITE QUTPUT TAPE 3,10
WRITE CQUTPUT TAPE 3,101, (XX(I)sFLD),RINTII),I = 14NINT)
WRITE 1APE 13, WALZT s NG, (XXCI}sRINTOD) 3 I=1 o NINT)
WRITE TAPC 3y LALTT )y I=1 g NAN) o (T(1),1=1,N8)
WRITE TAPE 13,(F{I)s] = 14NINT)
RETURN
FORMAT(IHY 2H A4316X,1HI 318X, 4HRINT//)
FORMAT( LH ,F4.21225¢3152F.5)
FORMAT{18IIJTHE INTIRVALS ARE/)
FORMAT(IH 49E1%.4/1H 'q ;;-ﬁ)
ENDILlyCy tyiigyTglyiigtgly wigligta™)
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SUBRitei el A TLAL

SUBROUT INE PATCAL
DIMENSION ul(l11,13),BC7TA(11,11),GAMMALLL,11)
DIMENSION T(273)4ALPHACL) HLY)
DIFMENSION GRCC(11,21),ulll,11)
DIMENSION RASL(11),FMATCL(L1,11),RELTGIY)
CO:;I.:}E E]i.:l_.Tfi, JK'GANI"A’K
COMMON TeALPHALNH
COMMON GRG0
COMMON RSL,FHATEL,,BDELTU
COMMON HyLALZTNLZAHL
COMMON MISPARZRIGROGSSFC oNINT
GIMONSION Pl 922)yE(11),DELTA(LL,11)
COPMON PoU,DRELTA

GIMENSTO: ALCZY)
COMMON AL
DIMENSION &2 )
DO 31 J=1,NE
DO 31 N = 1,K
DELTA(J,,N) =
DO 31 L = 14N

J = J
F = AL(J)
o= AL{J+1)
L = L

DELTALJ,)N) = JELTA(JIN) + BETA(L, MY #DEFINIL,,E)

DO 61 =),
WW = [-1
ROI) = wWw=RY
DO 63 I=1,."
DO 63 N=1,K
PlLsN)=C,
DO 63 L=1yn
P(IyN) = PLLy) = GAMMALLN)2R(1)ex({ 2L-2)
00 €5 N=lyin
E(N}) = 0,
DO 65 J=1,n6
ClA)=E(N)=(DELTALI N =1 (J) )=,

DO 94 li=l,k

DO 94 L = 1,K
GREC(M,L) = 4
L0 94 J = Lfi]-z

QREC(IE, L)

i

CALSULATE Qikbize—=ji,

CALL IHVERS

RETURN

I R 3 i k)
ENOCOYLy 5 59 9 0 2l vy f9discr a1 e )

W TCIMy L) + LDELTALI) = DELVALI,L)
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FUNCTION GINDE(L,X)

FUNCTION GINDE(LyX)
COMPUTES THE INDEFIMITE INTEGRAL
DIMENSION G(11) ,
I = le = Xun?
IFIZ) Z41,¢
Y = X / SGRTF(2Z)
lF BIVIDE CHFCK 146
IF QUOTIENT OVERFLOW 1 4 3
[IF{X) 747,17
Y ='—l.t58
G0 TO 3
Y = 1. £ 38
GIL1) = OeSH(ATANFIY)+X2SLRTF(Z2))
IF(L=-1)4,44,5
GINDE=GI(1)
G0 TO9
N0 8 1=2,L
I = 1
W = FLOATFKF(I)
GIlI)=1le/{2au)a(—(X#x(2%][-2)272%SOQRTF(Z))4+(2.%4-3.)%G(I-1))
GIHNUDE = GI(L)
RETURMN
ENDCL O gOyugDy g lyGyQylyTiy0y040,M)

FUNCTION DEFILA(L,A,B)

FUNCTION DcFIN(LyA,8B)
COMPUTES THE DEFINITE INTEGRALS
G1 GINDE(L,A)
G2 GINDE(L,6)
DEFIN = 6G2-G1
RETURN
ENDCLy G D gDy gLy Dy Uy lyOyigNyiig?)

i
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General routines

SUROUTIME QUABRA(C)

SUBROUTINE QUADRALC)
SOLVCES THL QUADRATIC—-PROGRAMMING PROBLEM

DIMINSION ¢(11,110),BCTA(11,1))+GAMMA(L1,11)
DIMENSION GREC(11411),u(11,11)
CIMENSION RSLOLIL)yFMATEL(21,11)
DIMENSIGN P{2.320)2E(20),T(40),4X(40)
DISENSTION viElL4.,11)
COMMION B,n-.-,T.!\,:‘!K.GM-‘H“.A,K
COMMON NT
COMMON QRECL,Q
COMMON RSLyFMATEL
COMMON PyEsTaR
COMMON WL

DIMENSION C(11),CC(11)
DIMENSION ULZ0)3UPSI(27)4R{20),VI20),6(20,20) W (20)
DIMENSION Aa(23),2(27)
CO 502 I = 1,K

500 UPSI(I) = .
DO 63 I = 1,2
85 V(I) = D,
CO 68 M = 1,K
DO 68 N = 14K
68 VII) = VII) + P(I,N) = QIN,») = E(M) = 0.5
CO 70 1 = 1,2
DO 70 J = 1,2
G(I'J}':Oo
CO 72 L = 1,K
CO 70 N = 1,K
70 Gl1yJd) = GUIyJd) + 0425 = P(I,N) = Q(N,L) = P(J,L)
CO 71 1=1,290
71 UlI) = C.
NIT = O,
16

—

66

67
55

56

57

DO € I = 1,20
WD) = 0.
DO 58 J = 2,2
Wil) G(l,J)=UlJ) + W(1)
W(l) =1e/GULy)#{W({1) + VI(1)=2.5)
IF CIVIDE CHECK 1,2
IF QUOTIENT OVEZRFLOW 1,2
Wil) = -1.037 = (W(l)

IF(H(l))QG,éb,G?
ul1) = 0.
GO TO 55
utl) = Wil)
DO 73 I = &427

AlLT) = 2.

211) = (.
L = I=l1
Lo 56 J =
ALT) = G
M =1+
DG 57 J My 2t
IUL1) = GUI,Jd)=utd) + Z2(1)

+ V(1) = (.5)

1L
I,Jd)=2U(Jd) +A(I)
I}
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D
S
D 7
G Q
C 41
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[J
D 25
B
0 B4
B
)
1702
1291
1303
501
50
N enz
9
82
D 5M4
a9
an
123
104
145

> WL 20)

45

SULRJUTINE CUADRA(T)

WlI) = =1./G0T, 1 )= (L(I) + Z(I) + Ce32VI(I1))
IF DIVIDE CHECK 445

IF QUOTIENT OVERFLUYW 4.1

Wll) = =1ei&37 = (AUI) + Z(1) + 0.5%#VI(I))

IFI(W(T)) 91,31, 74%

Uutr) =

GO 10 73
Jil) = Wil)

CONTINUE

CO 43 J = 1,172
= WI2T) + S420,J0) = U(J)
WEZ20) = =1o/GL20, 2. = (WIZL) + VI20)=2(,5)
[F DIVIED ZHECK Tyb
I[F QUGTIZNT UVCRFLOW 749
Wizo) =1 E37 # (w(2C) + V(270)=#0,.5)

IF(w(2)) 41,4447
utze) = 0,
GO TO 43

uizn) = «(22)
PO 23 L=1,K
cciL) = 7,
DO 25 N = 142
CC(L) = CLiLY+P(H,L)=U(N)

B0 64 I = 1K
Cll) = <.
L &84 L = 1,K
C(I) = CUIY=Q(I,L)=(CClLI+E(L))=3.5

NI = NIT + 1
o0 521 1 = 14K
UPL = ABSF{UPSI(I) - C(1))

JgP = uPl JABSFC UPSI(I))

IF DIVIDE CHECK 101,10 0¢

IF QUOTIEN] DOVERFLOW 5.3,1003
IF(UPL = Laui3l) 501,501,573
IF(UP = DeuLlul) 501,501,503

CONTINUE
G0 TO 94

B0 532 I = 1,K
UPSI(I) = €(1)
IFINIT = 2:C) 76489,89

IF{Nd=-4) EZ,83,89)

2 MN = NN + 1

1) 524 1 = 1,k

UPSI{I) = ¢(1)

[F{NIT - 2.:0) 74,872,865

WRITE OUTPUT TAPE 3,133

WRITE QUTPUT TAP: 2,145,NIT

FORMAT(33HLNUMEER OF ITERATICNS EXCEEDS 2900/715H N CONVERGENCE)
FORMAT(LIH s6C2_ %)

FORMAT(1HL, I5, LHITERATIOMNS/)

RETUR?

ENDTLyt o050 9Qyuigleigialyl ol sTyirgid)
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SUBROUTINE LGLSY

SUBROUTINL LGLSY
SULVES A SYSTEM OF LINCAR EWQUATIONS,
PROGRAMMED BY WeLUENUW,

DIMCNSION DETLG(L1)yFMATEL(11,411),4RSLI(11)

DIMENSIOM 1(22),ALPHA(L}

DIMENSION DUM(11,11),DUM1(11,11)

DIMENSION B(11,11)yBETA(11,11),GAMMA(L11,11)
DIMENSION LIST(11)

COMMON ByBLTAyNKyGAMMA,, UM

COMMON T,ALPHA,N8
COMMON DUM,DUM1
COMMON RSL,FMATECL
COMMON DETLG

0O 1 J LyJM

1 LISTLY) u

SoCcooOoO0O

i n

v JM

]

DO 2 J=1
GE Ce0

Do 3 K’-lpJM

(g e Nalw] aNel

DO 5 L=1yJdM
IF(R=LISTIL])) 53395
5 CONTINUE

IF(ABSFIFMATEL(J,K))=GE) 344,4
4 GE = ABSFIFMATLEL(J4K))

LIST(J) = K
3 CONTINUE

coooO

oo

IF{GE=1.0C=35) 1:07,1021,10G01
1000 WRITE OQUTPUT TAPE 3, 1100
1100 FORMAT (49H1ABSF DES GROESSTEN LELEMENTES KLEINER ALS 1.7E-35)

CALL EXIT
C
c
1001 IF(J-1) 1002,1002,10Mn3
D1002 DETLG = T.434292L0GF(GE)
GO 70 10
C
D1003 DETLG = DETLG + J.43429«LOGI(GE)
c
c
10 M = LIST(J)
JPo= U+l
IF{JP-JM) 11l,11,8wW
C
11 DO 12 K=J4VP,JM
D FA = FMATCL(K M)/FHATEL{J, )
C

IF DIVIDE CHECK 5101,3158D
5150 IF QUOTITHT OVERFLUW 10145100
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SUBROUTINE LGLSY

D5101 IF(FMATEL(K,M)) 5160,516.+5161

D516C Bl = =1,
GO TO 517«
D5161 Bl = +1.
C
ND517C IF(FMATEL(J,M)) 5180,518(,5181
05180 B2 = -1l.
GO TO 51730
D5181 B2 = +1.
C
D5190 FA = 1.0FE+37#b1#32
C
5100 DO 13 L=1,JM
c

DO 14 L2=1,JM
IF(L=LIST(LZ2)) 14513414
14 CONTINUE

C
D FMATEL{K,L) = FMATEL(K,L) = FA*FHATEL(J,sL)
13 CONTINUE
c
D RSL(K) = RSLIK) = FA#RSL(J)
12 CONTINUE
2 CONTINUE
C
C

800 DO 15 J=1,JM
JR = JM-J+1
M = LIST{JR)

D FA = RSL(JR)
KL = JR+1
IF(KL=-UM) 32,332,106
C
32 DO 20 K=KL,JM
M1 = LISTI(K) _
D 20 FA = FA = FMATEL(JRyM1)#*RSL(K)
C
D 16 RSLIJR) = FA/FNATEL(JR M)
G

IF DIVICF CHECK  5290C,525%
5250 [F GUGTIFNT OVERFLOW  S200,1E&
DS200 IF(FA) 5201,52:1,5202

D201 B = -1,
GO TO 5210

D5202 b1 = +1.

C

05210 IF(FMATELIJR,M)) 520,527 ,5221
N5220 v2 = -1,

GO TU 523
D5221 K2 = +1.

D5230 RSLIJR) = L. &+37=hleh?

15 CONTIMNUE
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SUBROUTINT LGLSY

DO 50 J=1,4M
IF(J-LIST(J)) 33,5",33
M = LIST(J)

FA = RSL(M)
RSLIM) = RsL(J)
RSLIJ} = TA

JA = LISI(H)
LIST(M) = LISTUJ)
LIST(J) = JA

GO TO 34
CONTINUE

RETURN

ENDCLy " 9liy gty r].t"v:‘tlv‘f.‘l""l"i'-‘)

SULROUTINC INVERS

SULRUJTIND THVERS
COMPUTES THE INVERSEF OF A GIVEN MATRIX

ODIMEHSION Cl1]421),CMLELL,11)
DIMCMSION RSLUTL),,FMATELCTL1,11)
DINENSION 102 )3 ALPHAL(L)
DIMENSTON BUIEe11)yBETACLL,11),GAMMA(LL,11)
COMIIDN Bebb TAy IKyGAMMA LK

COMMOM TyalPiiiiyNb
cnMmny C,Ciil

COMMON RsbLgkiinTol
O 5 N 1K
Co 1 1 1:,K
LO 1 J = 1,K
FMATFL(T,J) = w(l4d)

b 2 I = 14K
[IFIN=1) 4,244
RSLUI)Y = 1.
GO TO £
RSLII)Y = .
CONTINUE
CALL LGLSY
o 5 1 = 1,K
CM1 (T,M) = RLLAT)
CONTIHNLL

RCTURRN
ENDULet o3y g ig gy gCalac syl gu g}
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¢) Example of an Qutput
VALUTS FOR K = 5
0 = 0.B6TTSE 22
X OR R T(X) CAPITAL 1 SMALL 1 OIFFERENCE
3 =0 29,8000 29,5995 -0, -0.2005
1 Nelt4 29,9000 29,7110 0.0046 -0,189%
2 n.08 3040000 30,0469 9.0190 0.0469
3 Nalz 30,4000 30,6595 Do 0444 Ge29095
4 0ulb 30, 700¢C 31,2992 D.0B27 0.6993
5 N2 3143007 32,4091 0.1360 1.1991
6 024 32,2000 33,6182 Ge2065 1.41R2
7 0.28 334200 34,9852 342957 1.7852
8 0e3l 344 70N 3644415 0e4040 le741%
9 D36 2648007 3T.BET2 01,5301 1.0872
17 o4l 19,5000 39,1858 06708 ~0.3112
11 Debt 42 44001 40,1818 0.8203 -2.2182
12 De48 44,8000 40,6785 00,9702 -4,1215
i3 Ne52 44,700y 40,4817 1.1095 -4,2183
14 N.56 40,7000 39,4054 1.2254 -1.2946
15 0e60 3604000 37.3031 1.3032 0.5031
16 Nebds 32400046 3441012 1.3288 2.1412
17 NebH 2745000 29.8379 1.2897 2.3379
18 0.12 23,000, 24,7020 1.1783 1.7020
19 N.76 184500 19.01657 0.9948 05657
20 n.800 138000 13.4993 0.7525 -0.3067
21 0.84 9, 7L0C 87475 N.4827 -0.9525
22 0.88 642000 5.6253 0,2420 ~0,6747
23 D692 3.6000 4,7355 0.1201 1.1355
24 N.96 1.5600 5.6704 042502 441704

2 1.00 0 -0. 0.8199 -0




d) Reconstruction of a given Function

0,05
0,10
0.15
0,20
0.25
0.30
0e35
0.40
0s45
0.50
0,55
0.60
065
0.70
0.75
0.80
D.H5
0.90
0.725
1.00

0.0%
0.10
0.15
0.20
Do 25
0.30
0.35
0.40
0. 45
0.50
0.55%
D460
0.65
0,70
0.75
C.8C
0.85
0.90
0.95
1.00

F aAYxb |
F4 %D
FY AN
FZ2 AL

FLX)

0.,2000000¢
0,2004%7677
0.2022610%

«20442539
0.,208LE703%
0.21180276
0.21528500
0.21B)10342
021367035
0.,21935460
0.21650615
0.2104R8655
0.20070399
D.18666264
0.16502252
0.14459052
0,11692500
0.08556531
0.05234165
0.02074275

1R)

0.,049999499
0.051121K7
0.054%445399
0,05257167
0,06719993
0.07¢;57184
0.09644299
0.0975217
0,10917392
0.12062147
0.13124992
0.14037187
0.14720000
0.150B7187
0.1504%000
D.14422187
0.11!320000
0.,11412187
0.08644779
0.04837187

Re THE GIvEN FUNMCTIONS

15 ARE IHF RECORSTRUCTED FUNCTICNS

11 ARE THT FUNITINNS COMPUTED AFTER THE CENTRE HAS BEEN THIFTEC

12 ARE THE FuNCTIONS COMPUTED FROM DISTURSBID VALUES T(J)

FS(x)

0.20000000
0.20057579
0,20226105

. 204812539
0.2081870%
0.21180376
0.21528500
0.21810342
0.21967035
0.21935461
0.2165053°
0.21048654
0.200701399
0.18666264
0.16802253
0.1444E955
0.11692799
0.0855651¢6
0,0523412)
0.02074187

Is(R)

0.,05000003
0.0511219)
0.0544500%
0.053657190Q
0.06720002
0.076£LTL90
0.08645003
0.09762192
0.10%200C5
0.120621%3
0.13125005
0.14057193
D.14720005
0.150£7193
0415045010
0.144222C9
0.13320035
0.11412237
0.0B545028
0.048£7119

F1(X)

220015321
7420087960
0.2028e976
0.20573109
0,20831410
(.211606392
0.213788%6
N,21535192
".2164£60)
0.,21732882
1421755257
0.21532062
1.21000920
0417637251
171465460
0.13359835
c,085702189
0.03764715
0.01531573
0.03271820

11(R)

0.0494R1T3
0.05135211
0.05660972
0.06429449
0.07311862
0.08126080
0.,02277760
N.07691401
n.10419234
0.11317902
0.12547867
0,14178772
0.16076186
0.17501435
0.18580905
0.17417128
0.13469267
0.06842185

-0.00007860
0.

F2(X)

Neaz0722502
20416152
0.1660407¢C
C.l85ET7942
0.,17772276¢6
C.17562102
0.,1920306¢
0.19704439
0.21772173
0.23832%22
0.251%1677
0.250336566
0.23073363
0.19401580
0,14R34788
0.1081602¢
0.,09031732
0.,16042350
0.14831163
0,17471065

12(R)

0.15T745167
014777616
0.1210058¢8
C.03347224
0.04430833
0.013%6ATE
=0.000C0419
0.00867304
0.0403%231
G.09864064
0.14253467
0.18735798
0.20839927
0.12545729
0.1480323E63
0.07907541
G.01677017
-0.
0.055164753
N.21867814
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